Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы людям действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Читатель познакомится с различными типами энергетических накопителей, которые верно служат человеку сегодня, узнает, какие перспективы сулит в будущем применение супермаховичного накопителя энергии, первую модель которого построил автор.
• Об этой книге
Оглавление
Введение. Начало мечты
Часть I. Энергетические искушения
• Поднять, растянуть, накачать?
• «Капсула» разогревается
• Электрическая «капсула»
Часть II. Держу мечту!
• Мечте – 5500 лет!
• Вот она, моя «капсула!»
• «Капсулу» – в упряжку!
Если хочешь быть счастливым...
Об этой книге
Проблема накопления энергии – одна из важнейших научно-технических проблем современности. Во всех промышленно развитых странах мира ведется научный поиск в этом направлении. Еще бы – топлива становится все меньше, энергия дорожает с каждым днем, а накопитель энергии мог бы основательно помочь в ее экономии.
Действительно, сейчас мы используем подавляющее количество энергии в момент ее выработки. А если бы человечество обладало эффективным накопителем энергии, той «энергетической капсулой», которую ищет автор книги, то можно было бы запасать энергию впрок, как бы передавать ее во времени. Трудно переоценить, какие выгоды дало бы человечеству использование «энергетической капсулы». Вместо двигателей на автомобилях стояли бы накопители, запасающие дешевую и экологичную – безвредную для природы – энергию мощных электростанций. Сами электростанции могли бы запасать в огромных накопителях энергию ночью, когда она очень дешева, и расходовать ее в часы «пик». Энергия транспортных машин не переходила бы бесцельно в нагрев тормозов, а, проходя через накопитель, использовалась бы снова и снова. Ведь не секрет, что сейчас около половины энергии, вырабатываемой двигателями городских транспортных машин – автомобилей, автобусов, троллейбусов, поездов метро, – бесполезно «гасится» в тормозах. Нетрудно представить, сколько энергии, горючего можно было бы сохранить в этих машинах с помощью накопителя.
Есть и другая сторона этой проблемы: проходя через накопитель, энергия становится как бы экологичнее, безвреднее для окружающей среды. Двигатели транспортных машин работают в этом случае гораздо равномернее, и вредность их отработавших, выхлопных газов в несколько раз меньше, чем обычно.
Помимо сказанного, «энергетическая капсула» нашла бы себе применение и в грузоподъемных машинах, и в авиации, в космических станциях, и в буровых установках, а также во многих и многих других случаях, которые кратко и не перечислить.
Автор книги – профессор, доктор технических наук Н.В. Гулиа еще с юных лет увлекся поиском «энергетической капсулы» и до сих пор, как мне известно, верен этому поиску. Все это он честно и правдиво описывает в своей книге, не скрывая ни ошибок, ни заблуждений. В этой жизненности, наряду с научной достоверностью, основная ценность книги. Автор рассказывает о своем пути в науку, о своих находках и неудачах, которые, в общем, свойственны любому человеку, ведущему научный поиск.
И «капсула», которую он под конец все-таки находит, – это его детище, о котором он просто не в силах писать беспристрастно.
Н.В. Гулиа делает вывод о том, что «энергетическая капсула», которую он нашел, – супермаховик. Думается, такая его позиция в данном случае вполне оправданна. Во-первых, он, как создатель первой модели супермаховика, естественно, в той или иной мере склоняется в его сторону. А во-вторых, супермаховик объективно не имеет себе равных по перспективам накопления энергии. Если несколько лет назад это признавали только энтузиасты маховиков, то сейчас супермаховик признан в кругах специалистов повсеместно. Исследование этого типа накопителей энергии достаточно широко развернуто и у нас в стране, и за рубежом. Так, ряд вопросов, связанных с супермаховичными накопителями, разрабатывается в Институте машиноведения Академии наук СССР им. академика А.А. Благонравова.
Надо сказать, что автор достаточно подробно, с любовью описывает другие типы накопителей, подчеркивая их достоинства и отмечая недостатки. При этом он называет и причину, по которой он не занялся поиском в том или ином направлении, причем причину субъективную, не умаляя объективных достоинств того или иного типа накопителя. Это придает изложению правдивость, так как мы видим живого человека в его поиске, сомнениях, возможно, и в субъективных воззрениях, а не сухую схему.
Я надеюсь, что среди юных читателей этой книги будут и такие, которые проложат свой путь и сделают свои, быть может, совершенно необычные открытия в увлекательном поиске «энергетической капсулы».
Директор Института машиноведения АН СССР им. академика А.А. Благонравова, член-корреспондент АН СССР
К.В. Фролов
Введение. Начало мечты
Введение, в котором автор вспоминает, как он, разочаровавшись в ряде других занятий, пришел к решению посвятить себя поиску «энергетической капсулы», не подозревая, каким трудным, но увлекательным делом это окажется и сколько подводных камней и побед ждет его на этом пути.
Кто в юности не мечтает сделать выдающееся открытие, изобретение? Кто не хочет удивить современников и жить в памяти потомков? Вот с этих честолюбивых замыслов и начал я свое знакомство с «энергетической капсулой».
Предыдущие мои попытки поразить мир – игра на скрипке, сочинение стихов – кончались глубоким, почти летаргическим сном слушателей. Занятиям гиревым спортом был положен конец жильцами нижнего этажа, а увлечению химией взрыва – всеми соседями сразу.
Печальнее всего закончилась для меня попытка обрадовать человечество открытием в области медицины. Создав «чудодейственное» средство от облысения в двух составах, один из которых нужно было намазать, а другой – выпить, я решил испробовать его на себе. Побрив голову, я приступил к опыту и сразу же был доставлен в больницу. Мне казалось, что голова начала переваривать пищу, а в желудке выросла шевелюра. Вероятно, в волнении перепутал составы...
Вопреки ожиданиям врачей я все-таки выжил. И по совету знакомых стал готовить себя в инженеры. Мол, раз таланта нет, единственный выход – в инженеры!
Но так посмеет думать кто угодно, только не сами инженеры, особенно хорошие. Плохие инженеры, конечно, могут так рассуждать. Это облегчает их трудную жизнь. А я был просто поражен тем простором для поиска интересных идей, который открывает нам техника.
Однако простор – это и хорошо и плохо. Хотелось заняться не пустячной, а чрезвычайно важной, «глобальной» проблемой. Начались муки выбора.
Французский философ Буридан якобы утверждал, что если голодного осла поставить на равном расстоянии от двух одинаковых кучек сена, то он умрет от голода – не сможет выбрать, с которой начать. Конечно, обычный живой осел так не поступит, если он не совсем уж «осел».
Я же рассуждал так. Что нужнее всего для существования человечества? Что будет дорожать с каждым днем? Что нельзя заменить ничем другим? Что не потеряет своей важности для людей, если они даже переселятся на другие планеты? И ответ на все эти вопросы у меня нашелся один – энергия. Стало быть, ею и надо заниматься.
Однажды, правда, я уже «обжегся» на энергии – пытался построить вечный двигатель. Но желание свести с ней счеты у меня не пропало. Я представлял себе, что получать энергию, сжигая горючее, по меньшей мере, неперспективно. Горючее рано или поздно кончится, и замрут двигатели, тепловые электростанции, пропадет труд ученых, инженеров и рабочих, затраченный на создание этих машин. Я знал, что запасов горючего человечеству хватит ненадолго, особенно нефти. Не успеешь и состариться, а нефти уже нет. Кроме того, топливо, сгорая, сильно загрязняет атмосферу. А мне очень не хотелось вступать в конфликт с природой. Я понимал, что выиграть в этом споре нельзя.
Можно, конечно, получать энергию от поистине вечных и к тому же безвредных для природы источников. Огромные, практически неисчерпаемые запасы ее таят в себе ветер, реки, морские приливы и течения, внутреннее тепло Земли. Немалые надежды возлагают на использование атомной и термоядерной энергии. Несмотря на грозные названия «атомная», «термоядерная», такая энергия намного безопаснее для человека и природы, чем та, которую получают сжиганием горючего.
И все-таки самой главной, естественной и вечной «электростанцией» служит для нас Солнце. Это его энергия «законсервирована» в ветре, в течениях рек и океанов и в том же горючем. Она посылается нам Солнцем независимо от того, хотим мы этого или нет. Так уж лучше брать ее, чем отказываться. Только надо еще суметь сделать это!
Словом, энергии вокруг нас хоть отбавляй. Но смогли бы мы использовать это море энергии, если бы не научились передавать ее на расстояние – по проводам?
Трудно даже вообразить, что бы мы все делали без электричества. Пришлось бы вырабатывать энергию на том же месте, где предполагалось ее использовать. Наши квартиры освещались бы свечами, отапливались бы печами. А в гости мы ездили бы на лошадях или паровиках...
Впрочем, сегодняшние автомобили в этом отношении не ушли далеко от своих предков – паровиков. Ведь энергия вырабатывается их двигателем из горючего прямо на самом автомобиле. Насколько он отстал, этот маленький автомобильный двигатель, не только от солнечной или атомной электростанции, но даже от обыкновенной тепловой – ТЭС! Он намного дымнее, шумнее, прожорливее. Если, конечно, сравнивать все эти качества при одном и том же количестве выработанной энергии.
А использовать дешевую и безвредную энергию электростанций на автомобилях нельзя – не привязывать же автомобиль к станции проводами! Тракторы, комбайны, самолеты и многие, многие другие машины разделяют судьбу автомобиля – им самим приходится «добывать» для себя энергию, хотя это совсем не выгодно.
Значит, надо научиться передавать энергию без проводов, вроде как по радио. Да дело и не только в этом. Выработка и потребление ее далеко не всегда совпадают по времени. Днем светит Солнце – пожалуйста, используй его энергию. А наступил вечер, откуда ее взять для освещения? Работает крупная электростанция, освещает город. Вечером нагрузка на нее огромна – в каждом окне свет. Ночью свет погашен – не останавливать же станцию.
У автомобиля тут преимущество: не нужно ехать – выключай двигатель. Но хорошо ли это? Двигатель должен работать, а не стоять и ржаветь. А куда девать его энергию, если автомобилю она в это время не нужна?
Выходит, недостаточно передавать энергию на расстояние, даже если это делать без проводов. Надо еще уметь «переносить» ее во времени! Тогда все проблемы обеспечения людей энергией будут решены.
Вот это задача, ею стоит заняться!
И я решил изобрести этакую «энергетическую капсулу», которую можно было бы «заряжать» энергией, а затем использовать как бензобак. В отличие от бензобака, в моей «капсуле» должна накапливаться исключительно безвредная для человека энергия. И не так мало, как в автомобильных аккумуляторах, а столько, сколько, например, в том же бензобаке. Ведь не секрет, что тяжелый автомобильный аккумулятор содержит в себе энергии не больше, чем в рюмке бензина...
Итак, поиск «энергетической капсулы» – накопителя энергии начался.
Часть I. Энергетические искушения
Поднять, растянуть, накачать?
Глава первая, в которой автор пытается разобраться, что же, собственно, ему хочется найти, а затем ищет это в часах-ходиках, гитарных струнах, резине, воздухе – как с машинным маслом, так и без него...
Задача потруднее буридановой
У Буриданова осла было только две кучки сена, и то он не мог сделать выбора. А тут – попробуй выбери подходящую основу для «энергетической капсулы». Ведь существует немало всяких накопителей или аккумуляторов энергии, о которых я, к сожалению, имел тогда довольно смутное представление.
Прежде всего я стал выяснять, каким образом запасают энергию различные аккумуляторы, чтобы определить, какой из них имеет шансы стать «капсулой». Мне казалось, что свежему человеку легче разобраться в этом, чем специалисту, занимавшемуся каким-либо одним аккумулятором.
Когда человек чего-нибудь совершенно не знает и хочет получить хотя бы общую справку, ему советуют заглянуть в энциклопедию. В Малую или в Большую. А если нужно проследить что-то с самого начала, то нет ничего лучше старинного энциклопедического словаря Брокгауза и Ефрона. Открыв золоченый том этой ценнейшей книги 1890 года издания на слове «аккумулятор», я прочел: «Так называются в машиностроительном деле приборы для накопления механической энергии. Изобретены они Армстронгом и основаны на постепенном поднятии на высоту большого груза или на сильном сжатии воздуха».
Энциклопедии последующих выпусков сообщили мне, что аккумулятором вообще называется «устройство для накопления энергии с целью ее последующего использования» и что аккумуляторы бывают электрические, тепловые, механические, в том числе и изобретенные Армстронгом. После каждой статьи об аккумуляторах были помещены ссылки на книги и другие источники, по которым вопрос можно изучить подробнее.
Все! Конец ниточки был у меня в руках, и, потянув за него, я мог уже размотать весь «аккумуляторный клубок». Однако меня смутило определение понятия «аккумулятор» в энциклопедии. Получалось, что аккумулятор и задуманная мной «энергетическая капсула» – это совсем не одно и то же.
