|
||||
|
Действительные числа. Двухполярность Материал из Многополярность/МатематикаДействительные числа Двухполярные числа исторически названы «действительными числами». Такие числа и соответственно двухполярно формализованные объекты относятся к локе 2. Законы отношений между полярностями будут: а) (+)*(+) = +, б) (-)*(-) = +, в) (+)*(-) = —. г) (-)*(+) = —. Здесь * — некоторый вид взаимодействий. Например, можно записать для поляризованного объекта +А — А = 0, где «ноль» (0) выполняет роль единицы такой, что (0)*(0) = 0 (, к примеру 0 + 0 = 0. Полярность «минус» (-) обратная сама себе так, что (-)*(-) = +, где + выполняет роль «единицы» такой, что (+)*(+) = +. Алгебра действительных чисел хорошо известна из математики, состоявшейся до XXI века. Однако с появлением понятий о поляризованных объектах мышления следует помнить, что взаимодействие полярностей и поляризованных чисел не следует смешивать. Например, (+5)(-3) = -15. Эдесь взаимодействие полярностей (+)*(-) = — происходит раздельно от самих чисел 5*3 = 15. К сожалению эта путаница происходит у математиков и по сей день. Бывает, что соотносится число полярностей. Например, +5–3 = +2, то есть число полярностей + уменьшилось до +2. Взаимодействие между полярностями и поляризованными объектами составляет различные виды связей. В конечном итоге, это определяет вид связей. Двухполярное пространство «шире», чем действительные числа. Более того, законы отношений в таком пространстве доказываются на базе аксиом. Система аксиом взята так, что обычно проходит в современном мышлении как «само собой», то есть математики это не выделяют в предлагаемые ими аксиомы. Аксиомы же математиков ДОКАЗЫВАЮТСЯ. |
|
||