«Устройство для накопления энергии с целью ее последующего использования»... Я вспомнил школьные опыты с электрической машиной. Мы крутили большой стеклянный диск, трущийся о кожаные подушки, а затем извлекали из заряженных шаров или конденсаторов – так называемых лейденских банок – яркие искры. Вращая диск, мы накапливали энергию, а извлекая искры из шара или лейденской банки, использовали ее. Как будто это устройство подходит под определение «аккумулятор», но что-то подсказывало мне, что электрическая машина – не аккумулятор. Ведь заряжали мы электричеством только шар или лейденскую банку, именно они накапливали энергию. А стеклянный диск, трущийся о подушки, служит для преобразования механической энергии вращения в электроэнергию, он не имеет к аккумулированию никакого отношения. Такие устройства для преобразования энергии в энциклопедии называются «машинами».
Значит, аккумуляторы-накопители здесь – шар или лейденская банка, а все устройство, включающее и диск с подушками, – это не аккумулятор, а машина, электрическая машина.
Выходит, аккумулятор должен выделять энергию в том виде, что и была в него «заложена». Тогда он будет хранилищем энергии, «энергетической капсулой». А если изменяется форма энергии, это уже не аккумулятор, а машина. Если мы кладем на сберкнижку рубли, то рубли с нее и получаем. Действительно, сберкнижка – «аккумулятор» денег. Но допустим, что мы положили туда рубли, а получили, например, бублики на ту же сумму. Тогда это уже не аккумулятор денег – сберкнижка, а самый настоящий магазин. Видимо, доверять можно не всегда и энциклопедиям, их тоже люди пишут. Хорошо, лейденская банка – уж точно аккумулятор энергии. И потомки лейденской банки – конденсаторы, без которых не обходится ни один радиоприемник или телевизор, – тоже.
Порывшись в памяти, я заключил, что наряду с конденсаторами электроэнергию накапливают и катушки-электромагниты. Те самые, которые мы видим и в мощных электромагнитных подъемных кранах, перегружающих металлолом, и в электронных будильниках, не говоря уже о том, что в каждом приемнике или телевизоре их десятки.
Только в конденсаторах энергия накапливается в виде электрического заряда, а в электромагнитах – в виде магнитного поля вокруг катушки.
И уж конечно, к накопителям энергии относится всем нам известный автомобильный электроаккумулятор. Вроде бы больше электроэнергию никакие другие устройства накопить не могут.
Позвольте, а электроутюг и электроплитка, которые включаются в сеть?
Подумав об утюге, я все-таки решил, что накапливает он не электричество, а тепло. Тепло переходит в утюг от раскаленной спирали или другого нагревательного элемента, питаемого электротоком: электроэнергия в спирали – преобразователе энергии – превращается в тепловую энергию, а последняя накапливается в металлической массе утюга. То же самое происходит в электроплитках и любом другом электронагревательном приборе.
Но лучше всего проявляются теплоаккумулирующие свойства в обыкновенном чугунном утюге, который разогревается на газу. Тепло от газового пламени переходит в металл утюга и довольно долго в нем сохраняется.
Стало быть, утюги, грелки и другие устройства, накапливающие тепловую энергию, можно отнести к аккумуляторам тепла.
Какая еще форма энергии осталась «не охваченной» накопителями? Электроэнергия есть, тепловая тоже. Осталась, пожалуй, самая привычная – механическая энергия. Оказывается, поддается накоплению и она, причем каждый из нас является хозяином, по крайней мере, одного накопителя механической энергии – часовой заводной пружины. Конечно, речь идет о тех, кто носит механические, а не электронные часы. В механических часах целых два пружинных аккумулятора – заводная пружина и пружинка балансира. А если эти часы – будильник, то там добавляется еще и пружина боя или звонка. Многие приборы работают на энергии пружин. Заводные игрушки, механические бритвы – тоже питаются этой энергией.
Неплохой накопитель механической энергии – резиномотор, часто применяемый на летающих моделях. Я строил такие модели и даже пытался усовершенствовать их, поставив вместо резиномотора металлическую пружину, но, к моему удивлению, модели сразу же «разучивались» летать. Где-то я читал, что подобные модели с пружинами и воздушными винтами строил еще М.В. Ломоносов, но и у него они не взлетали. И как будто это сильно повредило идее летательного аппарата тяжелее воздуха. Жаль, что в то время Ломоносов не мог построить резиномотора!
На этом же свойстве резины накапливать энергию построены рогатки. В детстве я, как и многие мои сверстники, очень любил мастерить рогатки и метко стрелял из них. Помню, однажды я выиграл спор с товарищем, «расстреляв» из рогатки те подвижные мишени в тире, в которые он не мог попасть из пневматического ружья.
Правда, пневматическое ружье стреляло гораздо дальше моей рогатки, потому что сжатый воздух, который гнал пулю в стволе ружья, был гораздо «сильнее» резиновой ленточки. Отсюда я сделал вывод, что сжатый воздух как накопитель механической энергии очень и очень неплох. Молодец Армстронг, придумавший этот вид аккумулятора!
Я знал, что механическую энергию можно накопить и во вращающихся маховиках. Были у меня инерционные игрушечные автомобили, их надо было сначала поводить по столу, а потом они могли метр-два проехать сами. То есть не сами собой, а за счет энергии, накопленной в небольшом маховике внутри игрушки. Не раз видел я точильные круги, которые после выключения мотора долго еще вертелись за счет накопленной в них кинетической энергии, и на них в это время можно было даже точить ножи.
Признаться, поначалу я не очень верил в аккумулирующие возможности маховиков. Мой игрушечный маховичный автомобильчик проходил гораздо меньшее расстояние, чем заводной. К тому же я однажды стал свидетелем того, каких бед наделал разорвавшийся на ходу точильный круг – его осколки ломали все на своем пути. И я представил себе, что могла бы натворить «энергетическая капсула» с огромным запасом энергии в ней, разорвись она, как этот точильный круг...
Вот, пожалуй, и все формы энергии, за исключением световой. Можно, конечно, как это не покажется странным, накопить и световую энергию. Многие из моих товарищей увлекались такими накопителями, даже не подозревая, что это и есть накопитель. Я имею в виду светящиеся краски, которыми покрывают стрелки и цифры приборов, часов, иногда выключатели. Если их предварительно осветить, то потом они долго выделяют накопленную световую энергию, «горя» различными цветами. Краски эти, называемые кристаллофосфорами, очень интересно приготовить самому. Я тоже их готовил, любовался сказочно красивым сиянием в темноте. Но все-таки сейчас мечтал создать «энергетическую капсулу» не для световой энергии, а для такой, которая сможет двигать автомобили и другие машины.
В итоге я наметил для себя следующие виды накопителей, из которых надлежало выбрать свой, лучший, чтобы работать над ним в дальнейшем: устройства, накапливающие механическую энергию, – поднятый груз, пружины, резина, а также сжатый газ. Сюда же я отнес и маховики, накапливающие при вращении кинетическую энергию; устройства, накапливающие электрическую энергию, – конденсаторы, электромагнитные катушки и электроаккумуляторы типа таких, которые стоят на автомобилях; устройства, накапливающие тепловую энергию, – различные нагретые тела.
Груз и струна
Для того чтобы сравнивать между собой аккумуляторы различных типов, я должен был избрать какую-нибудь мерку, или, как говорят ученые, критерий для их оценки. Можно сравнивать накопители по цене, экономичности, сложности, удобству и по многим другим качествам. Но я хотел, чтобы моя «энергетическая капсула» была установлена прежде всего на автомобилях, а поэтому и сравнивать накопители решил применительно к автомобилю. На автомобилях же источником энергии для движения служит топливо, сгорающее в двигателе. И обычно говорят: «Расход топлива в таком-то автомобиле столько-то литров на 100 километров пробега». Этот способ оценки автомобилей по расходу топлива на 100 километров пути стал узаконенным.
Что ж, зачем искать новую мерку для сравнения накопителей, когда достаточно хороша и старая. От добра, как говорится, добра не ищут. Только очень уж неудобно оценивать накопители энергии в литрах, лучше в килограммах.
В общем, меркой для сравнения я принял массу в килограммах той «энергетической капсулы», которая позволит автомобилю средней величины, например в 1 тонну массой, проехать путь в 100 километров. Дорога при этом должна быть ровной, хорошей, без подъемов и спусков, а автомобиль должен ехать по этой дороге равномерно, с обычной скоростью 60...80 километров в час, без остановок, обгонов, дорожно-транспортных происшествий и прочих приключений. Иначе сравнение будет очень затруднено.
Если подсчитать силу, с которой нужно толкать или тянуть такой автомобиль, чтобы он ехал равномерно, то получится около 250 ньютонов. Эта сила была определена так. Автомобиль массой в 1 тонну привязали буксиром к другому автомобилю, а в буксирное устройство вставили динамометр – измеритель силы, или попросту пружинные весы. При равномерном буксировании со скоростью 60...80 километров в час динамометр показывал 250 ньютонов.
Работа, которую затратит автомобиль, проехав 100 километров, будет равна произведению силы на путь, а именно 25 тысячам ньютоно-километров. Переведя это в обычные для нас единицы работы – джоули (а один джоуль равен одному ньютоно-метру), получим 25 миллионов джоулей, или 25 мегаджоулей (МДж).
Значит, мой эталонный накопитель должен иметь запас энергии 25 мегаджоулей. Какой из аккумуляторов – механический, электрический или тепловой – окажется «чемпионом» по легкости, тот и будет претендентом на «энергетическую капсулу».
И вот еще что. Для перемещения среднего автомобиля на 100 километров, иначе говоря, для совершения работы в 25 мегаджоулей, достаточно всего около 10 килограммов топлива. Это знает любой водитель. Остается прикинуть, что покажут известные мне накопители – больше или меньше 10 килограммов?
Чтобы запасти 25 мегаджоулей аккумулятором Армстронга в виде поднятого груза, надо вознести 2,5 тонны груза на высоту километра либо 2,5 тысячи тонн на высоту метра. Для автомобиля, разумеется, более подходит вторая высота, но куда девать 2,5 тысячи тонн груза? Что и говорить, неудобный аккумулятор! Его и на автомобиле не разместишь, разве что поднять машину на двух с половиной километровую высоту. Тогда она сама станет аккумулятором энергии. Спускаясь с этой «горы», автомобиль сможет пройти без двигателя необходимые 100 километров, используя энергию, накопленную при подъеме. Но на каждые 100 километров пути гор, как говорится, не напасешься. Да и потом, не всегда же спускаться, нужно и подниматься когда-то.
Выходит, поднятый груз из списка претендентов на «капсулу» надо вычеркивать. Пусть он исправно служит, как и раньше, в часах-ходиках.
Следующим накопителем энергии в моем списке была пружина. Прямо скажу: пружины меня очень заинтересовали. Тем более, что, как я слышал, были в свое время пружинные колесницы, на которых коронованные особы совершали свой торжественный выезд. Нельзя ли автомобили приводить в движение энергией заводной пружины?
На глаза мне попались пружинные весы, или безмен. «Что, если попробовать сделать тележку, движущуюся энергией, накопленной в безмене?» – подумал я. И, увлеченный этой идеей, тут же принялся за постройку «безменовоза». На простой платформочке с двумя осями и колесами я укрепил безмен, к крючку которого привязал прочную нить. Другой конец нити привязал к одной из осей и, вращая колеса, стал наматывать нить на ось. Чем больший вес показывала стрелка безмена, тем труднее становилось крутить колеса. Это накопленная в пружине механическая энергия стремилась повернуть их в обратную сторону. Растянув пружину на полную длину (у обычных хозяйственных безменов это соответствует 10 килограммам, или, правильнее, 100 ньютонам), я поставил «безменовоз» на пол. Но перед тем как отпустить колеса, положил на тележку гирю, чтобы та была потяжелей.
Как только колеса были отпущены, началось выделение энергии пружиной безмена. Сжимаясь до прежнего положения, пружина тянула нить, которая сматывалась с оси и вращала колеса «безменовоза». Разогнавшись, он проехал немалое расстояние, прежде чем остановиться.
Однако недолго я забавлялся своим «безменовозом». Спустя некоторое время руки у меня так устали растягивать пружину безмена, что пришлось отложить тележку в сторону. Да и пора было всерьез поразмыслить над пружинами – на что они способны.
Пружина навивается из стальной упругой проволоки. Растягивая пружину, мы как бы скручиваем проволоку. Если мы чрезмерно растянем пружину, она больше не вернется к прежним размерам – вытянется, испортится. А нельзя ли накапливать энергию, растягивая не пружину, а саму проволочку?
Очень даже можно, и мы это часто делаем, когда играем на струнных музыкальных инструментах.
Взять хотя бы упругую струну на гитаре. Пока струна не напряжена, провисает, сила натяга равна нулю. Чем больше мы натягиваем струну специальными натяжными устройствами – колками, тем больше сила, с которой струна сопротивляется растяжению: во сколько раз удлиняется струна, во столько же раз и растет сила. Наконец струна не выдерживает натяга и с печальным звоном лопается.
Печальный звон – это и есть выделение накопленной в струне механической потенциальной энергии. Играя на гитаре, мы, оказывается, только тем и занимаемся, что, натягивая пальцами струны, накапливаем в них потенциальную энергию, а отпуская – даем струнам возможность выделить ее, причем буквально на воздух. Но энергия, накопленная в струнах, не пропадает даром. Переданная воздуху в виде звуковых колебаний, она услаждает наш слух музыкой.
Современная высококачественная проволока, из которой делается музыкальная струна, очень прочна. Проволока сечением 1 мм2 может выдержать до 400 килограммов груза. При этом метровая проволока упруго вытянется ни мало ни много – на 2 сантиметра. Запас потенциальной энергии в такой проволоке будет равен произведению средней силы на удлинение, то есть почти 35 джоулям. Объем этой проволоки легко вычислить, он равен всего 1 см3, а масса – около 8 граммов.
Если мы поделим энергию на массу, то получим весьма важный показатель для оценки аккумуляторов – удельную энергоемкость, или плотность энергии. Этот показатель характеризует, сколько энергии сможет накопить каждый килограмм массы аккумулятора. Я постарался как следует запомнить его, так как понимал, что он очень пригодится мне в дальнейшем. А пока выяснил, что для музыкальной струны он будет около 4 тысяч джоулей на килограмм, или 4 килоджоуля на килограмм.
Крупный концертный рояль, например, накапливает в своих струнах столько энергии, что ее хватило бы для передвижения его на несколько десятков метров! Правда, рояль пришлось бы поставить на велосипедные колеса, чтобы облегчить «ход». А чемпионом в такой поездке на энергии натянутых струн была бы, пожалуй, арфа. Струн у нее почти столько, сколько у рояля, но во сколько раз меньше вес!
Конечно, музыкальная струна – это уникальный, дорогой материал. Для обычных стальных пружинных материалов плотность энергии снизится более чем вдвое. Учитывая, что материал пружин напряжен неравномерно, а также сделав поправку на необходимый в любом случае коэффициент запаса прочности, я подсчитал, что каждый килограмм пружины накопит не более 0,5 килоджоуля энергии. Значит, автомобиль массой в 1 тонну для прохождения 100 километров пути должен иметь пружинный аккумулятор массой... 50 тонн!
А как же все-таки передвигались старинные королевские пружинные экипажи? Впоследствии в одной из книг я прочитал, что их в поте лица своего постоянно «подзаводили» сильные работники, хорошо спрятанные среди золоченой мишуры колесниц. Иначе бы не пройти им и десятка метров. Вот и весь секрет!
Итак, пружины тоже пришлось вычеркнуть. Претендентов на «капсулу» все меньше и меньше.
Резина побеждает сталь
Жаль было расставаться с пружинами, но моих надежд они явно не оправдали. Я должен был это предвидеть, из пружины даже рогатки толковой не изготовишь. Когда-то я пытался заменить резиновые жгуты в рогатке на тонкие пружины, намереваясь построить «сверхрогатку», но получился конфуз. Под смех товарищей моя «сверхрогатка» выплюнула камень мне в ноги. Выходит, не так уж плоха резина и для рогаток и для резиномоторов. И ведь используется здесь именно свойство резины накапливать энергию.
На первый взгляд кажется: ну что за материал резина по сравнению с прочнейшей проволокой? Но это только на первый взгляд. Проверим все в цифрах. Чтобы вытянуть резиновый жгут сечением сантиметр на сантиметр вдвое, нужно приложить силу около 200 ньютонов. Я вычислил это, подвешивая к жгуту различные грузы. А до разрыва хорошая резина из натурального каучука растянется раза в четыре, не меньше.
Метровый резиновый жгут такого сечения имеет массу чуть больше ста граммов, а накопит при полном растяжении около 3 килоджоулей энергии. Стало быть, плотность энергии резины как аккумулятора, достигающая 30 килоджоулей на килограмм, превышает почти в сто раз этот показатель у пружин! Вот, оказывается, почему модели с резиномоторами летают, а с пружинным мотором еще ни одна модель не взлетела в воздух. Этим объясняется и мой конфуз с пружинной «сверхрогаткой».
Какова же будет масса резинового аккумулятора, пригодного для автомобиля? Необходимые 25 мегаджоулей энергии наберут всего около 900 килограммов резины. Это уже не 50 тонн! Над таким аккумулятором можно и поработать.
Основная трудность, с которой пришлось столкнуться, – это как преобразовать вытяжку резины во вращательное движение вала. Ведь в конечном итоге накопленная энергия должна вращать вал. Если вращения не нужно, то все гораздо проще. Вот в подводном ружье или в той же рогатке резина тоже аккумулирует энергию. Но все обходится ее растяжением, и это очень облегчает задачу. В резиномоторах для моделей жгут из тонких резиновых нитей закручивают. Кто изготовлял такие резиномоторы, знает, как перекручивается жгут при заводке мотора, как трутся петли резины друг о друга. Их даже смазывают касторкой, чтобы уменьшить трение. В результате – много потерь энергии, быстрый износ. Для модели это не так уж важно, а для настоящих машин, где огромное значение имеют коэффициент полезного действия – КПД и долговечность, совершенно неприемлимо.
Итак, резину нужно только растягивать. Первой мыслью, конечно, было привязать к концу резинового жгута веревку и наматывать ее на вал, который должен вращаться.
Я так и сделал. Превратить «безменовоз» в «резиновоз» было делом получаса. Под днищем тележки я закрепил конец резинового жгута, ко второму концу привязал шнурок, а шнурок намотал на ось колеса – и нехитрый привод был готов. Стоило прокрутить колеса тележки в обратную сторону, как резина растягивалась, накапливая энергию, которая затем двигала «резиновоз», когда я ставил его на пол. Я убедился, что как транспортная машина он гораздо лучше «безменовоза»: и проходит большее расстояние, и движется плавнее.
Но для реальной машины это не подходит. Если даже изготовить толстенный резиновый жгут сечением в квадратный дециметр, то для накопления нужной энергии он должен быть длиной не менее 100 метров! Растянется же этот жгут почти на целый километр. Это не то что на автомобиль, на поезд не поместится.
Если перекидывать жгут через блоки, как трос в подъемных кранах, то, хотя мы и сократим его длину, почти всю накопленную энергию «съедят» потери в блоках. Ведь резина – не стальной трос, она сильно растягивается, и при огибании блока жгут будет так тереться об его поверхность, что потери энергии, как и износ резины, неминуемы.
И еще. Сам по себе жгут сечением в квадратный дециметр, растягиваясь, может развивать силу в несколько тонн. Перекинув жгут через блоки, мы как бы складываем его раз в сто (чтобы сократить километровую длину хотя бы до пригодных для автомобиля десяти метров), при этом усилие растяжения достигнет сотен тонн. Этакая сила запросто «сложит» автомобиль, совсем как трубу телескопа. Подобные аварии машин так и называются – «телескопирование».
Да, неразрешимая проблема. Всем хороша резина, но слишком уж неудобна в обращении...
И тут совершенно неожиданно мне в голову пришла удачная мысль: если навить резиновый жгут на очень скользкий цилиндр (представим себе, что мы имеем такой идеально скользкий цилиндр), как на катушку, по спирали, то можно сильно сократить длину устройства. К тому же все усилие растяжения резины «перейдет» во вращение вала, не понадобится никаких дополнительных механизмов и нечего бояться, что автомобиль «телескопирует». Допустим, диаметр цилиндра будет всего полметра, тогда на каждый метр его длины ляжет не менее 30 слоев жгута, который сильно сузится при растяжении. Это уже составит около 50 метров растянутой резины. Километр уляжется на 20 метрах цилиндра, сделав при этом 600 оборотов.
Лучше и предложить трудно, но пока нет гипотетического идеально скользкого цилиндра. А собственно говоря, для чего он нужен? Для того, чтобы каждый слой резины на цилиндре мог повернуться относительно предыдущего без трения... Стоп! Ведь такой же результат мы получим, если разрежем цилиндр, как колбасу, на отдельные слои и насадим их свободно на общую ось! Слои эти можно изготовить из легкой пластмассы, даже из дерева.
Я приглядел дома толстую, добротную скалку, которой бабушка раскатывала тесто, и, воспользовавшись удобным случаем, распилил ее на множество тонких дисков. Выкрасил их сразу же раствором марганцовки, чтобы не узнали в моем «изобретении» бывшей скалки. Затем, проделав центральные отверстия, насадил диски на гладкий стальной стержень, на котором они могли свободно вращаться. Кроме этого, я просверлил диски в разных местах, чтобы максимально облегчить их. В самые крайние диски аккуратно, стараясь не расколоть, вбил короткие толстые гвозди, перекинул через них зигзагами резиновый жгут, концы которого связал между собой. Чтобы диски не терлись торцами, переложил их шайбами.
Теперь, вращая крайние диски в разные стороны, я мог растягивать резиновый жгут, накапливая в нем изрядное количество энергии.
Установил я свой «резиноаккумулятор» на оси колеса детской коляски. Крайние диски закрепил неподвижно – один на оси колеса, другой на раме коляски. Закрутив колесо в обратную движению сторону до полного натяжения резины, оборотов на пятьдесят, я затем опускал его на дорогу. Коляска рвалась вперед, как норовистый конь, и резво выносила меня прямо на середину двора на зависть младшим ребятишкам.
Потом я соединил вместе десять таких «резиноаккумуляторов», расположив их под днищем коляски, с приводом на одно заднее колесо. Второе посадил на ось свободно. Передние колеса я сделал рулевыми и ездил на своем «резиновозе» уже метров по триста, вызывая удивление у прохожих. Еще бы! Детская коляска с длинноногим «малюткой» сама собой катилась по улице, причем довольно быстро и бесшумно – совсем как печка с Емелей из сказки!
Моим «резиноаккумулятором» заинтересовались специалисты, тоже из числа прохожих. Один из них, работавший на заводе, посоветовал мне подать письмо-заявку в Комитет по изобретениям, описав в ней мой «резиноаккумулятор». Он и помог составить эту заявку, так как это оказалось непросто, особенно если делаешь в первый раз.
Какова же была моя радость, когда я получил официальное письмо, где говорилось, что мой «резиноаккумулятор» признан изобретением. А затем, почти через год, мне торжественно вручили государственный документ – авторское свидетельство на изобретение. Это был красивый диплом с красной печатью и зеленой лентой, с номером моего изобретения и чертежом «резиноаккумулятора». Тот, кто получает такое авторское свидетельство, уже считается изобретателем. Я очень гордился этим документом и повесил его на стенку.
Надо сказать, что «резиноаккумулятор» действительно вышел неплохой. Правда, он запасал не 30, как я ожидал, а всего 3 килоджоуля на килограмм своей массы, но и это было в десятки раз больше, чем может накопить пружина.
Конечно, я понимал, что это не совсем тот аккумулятор, о котором мечталось. И энергии не мешало бы накапливать побольше, и потерь ее в резине многовато. Да и материал – резина – недолговечный по сравнению с металлом, например. Что ж, значит, все еще впереди.
Энергия... в воздухе!
«Бесполезно было бы пытаться набрать в резине энергии больше, чем она в состоянии накопить», – успокаивал я себя, когда мой взгляд останавливался на предмете моей гордости – авторском свидетельстве на изобретение «резиноаккумулятора». Мне удавалось растягивать жгут лишь до известных пределов, в конце концов резина не выдерживала и лопалась. При этом вся накопленная энергия «вылетала» из нее, как пробка из бутылки шампанского.
А кстати, почему вылетает пробка из бутылки с шампанским? Потому, почему и пуля из пневматического ружья. Сжатый газ способен совершать работу благодаря накопленной в нем энергии. Той самой потенциальной энергии, что запасалась в устройствах, которые я мастерил раньше. Воздух, вообще всякие газы тоже обладают упругостью. Более того, воздух, например, можно сжимать гораздо сильнее, в большее количество раз, чем растягивать пружину или резину. Хорошо, если пружину удается сжать вдвое; резину иногда растягивают раз в пять-шесть. А воздух сжимай хоть в пятьсот раз – ничего ему не сделается.
То есть в сжатом воздухе, если рассуждать теоретически, можно накопить огромную энергию. Но газ нельзя сжимать сам по себе, нужен сосуд – баллон, в котором этот газ будет находиться. Баллон должен быть очень прочным, иначе его разорвет давление.
А прочные вещи всегда бывают тяжелыми. И поэтому сам баллон, как правило, намного тяжелее, чем газ внутри его. Правда, и газ, сжатый, например, в 500 раз, нелегок – по плотности он уже приближается к жидкости...
Но все-таки сколько энергии сумеет накопить сжатый воздух? Может ли он претендовать на звание «энергетической капсулы»? Я, наверное, первый раз в жизни листал свой школьный учебник физики с таким нетерпением и наконец нашел то, что искал.
Чтобы узнать, сколько энергии накоплено в газе, нужно умножить его давление на объем. Кубометр воздуха весит чуть больше килограмма. Допустим, мы сожмем воздух в 500 раз, его давление будет – 500 атмосфер, или около 50 мегапаскалей (МПа). Тогда весь кубометр уместится в сосуде емкостью два литра. Если предположить, что баллон весит примерно столько же, сколько воздух (а это должен быть очень хороший, крепкий баллон!), значит, на каждый килограмм баллона придется только около литра сжатого воздуха. Но этот литр, одна тысячная кубометра, умноженная на 50 мегапаскалей давления, даст в результате 50 килоджоулей энергии!
Совсем неплохой показатель – 50 килоджоулей на килограмм массы аккумулятора! Плотность энергии почти вдвое выше, чем у лучшей резины. И долговечность такого аккумулятора очень высока – воздух не резина, он не изнашивается. Масса воздушного аккумулятора для автомобиля будет всего 500 килограммов. Его уже вполне можно установить на автомобиле в качестве двигателя.
Окрыленный этим открытием, я поспешил поделиться радостью со своим приятелем. Но тот в ответ лишь ухмыльнулся и сунул мне под нос только что полученный журнал, где говорилось, что не так давно итальянцы построили автомобиль-воздуховоз, проходящий с одной заправки воздухом более ста километров.
Вскоре выяснилось, что и это далеко не новость. Еще в прошлом веке во французском городе Нанте ходил трамвай, работавший от баллонов со сжатым воздухом. Десяти баллонов воздуха, сжатого всего до 3 мегапаскалей, при общем объеме 2800 литров, трамваю хватало, чтобы пройти на накопленной в воздухе энергии путь в 10...12 километров.
Все равно я решил построить модель такого воздуховоза, чтобы самому убедиться в преимуществах и недостатках воздушного аккумулятора. Как мне представлялось, модель автомобиля-воздуховоза сделать несложно. По моим расчетам, для этого нужен был углекислотный огнетушитель, например автомобильный, который выбрасывает струю газа, а не пены, и тяговый пневмодвигатель, скажем от воздушной дрели или гайковерта.
Но, увы, первое же испытание воздуховоза разочаровало меня. Я направил сжатый углекислый газ из огнетушителя в пневмодвигатель, а тот, чуть-чуть поработав... замерз. Да, да, покрылся инеем и остановился!
Объяснение этому поразительному явлению я нашел в том же учебнике физики.
В принципе любой сжатый газ при резком расширении сильно охлаждается. Когда я, ничего не подозревая, крутанул вентиль баллона сразу до отказа и газ под большим давлением вырвался из отверстия, расширение оказалось столь интенсивным, что газ стал превращаться в снег. Не обычный, а утлекислотный, с очень низкой температурой. Такой снег, только спрессованный, часто называют «сухой лед», потому что он переходит в газ, минуя жидкую фазу. Мне не раз приходилось видеть «сухой лед», когда я покупал мороженое. Но главное – охлаждение значительно снизило запас энергии в сжатом газе. Ведь давление газа при охлаждении стремительно падает, а значит, уменьшается и количество выделяемой энергии. Это и было основной причиной остановки пневмодвигателя.
Можно, конечно, нагревать охлажденный газ, чтобы вернуть ему прежнюю температуру. Но ведь нагрев – затрата энергии. Газ когда-то сжимали, закачивая в баллон. Тут-то он и нагревался: газы, как известно, при сжатии нагреваются. Вот если бы горячий газ сразу же пустить в работу, то он охладился бы всего до исходной температуры. А при хранении баллон с горячим газом в конце концов остывает, принимает температуру окружающего воздуха. Отсюда и столь сильное охлаждение газа при выходе его из баллона, при расширении, отсюда и «сухой лед».
Как ни горько было мне читать об этом в учебнике, но это было правдой, подтвержденной моим собственным опытом по «замораживанию» пневмодвигателя. Вроде бы и учился я неплохо, по физике имел только «хорошо» и «отлично», однако почему-то начисто забыл о тех явлениях, которые на уроках в школе казались мне такими простыми и понятными.
Тем не менее с воздушным аккумулятором надо было что-то предпринимать.
В помощь воздуху – масло
Прослеживая мысленно все этапы работы аккумулятора, я вдруг понял, что под впечатлением моей неудачи с воздуховозом упустил из виду очень существенный момент. Действительно, решив бороться с расширением и охлаждением газа после выхода его из баллона, я совсем не подумал о том, что почти то же самое происходит в это время и внутри баллона. С каждым мгновением газа в нем остается все меньше и меньше, он все больше расширяется, давление его падает, а соответственно снижается и количество выделяемой энергии. И если сначала мы получаем с одного литра сжатого газа огромную энергию, то, когда давление его приближается к атмосферному, в аккумуляторе уже не энергия, а «пшик».
Хорошо бы не давать газу расширяться так сильно, подумал я. Допустим, довести давление этак с 50 мегапаскалей до 20 и на этом остановиться. Не так уж и трудно это сделать, если, например, взять цилиндрический баллон и перемещать внутри его поршень. И охлаждение было бы значительно меньше, и газ можно было бы не выпускать в атмосферу, оставляя его все в том же герметичном баллоне-цилиндре, просто увеличивая его объем. А это в свою очередь позволило бы использовать не только воздух, но и более подходящий для сжатия газ, поинертнее, скажем азот или гелий. Дело в том, что воздух под большим давлением окисляет смазку, которая присутствует везде и всюду, а азот и гелий – нет.
Кстати говоря, чисто воздушный аккумулятор чем-то напоминает резиновый – и там и здесь упругое тело (воздух, резина) само взаимодействует с рабочим органом, непосредственно совершает работу. А вот резина со шнурком разделяют обязанности – резина энергию накапливает, а шнурок совершает работу. Шнурок нерастяжим, и поэтому ему легче взаимодействовать с рабочим органом, например осью колеса. Будь тут одна резина, было бы много потерь энергии из-за трения. Недаром когда-то догадались помещать в рогатке кусок кожи в месте контакта с камнем – так сказать, рабочим телом. Без этой кожи рогатка стреляла бы гораздо хуже.
Надо бы придумать что-нибудь подобное и для воздушного аккумулятора, решил я. И поиски привели меня к уже давно известному устройству, принцип работы которого заключался в следующем.
Заливаем в баллон со сжатым газом машинное масло и разделяем их поршнем или резиновой диафрагмой. Сжатый газ давит на поршень, тот на масло, а оно уже поступает под давлением в гидромашину, которая очень похожа на пневмодвигатель или даже на паровую машину – те же цилиндры, поршни, золотники. Только вместо газа или пара гидромашину приводит в действие масло. Масло не сжимается, поэтому потерь энергии в такой машине во много раз меньше, чем в воздушной – пневмодвигателе. Да и смазки не нужно – машинное масло само прекрасно смазывает трущиеся детали. Несжимаемое масло здесь как раз играет роль нерастяжимого шнурка.
Это был тоже аккумулятор – гидрогазовый, то есть состоящий из жидкости – масла – и газа. Но наряду с преимуществами перед чисто воздушным он имел и свои недостатки.
Главный недостаток – требовалось много масла. Чем более емкий аккумулятор мы захотим сделать, тем больше в нем должно быть сжатого воздуха. Масла, естественно, понадобится столько же, сколько и воздуха, не меньше. И еще – пройдя через гидромашину, масло свободно стекает в бак, тяжелый, громоздкий, тем большего размера, чем больше масла. Если учесть, что здесь используется не один, а сразу несколько баллонов со сжатым воздухом и маслом, то можно себе представить, как это все увеличит размеры и массу аккумулятора!
Нет, размышлял я, так дело не пойдет. Куда мне такая громадина? Один только бак чего стоит... А нельзя ли обойтись совсем без него?
Половину баллона сначала занимает сжатый газ, вторую половину – масло. Попробуем сузить баллон посередине, между жидкостью и газом, и поставить там запорный клапан. Таким образом изменим все баллоны аккумулятора. Теперь сделаем вот что. Пусть масло находится в нижней половине первого баллона, в верхней – сжатый газ. В остальных баллонах оставим только сжатый газ в верхних половинах – нижние пусты, и запорные клапаны перекрыты.
Итак, весь газ сжат, энергия в нем накоплена – все готово к совершению работы. Сможет ли аккумулятор работать без бака?
Открываем запорный клапан первого баллона и выпускаем масло под давлением в гидромашину. Но после гидромашины направляем масло уже не в бак, его ведь нет, а в пустую нижнюю половину следующего баллона. Когда он заполнится, открываем запорный клапан этого баллона, и масло, отработав в гидромашине, поступает в третий баллон. И так далее, при любом количестве баллонов, при любой емкости аккумулятора. Все в порядке, энергия выделяется!
Зарядка аккумулятора должна происходить в обратной последовательности. Мы крутим гидромашину, и масло своим давлением сжимает газ поочередно в баллонах, переходя из одного в другой, используя предыдущий баллон в качестве бака. Аккумулятор заряжен!
Это была уже действительно победа! Использовать в аккумуляторе огромной емкости постоянный небольшой объем масла и обойтись совсем без бака – раньше это казалось мне просто фантастичным.
Чтобы проверить правильность своих расчетов, я обратился к специалистам-гидравликам. И тут я по-настоящему оценил народную поговорку «ум хорошо, а два лучше». Специалисты многое поправили в моей схеме, нашли такие «тонкости», о которых я и не подозревал. Разработанные нами впоследствии устройства были признаны изобретениями.
И все же полного удовлетворения у меня не было. Изучая пристально воздушный аккумулятор, я убедился, что при сильном сжатии многие газы просто-напросто сжижаются и дальнейшее сжатие, если оно даже возможно, уже не дает ожидаемого эффекта.
Оказалось также, что нельзя держать сжатый до очень большого давления газ в одном цельном баллоне – не выдержит, разрушится стенка баллона, даже если ее сделать очень толстой. Надо помещать один в другой несколько баллонов, постепенно повышая давление от внешних к внутренним. Однако полноценным аккумулятором станет только внутренний, самый малый баллон, где наиболее высокое давление. Остальные будут практически балластом.
Значит, повышать давление более 400...500 атмосфер для аккумулирования энергии в сжатом газе невыгодно. То есть энергетический «потолок» здесь невысок. И хотя такие аккумуляторы, в общем-то, нужны и полезны, моей «капсулы» тут не найти.
Время шло, а «энергетическая капсула» продолжала пока быть мечтой.
«Капсула» разогревается
Глава вторая, в которой капсула начинает теплеть, но с появлением загадочного «демона Максвелла» автор всерьез стал сомневаться, туда ли он в своих поисках забрел...
Тепловой «банк»
Несмотря на то, что с газовыми аккумуляторами и было решено покончить, забыть я их никак не мог. Не давало покоя тепло – энергия, пропадающая при остывании горячего после закачки воздуха баллона. Вернее, не пропадающая, а переходящая в окружающий воздух, но от этого не легче.
Хорошо, размышлял я, пусть газ при сжатии сильно нагревается, однако неужели нельзя спасти это тепло, не дать ему рассеяться? Тогда энергию сжатого газа можно было бы использовать не тотчас же после сжатия, а когда угодно после.
Есть, конечно, целый ряд способов, как уберечь тепло от рассеивания. Еще наши предки, когда хотели, чтобы заварочный чайник на самоваре подольше оставался горячим, накрывали его ватной «бабой». Кастрюлю с кашей с той же целью клали под подушку. Да и мало ли мы знаем примеров «укутывания» для сохранения тепла?
Но лучший способ сберечь тепло – это воспользоваться термосом. Я всегда удивлялся способности этого прибора долго, целый день, удерживать чай почти кипящим. Пробовал разобраться, как устроен термос, что у него внутри.
Однажды, сняв крышку, я вынул из корпуса сверкающую зеркальную бутылочку с торчащим хвостиком внизу. Так как больше ничего особенного я не обнаружил и загадка термоса не была разгадана, я с замиранием сердца обломил кончик хвостика, надеясь заглянуть внутрь, под зеркальный слой. Послышался резкий свист воздуха, и все стихло. Посмотрев в крошечное отверстие в бутылочке, я понял, что обманулся – ничего там не было.
Я поспешно вставил испорченный сосуд обратно в корпус и завинтил крышку. Внешне термос остался тем же, а тепла, увы, уже не удерживал. Кипяток в нем, правда, остывал не так скоро, как, например, в чайнике, но и не так медленно, как раньше. Термос посчитали негодным и выбросили.
А я, заглянув в энциклопедию, нашел там статью про термос и выяснил его устройство. Оказывается, зеркальная бутылочка была не цельная, а состояла из двух стеклянных колб, вставленных одна в другую и позеркаленных особым способом. Вставив колбы друг в друга, в пространство между ними заливают специальный раствор, содержащий соли серебра, и колбы нагревают. Стенки колб при этом покрываются тончайшей серебряной пленкой. Затем раствор выливают, воздух из этого пространства выкачивают и отверстие запаивают. Вот и остается после него тоненький стеклянный хвостик, который я обломил...
Для чего же все это делается? Если мы нальем в термос горячую жидкость и заткнем его пробкой, то куда денется тепло? Окружающий воздух не нагреется – тепло не пройдет через безвоздушную прослойку между колбами. Излучиться в пространство, как излучается оно Солнцем или раскаленным металлом, тепло тоже не может – зеркальный слой отражает тепловые лучи, как свет, снова внутрь колбы. А внешняя колба позеркалена для того, чтобы тепловые и солнечные лучи снаружи не попали внутрь и не нагрели содержимого, на случай, если в термосе находится холодная вода или мороженое. Поэтому термос одинаково хорошо сохраняет первоначальную температуру как холодных, так и горячих тел. Говорят, что он теплоизолирует их от окружающей среды. Тепло может «утечь» или «притечь» только через тоненькую «шейку», соединяющую обе колбы, или через пробку. А пробка очень плохо передает тепло.
Изобрел этот хитрый сосуд в самом конце прошлого века английский ученый Джеймс Дьюар, и в честь него термос называют еще сосудом Дьюара.
Вот куда надо бы помещать сжатый газ, чтобы он не охлаждался, сохранял свое тепло подольше. Но сосуд Дьюара, рассчитанный на огромные давления аккумулятора, станет очень сложным и дорогим; как говорится, игра здесь просто не будет стоить свеч.
Зачем же вообще помещать туда газ, да еще сжатый? Ведь значительно большее количество энергии можно накопить в заранее нагретых телах помассивнее, чем газ, например в жидкостях, их и сжимать для этого не надо. Тогда давление нам уже не помешает, и сосуд Дьюара будет иметь свой обычный вид.
Килограмм сжатого до 500 атмосфер газа, как я подсчитал раньше, может накопить 50 килоджоулей энергии. А литр воды, имеющий массу тоже килограмм, как известно, при нагревании всего на один градус накопит 1 большую калорию тепла, что соответствует механической энергии в 4,2 килоджоуля. Если же нагреть литр воды с 0 до 100 градусов, то в воде накопится энергии в 8 раз больше, чем при сжатии килограмма газа в 500 раз!
Все это показали несложные расчеты, которые я в свое время на уроках в школе делал, откровенно говоря, довольно неохотно. Но теперь результат буквально ошеломил меня. Вот где надо искать настоящую «энергетическую капсулу»! Даже обыкновенная вода, нагреваемая до столь невысокой температуры, запасает огромное количество энергии. А что могут дать другие, новые материалы, которые, возможно, гораздо лучше воды накапливают тепло?
Мысли о новых теплоемких материалах отныне не покидали меня ни на минуту. Я жил в предвкушении сенсационных открытий.
Секреты плавления
В мечтах уже виделся сияющий кусочек неведомого пока материала, нагретый до чудовищной – в миллионы градусов – температуры. Этот кусочек, вобравший в себя гигантское количество тепловой энергии, помещен в жароупорный «термос». Чтобы не расплавились стенки сосуда, кусочек «подвешен» в магнитном поле внутри «термоса»...
Эту фантастическую картину я рисовал моему школьному товарищу, когда мы до глубокой ночи провожали друг друга по домам. А он жестоко и методично разбивал мои мечты одну за другой.
Во-первых, говорил он, при температуре свыше трех-четырех тысяч градусов почти все вещества превращаются в пар. Пара же в термосе много не уместишь. Во-вторых, столь высокую температуру не выдержит не только сосуд Дьюара, но и любой другой сосуд – он расплавится или сгорит.
Твердые или жидкие тела останутся в прежнем состоянии, если их нагревать до одной – полутора тысяч градусов, не более. Но при такой температуре они уже не подчиняются магниту, в магнитном поле их не «подвесишь». Можно, конечно, «подвешивать» небольшие количества расплавленного металла в высокочастотном электромагнитном поле, где металл поддерживается в расплавленном виде энергией поля. Однако потери электроэнергии на «подвешивание» здесь очень велики, для «энергетической капсулы» это не подходит.
Напомнил мне друг и о том, как мучаются физики-ядерщики, пытаясь хоть на краткий миг «запереть» сверхгорячую материю в магнитном поле, и что из этого пока мало что получается. А у меня, дескать, и подавно ничего не выйдет. Большее, на что я могу рассчитывать, это накалить докрасна камни, как в русской бане, а затем «извлекать» из них энергию, поливая водой. Пар же можно направить и в паровую машину и...
Меня злили доводы друга, хотя я понимал, что он прав. Но где же выход? Мечты об «энергетической капсуле» рассеивались как дым. Я лег спать в раздумьях, и мне снилась русская баня...
А утром произошло следующее. Выйдя на кухню, я увидел в кастрюле на газу плавающие в кипятке какие-то странные предметы – зеленые и все в шипах. Оказалось, это термобигуди, которыми пользуются для укладки волос. Нагретые в кипятке, такие бигуди долго-долго остаются горячими. Да это же почти то, что нужно, – накопитель тепла!
Я выпросил одну «бигудину» и бросил в кипяток вместе с равными ей по массе кусочками дерева, пластмассы и металла. Затем одновременно вынул их и оставил стынуть. Поразительно, но «бигудина» сохраняла тепло в несколько раз дольше своих соседей. Не доверяя пальцам, я проверил это даже небольшим электротермометром, который взял в школьном физическом кабинете.
Проделывая опыт многократно, я заметил, что «бигудина» в отличие от других образцов, остывала весьма необычно. Сначала температура ее падала довольно резко. Потом, дойдя до 50...60 градусов, держалась так очень долго. Затем «бигудина» опять резко остывала до комнатной температуры.
Тут я не удержался и вскрыл «бигудину», чтобы посмотреть, что за механизм у нее внутри. Но там, кроме какой-то пастообразной массы, ничего не оказалось. Это был парафин или стеарин, из которых делают обыкновенные осветительные свечи. Чудеса!
Я купил килограмм парафина, расплавил его и залил в термос. В другой такой же термос я поместил воду, одинаково с парафином нагретую. Результат был прежний. Когда вода уже остыла, парафин в термосе все оставался горячим и жидким. Наконец он затвердел, а после этого остыл быстро, почти как вода. Вода простояла горячей около дня, а парафин – несколько дней.
И вдруг меня осенило. Конечно же, при отвердевании жидкости выделяется «скрытая» энергия, которая была затрачена при плавлении! Когда жидкость остывает, тепло постоянно отбирается от нее, но пока вся она не затвердеет, пока останется хоть капля жидкости, температура ее будет держаться на точке плавления. Для парафина это – 54 градуса.
И наоборот, температура плавящегося тела, например льда, не поднимается ни на градус, пока последний его кусочек не расплавится, не превратится в жидкость. Все это я проходил в школе, обо всем этом написано в учебниках.
Оказывается, чтобы расплавить килограмм льда, нужно затратить 80 килокалорий, алюминия – 92,4, железа – 66, свинца – 6,3, ртути – 2,8 килокалории. А есть материалы – к примеру, гидрид легкого металла лития, – которые требуют для плавления гораздо большего тепла. Так, чтобы килограмм твердого гидрида лития перешел в жидкость при температуре его плавления – 650 градусов, потребуется 650 килокалорий.
Посмотрим теперь с точки зрения аккумулирования тепла. Предположим, что нам нужна температура в аккумуляторе между 700 и 600 градусами, например, чтобы получить из воды пар для питания парового автомобиля. Воспользуемся для этой цели куском металла, железом или медью. При остывании с 700 до 600 градусов каждый килограмм железа или меди выделит около 10 килокалорий. Если то же проделать с гидридом лития, то только при затвердевании на точке 650 градусов он выделит 650 килокалорий. А дополнительно, остывая с 700 до 600 градусов, – еще 30 килокалорий. Итого – 680 килокалорий, или в 68 раз больше, чем может дать неплавящийся металл! Это ли не «капсула»?
Действительно, если подсчитать, какой механической работе это соответствует, мы получим гигантскую цифру – 2,85 мегаджоуля на килограмм массы рабочего вещества. Ведь каждая килокалория – 4,2 килоджоуля энергии. Стало быть, менее десяти килограммов теплового аккумулятора хватило бы для прохождения 100 километров пути! Это равно количеству бензина, необходимого автомобилю для подобной поездки.
Не один гидрид лития обладает таким «магическим» свойством. Для получения рабочих температур теплового аккумулятора около 100 градусов подходят кристаллы фосфорнокислого натрия. Если же нужна температура выше 1000 градусов, то можно взять окислы бериллия, магния, алюминия, кремния, их соединения, а также силициды и бориды некоторых металлов.
Мне уже думалось, что поиск «энергетической капсулы» близок к завершению, – энергетическая, вернее, тепловая «капсула» обещала быть не более бензобака автомобиля! И я стал искать в литературе все, что было написано про тепловые аккумуляторы, чтобы подробнее их изучить.
Что может тепловая «капсула»
Проведя несколько дней в библиотеке, я понял, что все мои мысли и проекты давно известны.
Американские инженеры уже испытали парафиновые накопители тепла, которые действительно оказались гораздо лучше водяных. Мне можно было не пачкать термос парафином...
Японские энергетики строят накопители тепла, состоящие из множества шариков, сделанных из окиси алюминия. Шарики сначала обдувают горячим воздухом, а потом они сами нагревают холодный воздух, который затем идет на цели отопления.
Немецкие ученые построили накопитель тепла в виде вращающегося котла с глауберовой солью. Когда котел подогревают, соль плавится, поглощая большое количество энергии. Накопленное тепло используют для разных целей, в частности – для обогрева жилищ. Глауберова соль запасает тепла в 7 раз больше, чем нагретая вода, и в 12 раз больше, чем нагретые камни. Объем такого котла – около 3 кубометров.
Однако немецкие ученые на этом не остановились и предложили проект поистине гигантского теплового накопителя. Озеро площадью до 500 гектаров предполагается покрыть «одеялом» из пенопласта толщиной 10 сантиметров. После этого воду в озере нагреют до 75 градусов. Благодаря «одеялу» тепло в озере будет держаться очень долго, многие месяцы, и его можно постепенно использовать.
Но если уж и говорить о гигантских тепловых накопителях, то проект советских ученых не имеет себе равных. В нем предлагается использовать солнечную энергию с помощью теплового накопителя массой... 400 миллионов тонн! Этот накопитель можно представить себе в виде кольца шириной 10 метров и толщиной в полметра, опоясывающего Землю по экватору. Днем участки кольца, которые освещаются солнцем, нагреваются, и заполнитель плавится. Ночью расплавленные участки гигантского накопителя выделяют тепло, снабжая энергией население всего земного шара.
Узнал я и о том, что тепловые накопители применяли на транспорте, причем более ста лет назад. Как я уже говорил, во Франции в городе Нанте в конце прошлого века ходил трамвай, движимый сжатым воздухом. Так вот, этот трамвай на конечных станциях заправляли не только сжатым воздухом, но и... кипятком.
Кипяток, играя роль накопителя тепла, согревал воздух после выхода его из баллона, когда первый сильно охлаждался. Нагревание повышало давление воздуха, и он совершал гораздо большую работу, чем без нагрева. Так можно было получить от газового или воздушного аккумулятора энергию, даже превосходящую ту, что была затрачена при зарядке баллона.
Разумеется, я не мог отказать себе в удовольствии проверить такой «гибридный» накопитель в действии и сделал небольшую тележку – микромобиль. Основой послужил детский педальный автомобильчик – карт, какие продаются в «Детском мире». На тележке я установил баллон углекислотного огнетушителя и соединил его прочным резиновым шлангом с пневматическим гайковертом, приобретенным в магазине инструментов. Гайковерт состоит из пневмодвигателя, работающего от сжатого воздуха, и редуктора, понижающего скорость вращения патрона. С этим патроном я связал цепной передачей одно из задних колес тележки, а второе посадил на ось свободно, на подшипниках.
Раскрывая вентиль баллона, я подавал углекислоту в гайковерт, он вращал колесо, и микромобиль катился. Но теперь пневмодвигатель не замерзал, как в моем недавнем опыте с воздуховозом. Я поставил на пути газа из баллона в пневмодвигатель накопитель тепла, изготовленный из кастрюли, и внутри его поместил змеевик из металлической трубки (он был взят из выброшенного холодильника). В кастрюлю заливалась кипящая вода, а впоследствии расплавленный парафин и даже глауберова соль. Углекислый газ, проходя через змеевик, сильно нагревался и отдавал микромобилю значительно больше энергии.
Если правильно подобрать передаточное число цепной передачи от патрона гайковерта к колесу, на таком микромобиле можно проехать около километра. Позднее я додумался применить здесь цепную «коробку скоростей» от гоночного велосипеда и несколько баллонов с углекислотой, вследствие чего длина пробега микромобиля еще более увеличилась. Баллоны с углекислотой нужно было периодически заряжать там, где их заряжают водители. Или покупать уже заряженные баллоны в автомагазинах. Что и говорить, дороговатое катание получалось, но зато было интересно.
Мой микромобиль всем очень нравился, сверстники любили на нем кататься. Каждый приходил со своим огнетушителем, а в автомагазине были рады, что залежалые баллоны хорошо распродаются. Продавцов удивляло только, что спрашивают именно углекислотные, а не другие типы огнетушителей.
Я уже умел составлять заявку на изобретение и вскоре подал ее на свой микромобиль. В ответ пришло письмо, уведомляющее, что мне выдадут авторское свидетельство. Еще одно изобретение, а настоящей «капсулы» все нет...
Чтобы избавиться от дорогих баллонов с углекислотой, я решил поставить на микромобиль вместо пневмодвигателя паровую машину, которую мне обещали дать из школьного физического кабинета, а огнетушитель заменить обыкновенным паровым котлом. Правда, расчеты показали, что ни парафин, ни глауберова соль мне здесь не помогут – слишком низка их температура плавления. Тут вполне подошел бы гидрид лития с его 650 градусами. Однако все мои попытки достать гидрид или сходный с ним фторид лития не увенчались успехом. В хозяйственных магазинах его не было, в магазинах химреактивов мне постоянно советовали обратиться в конце месяца.
А пока я ждал очередного конца месяца, мне попалась на глаза – кажется, в журнале «Техника – молодежи» – информация как раз об использовании тепловых накопителей на транспорте. В маленькой заметке сообщалось, что в тепловой накопитель, установленный на мотороллере с так называемым двигателем Стирлинга мощностью в 3 лошадиные силы (2,2 квт), заливали ведро расплавленного фторида или гидрида лития и двигатель работал 5 часов, используя накопленное тепло.
Значит, мне уже не нужно тратить время на поиски гидрида лития, тепловой накопитель с ним уже есть. Вот только что это за двигатель Стирлинга?
Так и не вспомнив, где мне попадалось это название, я обратился к энциклопедии и узнал, что принцип действия двигателя, изобретенного в 1816 году Робертом Стирлингом, основан на нагревании одной его части и охлаждении другой – как будто специально для применения теплового накопителя; в самом двигателе находится газ – водород или гелий – под большим давлением. Двигатель Стирлинга сейчас считают одним из самых перспективных тепловых двигателей, он работает даже от тепла человеческих рук.
Я еще раз внимательно прочитал заметку из журнала и прикинул, сколько потребовалось бы горючего для совершения той же работы. Сравнение оказалось не в пользу теплового накопителя – горючего понадобится всего около трех килограммов, или чуть больше трех литров!
В чем дело? Почему столь энергоемкий накопитель, как тепловой, менее эффективен, чем бак с горючим?
Когда же я попытался вычислить массу всего силового агрегата, необходимого для автомобиля, то есть двигателя Стирлинга вместе с тепловым накопителем, то пришел к совершенно неутешительным выводам. Масса агрегата становится настолько большой, что раз в триста превышает тот же показатель для чисто теплового накопителя.
Это происходит прежде всего потому, что двигатель Стирлинга и тем более паровая машина очень тяжелы сами по себе. Кроме того, в механическую энергию, как выяснилось, можно перевести с помощью этих машин только около трети энергии накопителя. Две трети энергии, а следовательно, и массы накопителя для нас теряются.
Так или иначе, но для прохождения ста километров пути автомобилю понадобился бы силовой агрегат массой около трех тонн, или в три раза больше, чем весит сам автомобиль! Ни о какой «капсуле» здесь говорить, естественно, не приходится...
Кое-что об энергии и работе
Как же так: механическая энергия вся без остатка переходит в тепловую, а тепло «не хочет» полностью переходить обратно в механическую энергию? Разве эти процессы не обратимы? Ответы на свои вопросы я нашел в том же учебнике физики.
Для преобразования тепла в механическую работу создан целый класс машин, называемых тепловыми двигателями. Они могут быть внутреннего сгорания, какие мы привыкли видеть на автомобилях, паровыми, Стирлинга, которые еще называются «внешнего сгорания», и мало ли еще какими, их очень много. Во всех этих двигателях, независимо от их типа, присутствуют рабочее тело (в паровых машинах – пар, в двигателях Стирлинга и внутреннего сгорания – газ; рабочее тело бывает и жидким), нагреватель и холодильник. Поэтому распознать тепловой двигатель нетрудно. В нагревателе (топке, цилиндре и пр.) рабочее тело греют, затем «высокотемпературная» тепловая энергия переходит в «низкотемпературную», или, как говорят, «деградирует», совершая механическую работу. Деградированная часть тепловой энергии уже не может эффективно совершать работу в данных условиях, она поглощается холодильников, «выбрасывается» в окружающую среду. Такого рода потери энергии присущи любому тепловому двигателю.
Однако это еще не все. Внутренняя энергия газа или пара вообще всегда превращается в энергию движения механизмов лишь частично. Чтобы было понятнее, вспомним, как механическая энергия движущихся тел превращается в тепловую энергию. Попала, например, летящая пуля в доску, застряла в ней, при ударе вся ее кинетическая энергия перешла в тепло – энергию атомов и молекул. По-другому обстоит дело, когда внутренняя энергия газа или пара превращается в механическую энергию.
Внутренняя энергия тел складывается из механической энергии атомов и молекул, находящихся в состоянии хаотического, неупорядоченного движения. Для того чтобы тепло полностью превратилось в кинетическую энергию движения поршня тепловой машины, многие миллиарды хаотично мечущихся молекул должны были бы дружно подлететь к поршню и, ударившись об него, передать ему всю свою кинетическую энергию. И то всю механическую энергию они не передали бы, останется еще потенциальная энергия взаимодействия молекул.
Вот поэтому-то КПД тепловых двигателей столь невелик. Французский ученый Никола Карно в 1824 году установил, что коэффициент полезного действия любого теплового двигателя не может превышать величины, равной частному от деления разности абсолютных температур (это по Кельвину, чтобы получить то же по Цельсию, нужно прибавить 273 градуса) нагревателя и холодильника на абсолютную температуру нагревателя.
Например, если пар входит в цилиндр паровой машины при температуре 200° по Цельсию, то есть 473° по Кельвину, а уходит при температуре 100°C, то есть 373°К, то КПД такой машины теоретически не может быть выше 100/373, или 21%. А реально КПД поршневых паровых машин не более 10...15%.
Отсюда ясно, почему накопители тепла надо использовать именно для получения тепла, и не пытаться получать от них механической работы. Все равно применение для накопителей тепла в будущем найдется. Хотя бы обогрев салона тех же автомобилей, работающих на энергии до сих пор еще не найденной «капсулы».
Тепловая смерть и «демон Максвелла»
Честно говоря, на невеселые мысли навели меня рассуждения о переходе механической, да и других видов энергии (электрической, химической, высокотемпературной тепловой) в тепло, к тому же тепло малоценное, низкотемпературное, из которого уже не извлечешь ничего путного.
Что же получается? Работают сотни миллионов двигателей, электростанции, сгорает уголь, нефть, газ, вырабатывается внутриатомная энергия, и вся эта энергия в конце концов рассеивается в окружающей среде, поднимая ее температуру!
Но если повышается температура окружающей среды – естественного «холодильника» тепловых машин, одновременно понижается их КПД, причем всех тепловых машин в мире сразу. Это доказал в прошлом веке тот же ученый Карно. Постепенно температуры окружающей среды и нагревателей выровняются, КПД всех тепловых машин окажется равным нулю, и получить работу будет уже нельзя... Существование человечества станет невозможным!
Поскольку вопрос возник «сверхсерьезный», я решил разобраться в нем подробнее. И здесь мне пришлось столкнуться с понятием энтропии, которое было предложено немецким ученым Рудольфом Клаузиусом в середине прошлого века и без которого в этом вопросе никак не обойтись. Насколько я уяснил для себя, энтропия есть некая величина, увеличение которой в необратимых процессах (например, при превращении механической энергии в тепло и обратно) характеризует ту часть энергии тел, которая уже не может совершать полезную работу и рассеивается в окружающей среде в виде тепла.
Так вот, доказав, что работа совершается только при переходе тепла от горячего тела к холодному (иначе тепло и не переходит!), и распространяя свои выводы на всю Вселенную, Клаузиус заявил о неминуемой «тепловой смерти» Вселенной.
Конечно, понятие энтропии сложно, оно с трудом воспринимается неподготовленным человеком, но мне помог прекрасный эмоциональный образ энтропии, энергии и их «отношений» в этом мире, найденный мною в одной старой книге: «Над всем, что совершается в беспредельном пространстве, в потоке преходящего времени властвует Энергия, как царица или богиня, озирая своим светом и былинку в поле, и гениального человека, здесь даря, там отнимая, но сохраняясь в целом количественно неизменной... Но где свет, там и тень, имя которой – Энтропия. Глядя на нее, нельзя подавить в себе смутного страха – она, как злой демон, старается умалить или совсем уничтожить все то прекрасное, что создает светлый демон – Энергия. Все мы находимся под защитой Энергии, и все отданы в жертву скрытому яду Энтропии... Количество Энергии постоянно, количество же Энтропии растет, обесценивая Энергию количественно. Солнце светит, но тени становятся все длиннее. Всюду рассеяние, выравнивание, обесценивание...».
Этот отрывок весьма живо рисует ужасную картину приближения «тепловой смерти». И оказывается, до сих пор не найден процесс, защищающий Вселенную от предсказанной Клаузиусом гибели. Но, несомненно, он должен существовать. Во всяком случае, мне показалось достаточно убедительным высказывание Н.Г. Чернышевского по этому поводу: «Формула, предвещающая конец движения во Вселенной, противоречит факту существования движения в наше время. Эта формула фальшивая... Из того факта, что конец еще не настал, очевидно, что ход процесса прерывался бесчисленное множество раз действием процесса, имеющего обратное направление, превращающего теплоту в движение...».
Последняя фраза Чернышевского как будто прямо призывает искать такие процессы, которые полностью превращали бы тепло в движение, иначе говоря, позволяли бы теплу переходить от менее нагретых тел к более нагретым. Что это обеспечило бы миру, ясно без слов. Мы имели бы неограниченное количество энергии, причем не боялись бы при этом нагревания, «теплового загрязнения» окружающей среды.
Эту идею поддерживал и К.Э. Циолковский, он сам работал над полным превращением тепла в работу. Циолковский считал, что в природе существуют процессы концентрирования энергии, обратные процессам ее рассеяния. Поэтому «получается вечный круговорот материи», вечно возникающая юность Вселенной. Отыскать механизмы, концентрирующие энергию, освоить их, использовать для утоления энергетического голода – вот задача, которую ставил Циолковский.
Решить такую задачу, правда по-своему, попытался еще в 1871 году английский ученый Джеймс Максвелл. Он приписал функции подобного механизма некоему фантастическому существу, названному позже «демоном Максвелла». Это существо, утверждал ученый, обладает столь изощренными способностями, что может следить за каждой отдельной молекулой в ее движениях и знать ее скорость. Если взять сосуд, разделенный перегородкой на две части, и посадить «демона» у дверцы в перегородке, мы можем заставить его открывать дверцу только перед быстрыми или только перед медленными молекулами. «Демон» будет пропускать быстрые молекулы в одну часть сосуда, а медленные – в другую, тогда в одной части сосуда и температура и давление окажутся выше, чем в другой, то есть мы без затраты работы получим запас энергии.
«Демон Максвелла», придуманный более 100 лет назад, и ныне будоражит умы. Много раз ученые убедительно доказывали, что это лишь шутка великого физика, не имеющая никакой реальной основы игра воображения. Действительно, если бы в сосуде были всего две молекулы, то и без «демона» они в половине случаев могли бы оказаться в какой-либо одной части сосуда. Если же молекул много, то вероятность подобного случая чрезвычайно мала. Академик А.Ф. Иоффе оценил возможность существования процессов концентрации энергии дробью, в которой после запятой идут еще восемьдесят четыре нуля. Это гораздо меньше вероятности получения в столкновении «Москвича» и «Запорожца» совершенно новой «Волги».
Однако страсти вокруг «демона» не унимаются, его приверженцы стараются найти все новые аргументы в его защиту. В одном из научных журналов, в статье, посвященной проблеме «демона Максвелла», всерьез говорится о том, что роль «демона» в разделении молекул с разной энергией взял на себя квантовый генератор – лазер, который отделяет возбужденные молекулы с большой энергией от невозбужденных.
Утверждают, что разделение молекул по скоростям в потоке молекул газа якобы происходит в вакуумной камере под воздействием гравитационного поля Земли: дескать, в этих условиях медленные молекулы больше отклоняются от первоначальной траектории, чем быстрые.
Кроме того, заявляют, будто измерения температуры кипения жидкости в различных ее частях показали отклонения, достигающие десятков градусов. Как, если не с помощью «демона Максвелла», они могли возникнуть?
Последнее меня заинтересовало, и я задумал сам провести опыт, который должен был подтвердить или опровергнуть существование злополучного «демона».
Прежде всего мне нужно было найти какой-нибудь стеклянный сферический сосуд и позеркалить его снаружи.
Подходящий сосуд я раздобыл довольно быстро – взял большой яркий шар из елочных украшений. Чтобы удалить внутренний зеркальный слой, промыл шар изнутри азотной кислотой.
Потом я купил в аптеке несколько ляписных карандашей. Ляпис содержит в себе соли серебра, которые и создают блестящую амальгаму на задней стороне зеркала. Растворив ляпис в чистой воде, я добавил туда немного каустика и обыкновенного сахара. Все в той пропорции, которая описана во многих книгах для юных техников. Затем вылил раствор в эмалированную кастрюлю и опустил в него стеклянный шар, наполненный горячей, почти кипящей водой. Тут же на внешней поверхности шара стал оседать слой серебра, и игрушка оказалась позеркаленной снаружи.
Я вынул шар из раствора, высушил его и для прочности зеркального слоя покрыл снаружи слоем лака, воспользовавшись баллончиком аэрозоля для закрепления прически. Потом залил в шар горячую воду и закрыл пробкой с термометром. Термометр мог перемещаться, скользить в пробке, причем чувствительный шарик его проходил через центр сосуда.
Рассуждения мои были таковы. Все тепловые лучи, идущие от горячей воды (а они такие же, как и световые, но невидимые), отражаясь в сферическом зеркале, должны пересечься в центре. Вода прозрачна и не помешает ходу лучей. Если поместив шарик термометра в точке их пересечения, я получу наибольшую температуру, это будет означать концентрацию тепла! Из центра сосуда горячую воду можно удалить насосом через прозрачную трубку, чтобы дать возможность теплой воде нагревать себя в этой центральной части и дальше.
Сказано – сделано. Но только как я ни перемещал термометр, он везде показывал одну и ту же температуру. То ли термометр был недостаточно точен, то ли была ошибка в моих рассуждениях, то ли «демона Максвелла» действительно быть не может, я так и не понял. Мне трудно было разобраться во всем этом, да и не своим делом заниматься не хотелось. Я ведь искал «энергетическую капсулу», а не «демона Максвелла».
Признаться, мне казалось, что тепловую энергию можно каким-то образом получить и без помощи «демона Максвелла». Например, достаточно облить водой негашеную известь – и она разогреется до температуры выше ста градусов. Или, скажем, налить в стакан с водой серную кислоту – раствор сразу же нагреется так, что стакан в руках не удержишь. Подспудно я понимал, что выделяющееся тепло «заложено» и в известь и в кислоту при их производстве. Просто это химическая энергия переходит в тепло, как при сжигании дров. Но был опыт, который совершенно сбивал меня с толку.
Как-то я испытывал в качестве аккумулятора плавления обыкновенный фотографический фиксаж, или гипосульфит. Он легко плавился и долго не застывал, оставаясь жидким. Я заметил, что он сохраняет жидкое состояние и при температурах ниже точки затвердевания, буквально при комнатной температуре. Уже это показалось мне странным. И совсем обескуражило меня то, что, бросив в этот переохлажденный расплав крошечный кусочек того же гипосульфита, я вызвал почти мгновенное его затвердевание. Но, главное, – по мере затвердевания гипосульфит... нагревался. Да-да, нагревался без всяких видимых причин!
Если бы я не был уверен в том, что энергию получить из ничего нельзя, то обязательно занялся бы этим явлением. Но, во-первых, в правильности законов физики я не сомневался, а во-вторых, моей основной целью был все же энергетический накопитель. Так что снова на поиски «капсулы»!
Электрическая «капсула»
Глава третья, в которой автор еще раз убеждается во всесилии электричества, равно как в том, что от исполнения своей мечты он пока далек...
Как накопить электроны?
Да, тепловые накопители если и не завели меня в дебри, то ощутимо отклонили путь моих поисков. Чуть было даже не забрел в гости к «демону Максвелла», а уйти от него, говорят, гораздо труднее, чем познакомиться с ним. Но с этим уже все. Торжественно пообещав себе больше не увлекаться, я принялся за изучение других накопителей из моего списка. Теперь очередь дошла до устройств, накапливающих электрическую энергию. И в начале перечня таких устройств у меня значился конденсатор.
Я уже говорил раньше, что электрическая машина преобразует механическую энергию в энергию электрического заряда, а он накапливается в конденсаторе – лейденской банке. Это один из самых первых типов конденсаторов, получивший свое название от голландского города Лейдена, где в середине XVIII века он был построен.
Лейденскую банку можно увидеть в любом школьном физическом кабинете. Она представляет собой обыкновенный тонкостенный стеклянный цилиндр, оклеенный изнутри и снаружи фольгой. Внутренняя обкладка соединена с металлическим стержнем, оканчивающимся шариком. Если при зарядке лейденской банки мы подключим шарик к отрицательному полюсу электрической машины, на внутреннюю обкладку добавится некоторое количество избыточных электронов; тогда с наружной обкладки, подключенной к положительному полюсу машины или к «земле», соответствующее количество электронов будет удалено. Таким образом на обкладках конденсатора окажутся равные по величине, но противоположные по знаку заряды – прибор заряжен.
Разряжать лейденскую банку можно только с помощью специального разрядника, изолированного от рукоятки, за которую его держат. Попытки разрядить лейденскую банку руками нередко заканчивались гибелью экспериментатора. Правда, это бывало давно, когда люди еще не знали об опасности этого опыта.
Но если лейденская банка столь опасна, значит, в ней заключено много энергии! Не та ли это «капсула», что я ищу?
Поскольку лейденской банки под рукой не оказалось, я взял первый попавшийся конденсатор, из тех, которые остались после ремонта телевизора, и сунул его выводы в штепсель. Пробежала искра. Я отнял прибор от штепселя, но тут вдруг припомнил чьи-то слова: «Переменным током конденсатора не зарядишь». Разочарованный, я прикоснулся пальцами к выводам конденсатора, дабы убедиться в справедливости этих слов, и... По искрам, которые посыпались у меня из глаз, я понял, что мои конденсатор далеко от лейденской банки не ушел. Стал вспоминать, кто же это меня обманул, однако так и не вспомнил. Решил все же не испытывать больше судьбу и сначала почитать что-нибудь о конденсаторах, а уж потом заниматься экспериментами.
Раньше, в XVII...XVIII веках, электричество представляли себе как некую невесомую «электрическую жидкость», которая может «вливаться» в проводник. Отсюда по величине заряда – количеству этой «электрической жидкости» стали определять емкость конденсатора, как какой-нибудь фляги или бутыли. Ученые давно заметили, что чем обширнее площадь обкладок и чем меньше расстояние, зазор между ними, тем больше емкость конденсатора. Однако делать зазор слишком малым нельзя – при высоком напряжении, приложенном к конденсатору, может наступить «пробой» зазора искрой. В лучшем случае конденсатор потеряет свой заряд, а в худшем – разрушится, причем не исключено, что со взрывом. Сантиметровый слой воздуха, например, пробивается при напряжении 30 000 вольт. Понижать же напряжение невыгодно. Ведь в конечном итоге нас интересует не просто емкость конденсатора, а его энергоемкость, равная произведению заряда на напряжение. Поэтому уменьшение зазора между обкладками – это не путь к повышению энергоемкости. Выход один – увеличивать площадь обкладок.
И еще очень интересное свойство конденсатора открылось ученым. Если помещать между его обкладками различные непроводящие материалы – диэлектрики, емкость конденсатора может резко изменяться. Эту способность диэлектриков изменять емкость конденсатора назвали диэлектрической проницаемостью. Было установлено: чем больше величина диэлектрической проницаемости, тем больше при прочих равных условиях емкость конденсатора, обкладки которого разделены диэлектриком.
Диэлектрическая проницаемость равна в вакууме единице. Очень близка к этому значению диэлектрическая проницаемость воздуха, поэтому воздушные конденсаторы имеют очень малую емкость. Если идти в сторону увеличения диэлектрической проницаемости, то ее значение для парафина – 2, для фарфора, стекла – до 7, а для воды необычно много – 81. То есть с помощью воды можно получить конденсатор, в 81 раз более емкий, чем воздушный.
Однако при подсчете плотности энергии обычных конденсаторов, например, электролитических, которые так широко распространены в радиотехнике, выясняется, что она очень низка, не выше, чем у обычных стальных пружин.
За единицу емкости конденсаторов принята фарада. Это очень крупная единица, такую емкость мог бы иметь, например, шар, диаметр которого равен 18 миллионам километров, то есть в полторы тысячи раз более крупный, нежели наша Земля! Разумеется, емкость существующих конденсаторов значительно меньше, и поэтому ее измеряют в миллионных долях фарады – микрофарадах или в единицах, еще в миллион раз меньших, – пикофарадах.
Если взвесить самый заурядный электролитический конденсатор емкостью 10 микрофарад при напряжении 300 вольт, то масса его окажется несколько десятков граммов. А энергии в этом конденсаторе будет менее половины джоуля. Стало быть, плотность энергии составит около 10 джоулей на килограмм массы. Хорошие конденсаторы могут накопить энергии раз в десять больше, но и это очень немного.
Чтобы резко повысить емкость конденсаторов, приходится прибегать ко всяким ухищрениям. И надо сказать, в последнее время ученые здесь преуспели. В Японии, например, несколько лет назад был изготовлен конденсатор из... активного угля!
Известно, что активный уголь, приготовляемый кипячением Древесного угля в воде, имеет огромную поверхность в единице объема. Такую поверхность образуют поры, из которых водой были вымыты соли. Благодаря этому активный уголь отлично поглощает запахи, яды, различные газы. Им заполняют противогазы, его принимают при отравлениях, используют во многих других случаях. Именно поверхность активного угля и заинтересовала японских ученых.
Уголь пропитывают раствором солей щелочных металлов – натрия, калия, лития – в органическом растворителе, и происходит чудо – емкость одного кубического сантиметра такого конденсатора возрастает до десяти и более фарад! Иначе говоря, до емкости шара в пустоте, имеющего диаметр в 15 тысяч раз больше диаметра Земли, больше чем расстояние от Земли до Солнца! Но в отношении энергии это почти ничего не дало – конденсатор из активного угля выдерживает лишь очень низкое напряжение. Плотность энергии этого конденсатора составила примерно 1 килоджоуль на килограмм, что гораздо выше, чем у обычных конденсаторов, но все-таки крайне мало.
Венгерские ученые пошли по другому пути. Они создали особые пластмассы, обладающие необычайно высокими диэлектрической проницаемостью и пробойным напряжением. Кроме того, они выяснили, что самая высокая в природе диэлектрическая проницаемость – 130000 единиц! – у дезоксирибонуклеиновой кислоты, той самой ДНК, которая несет генетическую информацию. Если обычный конденсатор емкостью 10 микрофарад заполнить в качестве электролита ДНК, то при напряжении 300 вольт плотность его энергии будет порядка 20...200 килоджоулей на килограмм. Этот показатель лучше, чем таковой у газовых аккумуляторов.
Тут мне пришло в голову, что если объединить открытия японских и венгерских ученых, то есть пропитать активный уголь дезоксирибонуклеиновой кислотой, удельная энергия конденсатора, судя по всему, выросла бы еще раз в сто. Тогда масса «энергетической капсулы», необходимой автомобилю для прохождения ста километров, могла бы быть не более одного-двух килограммов!
Да, заманчиво, конечно, все это осуществить, но... Где достать столько ДНК? Как пропитать ДНК активный уголь? Насколько дорог будет такой конденсатор, если его все же удастся получить? Какова будет сила взрыва, если произойдет внезапный пробой?
Я затруднялся найти ответ на первые вопросы, однако ответ на последний отчетливо представлял себе. Дело в том, что однажды я был страшно перепуган оглушительным взрывом телевизионного конденсатора, энергия которого была в десятки тысяч раз меньше...
И еще меня огорчало одно обстоятельство. «Перестраховщики» ученые, зная почти все про конденсаторы, определили теоретический предел плотности его энергии в 3,6 килоджоуля на килограмм. А это в тысячи раз ниже плотности энергии, вычисленной мной. Кто-то из нас очень ошибался в своих прогнозах, и я, кажется, догадывался, кто...
«Капсулу» – в жидкий гелий
Нет, не получилось из конденсатора «энергетической капсулы». Ну ничего, ведь электричество можно накопить не только в виде неподвижного, статического заряда – при движении электронов по проводу обмотки электромагнита оно тоже накапливается.
Мне очень хорошо запомнился школьный опыт по физике, где мы подключали к батарее лампочку параллельно с электромагнитом. Лампочка загоралась не сразу, медленно раскалялся ее волосок, но при отключении батареи лампочка, вместо того чтобы погаснуть, вспыхивала еще ярче. Какая же энергия, если не накопленная в электромагните, раскаляла волосок лампочки в то время, как питание от батареи больше не поступало? И накапливалась эта энергия в магнитном поле тогда, когда, несмотря на то, что энергия отбиралась от батареи, лампочка горела тускло. Ей явно не хватало мощности батареи – львиная доля мощности шла на насыщение энергией электромагнита.
Итак, очередной аккумулятор, может быть, даже кандидат на «энергетическую капсулу». Проверим, на что способен электромагнит как накопитель.
Я попробовал «подпитывать» электромагнит током от аккумуляторных батарей, постепенно увеличивая их число. Соответственно повышалось напряжение на клеммах электромагнита, увеличивался ток, а следовательно, росла и подъемная сила электромагнита. В его магнитном поле накапливалась все большая и большая энергия. Так, наверное, продолжалось бы и дальше, но... от электромагнита вдруг пошел дым – он перегрелся от чрезмерного тока. Опыт пришлось прекратить. Вот, значит, где предел энергоемкости электромагнита!
Оказалось, что и со сроком хранения энергии плоховато – держится накопленная энергия в электромагните, или, как говорят, в катушке индуктивности, доли секунды. Из-за сопротивления в проводнике – проволоке, намотанной на сердечник электромагнита, вся накопленная в его магнитном поле энергия быстро переходит в тепло. А нельзя ли устранить это сопротивление?
Мне не хотелось идти в библиотеку, однако я пересилил себя. Зато потом в читальном зале я просидел до самого закрытия и нашел не только ответ на свой вопрос, но и множество других полезных для меня сведений.
Еще в 1911 году голландский физик Камерлинг-Оннес обнаружил, что столбик ртути, охлажденный до температуры, превышающей абсолютный нуль на 4,2 градуса, полностью теряет свое электрическое сопротивление. Причем резко, скачком. Так же, как и ртуть, теряли сопротивление свинец, алюминий, олово, цинк и ряд других металлов. Явление это было названо сверхпроводимостью. В кольце из такого сверхпроводника ток мог «крутиться» сколько угодно времени, сохраняя энергию магнитного поля. Беда лишь в том, что даже при небольшом возрастании тока или внешних магнитных полей перечисленные металлы утрачивали свойство сверхпроводимости.
В течение полувека эти сверхпроводники, названные сверхпроводниками первого рода, практического применения не имели. Но в 1961 году советские ученые предсказали возможность создания более совершенных сверхпроводников второго рода, а американские специалисты испытали такой сверхпроводник – проволоку из сплава металла ниобия с оловом, а затем ниобия с титаном. Через проволоку пропускали громадные токи, вокруг нее создавали гигантские магнитные поля, и ничего ей не делалось, свойство сверхпроводимости оставалось.
В кольце из сверхпроводника второго рода можно запасать и хранить без потерь очень большую энергию, примерно в 7 раз больше, чем в такой же по объему конденсаторной батарее. Конечно, кольцо это держат не при комнатной температуре, его помещают в специальный термос для хранения холодных жидкостей – криостат. В криостат заливают жидкий гелий при температурах, близких к абсолютному нулю. Чтобы жидкий гелий испарялся не слишком сильно, его окружают так называемым азотным экраном. Азотный экран – это слой жидкого азота поверх сосуда с жидким гелием. Испаряясь, жидкий азот уменьшает испарение более холодного и дорогого гелия.
Одна из первых моделей такого накопителя была испытана в 1970 году. В сверхпроводящем «электромагните» – соленоиде была накоплена энергия в 10 килоджоулей. Плотность энергии накопителя составила около 40 килоджоулей на килограмм массы.
До какого же предела можно «накачивать» энергию в сверхпроводящий магнит? Оказывается, этот предел диктует не что иное, как... механическая прочность.
Вот уж чего я не ожидал! Коварство сверхпроводящего кольца с током заключается в том, что магнитное поле, развиваемое им, воздействует прежде всего на само кольцо. Как в электромоторе магнитное поле, действуя на обмотки, вращает вал, так и в сверхпроводящем кольце магнитные силы пытаются разорвать его. А поскольку магнитные поля и токи здесь громадны, то силы, разрывающие кольцо, очень велики. Сплавы же ниобия, из которых изготовлена проволока для кольца, увы, совсем не прочны. Куда им до стальных или синтетических материалов! Эта недостаточная механическая прочность и является досадной причиной, сдерживающей «накачку» сверхпроводника током, а значит, и получение высокой плотности энергии.
Ученые в своих проектах отдают предпочтение гигантским сверхпроводящим накопителям. И у них есть на то веские основания. Известно, что площадь тела пропорциональна квадрату его размеров, объем – кубу. С увеличением размеров увеличивается отношение объема к площади поверхности. Для сверхпроводящих накопителей это имеет немаловажное значение. От объема криостата зависит величина обмотки накопителя и, следовательно, количество запасаемой энергии, а от площади – интенсивность испарения содержащихся в нем жидких холодных газов – гелия, азота. Чем больше объем и меньше поверхность криостата, тем экономичнее накопитель.
Сверхпроводящий накопитель требует значительного числа вспомогательных устройств, обслуживающих его во время работы. Это и холодильные установки, и системы обеспечения энергией для управления, выпрямительные станции, преобразователи и многое, многое другое. Конечно, все это окупается лишь в очень крупном накопителе.
Японские ученые подсчитали, например, что сверхпроводящие накопители становятся выгодными при запасе энергии в них свыше миллиона мегаджоулей. Масса такого накопителя достигла бы десятков тысяч тонн. А пока самые крупные сверхпроводящие накопители в СССР способны запасти только сотни мегаджоулей, причем обмотки у них весят сотни тонн. Чуть больше подобные накопители за рубежом.
Какими же видятся ученым сверхпроводящие накопители будущего?
В одном из проектов французских специалистов это гигантский криостат-бублик диаметром 136 метров и высотой свыше 20 метров. Сечение обмотки диаметром 17 метров. Криостат заполнен жидким гелием, предусмотрен и азотный экран. Кольцо из сверхпроводника заключено в медные или алюминиевые оболочки и усилено прочными бандажами. В обмотке течет ток в 140 килоампер, а плотность тока достигает огромной величины – 3 килоампера на квадратный миллиметр сечения обмотки! В таком гиганте может аккумулироваться до 10 миллионов мегаджоулей энергии.
Чтобы было ясно, насколько это много, напомню, что всего 25 мегаджоулей нужно автомобилю для прохождения пути в 100 километров. Если даже пробег автомобиля увеличить до 400 километров, что примерно равно дневному пробегу такси, то энергии накопителя хватит для питания ста тысяч такси в день! Эта энергия, накопленная ночью, позволила бы устранить дневные перегрузки всех электростанций такой большой страны, как Франция.
Немецкие ученые спроектировали накопитель диаметром 250 метров и высотой 50...70 метров. Криостат с жидким гелием и помещенной в него обмоткой из титан-ниобиевого сплава намечено упрятать под землю. Под стать размерам и предполагаемая энергия накопителя. В своем проекте немецкие ученые применили интересное новшество – огромные нагрузки, действующие на обмотку, они попытались частично «переложить» на грунт, в который зарыт накопитель. Специальные распорки должны будут «упираться» в корпус криостата, а он в свою очередь в породы, окружающие его.
Проекты эти, конечно, впечатляют, кажутся чуть ли не фантастикой. И если вдуматься, они не так далеки от нее. Слишком много здесь всяких узких мест.
Взять хотя бы поддержание сверхнизких температур в криостатах, масса которых миллионы тонн, а объем – десятки миллионов кубометров. Где достать столько жидкого гелия? Чем покрыть расход его на непрерывное испарение? Кроме того, очень сложны выводы тока из накопителей – они ведь тоже должны быть сверхпроводниками, то есть находиться при температурах, близких к абсолютному нулю, а это трудно выполнить. Зарядка и разрядка таких накопителей производится только постоянным током, а промышленности нужен ток переменный.
Но это еще ничего, дальше совсем плохо. Чтобы корпус накопителя равномерно упирался в грунт, надо распорки проложить внутри криостата, в жидком гелии. Однако тогда сильно возрастет приток тепла в криостат, что вызовет дополнительное испарение жидкого гелия! Огромные магнитные поля, возникающие вокруг гигантских сверхпроводящих обмоток, могут оказать опасное воздействие на живую природу и человека. Природа «привыкла» к действию весьма слабых полей земного магнетизма и даже на их изменение реагирует чутко. А тут вдруг в жизнь природы «вмешаются» магнитные поля в миллионы раз сильнее!
И наконец, представим, что случится, если сверхпроводник вдруг разорвется или потеряет свойство сверхпроводимости. А это не исключено. Достаточно чуть-чуть подняться температуре жидкого гелия, и вся колоссальная энергия накопителя выделится почти мгновенно. Спасут ли положение специально предусмотренные медные обмотки, по которым должен пойти ток в случае аварии, неизвестно.
Возможно, специалисты найдут решение перечисленных проблем, тогда такие накопители начнут строить к XXI веку. Разумеется, при условии, что не будет создана «энергетическая капсула» получше – простая, емкая, надежная. И которую, конечно, можно будет поставить на автомобиль! Ведь сверхпроводящие гиганты совершенно не пригодны в качестве двигателя автомобиля.
Плюс химия
Теперь мне стало ясно, что конструкторы автомобилей были тысячу раз правы, используя на них обычные электроаккумуляторы, а не конденсаторы или сверхпроводящие магниты.
Действительно, автомобильные аккумуляторы могут месяцами хранить энергию, причем в достаточно большом количестве. Я сам видел, как иногда автомобили «гоняют на стартере»: включают стартер, питаемый от аккумуляторов, вроде бы для заводки двигателя, но привода на колеса при этом не отключают, как положено по инструкции, – и машина катит по улице. А ведь энергия аккумулятора здесь расходуется не только на движение автомобиля, но и на прокрутку двигателя. Не будь этой прокрутки, автомобиль смог бы пройти «на стартере» больше километра – настолько велика емкость аккумуляторов. Похоже, известные всем нам автомобильные электроаккумуляторы пока ближе всего к «энергетической капсуле».
Позвольте, но так ли уж они известны? Однажды ко мне пришел знакомый мальчик лет шести и в разговоре сказал, что знает, как устроен телевизор. На мой вопрос, может ли он нарисовать его схему, мальчик ответил утвердительно. Однако удивление мое быстро прошло, когда вместо схемы он изобразил переднюю панель телевизора. «Это экран, это ручка громкости, это яркость...» – перечислял он.
Вот так же и я представлял себе электроаккумулятор – пластмассовый ящик с клеммами, внутри которого находятся пластины и кислота, часто называемая «аккумуляторной». Что происходит внутри аккумулятора, каким образом он накапливает энергию, – все это было мне невдомек.
Оказалось, что я не одинок в своем неведении. Никто из водителей, которых я расспрашивал о принципе работы аккумулятора, не дал вразумительного ответа. Мне говорили: он накапливает энергию потому, что к клеммам подсоединяется генератор или выпрямитель, которые и подают в аккумулятор ток. После этого уже сам аккумулятор становится источником тока до тех пор, пока не разрядится. Вроде бы понятно. А почему таким свойством обладает именно аккумулятор, а не кирпич, например? Да потому, дескать, что он так устроен.
Этих сведений мне было явно недостаточно. Пришлось в который раз засесть за книги.
История электроаккумуляторов берет начало со знаменитого опыта, проделанного итальянским физиком Алессандро Вольтой в 1799 году. Ученый опустил медный и цинковый электроды в разбавленную серную кислоту и обнаружил, что между электродами возникла разность потенциалов. Соединив электроды проводником – проволочкой, Вольта получил в ней электрический ток. Тем самым он доказал, что различные металлы, помещенные в растворы кислот, образуют источник тока.
Это был первый в мире гальванический элемент, названный так потом в честь итальянского физика и врача Луиджи Гальвани, который еще до Вольты заметил появление тока при взаимодействии двух разных металлов в проводящей жидкости – электролите.
Правда, есть сведения, что гальванические элементы существовали и в древности. Во время археологических раскопок были найдены глиняные кувшины с напоминающими электроды цилиндрами из разных металлов, причем некоторые ученые считают, что электролитом тогда служили вино или уксус. И будто бы с помощью этих элементов древние мастера умели делать гальванические покрытия: например, наносили тончайшую пленку золота на украшения.
Так или иначе, огромная заслуга Вольты в том, что он не только построил гальванический элемент, но и объяснил его действие, чего по вполне понятным причинам не могли сделать древние.
Элемент Вольты давал очень маленькое напряжение. Чтобы повысить его, стали изготавливать батареи из медных и цинковых пластин, переложенных прокладками, смоченными серной кислотой. Батареи эти, названные вольтовыми столбами, обеспечивали уже достаточно большое напряжение. После Вольты немало ученых – Лекланше, Грене, Даниэль, Грове и другие – разрабатывали свои, все более и более совершенные гальванические элементы. Элемент Лекланше, например, послужил прообразом современных «сухих» батарей, используемых для питания карманных фонариков, радиоприемников, электрифицированных игрушек и прочих устройств. Электроды таких батарей, как когда-то у Лекланше, твердые – цинковый стаканчик и графитовый стержень. А вот электролит уже не жидкий. Ведь жидкость может в любой момент пролиться, а делать элемент герметичным дорого и сложно. Вот и заменили жидкость желеобразным электролитом. Получился удобный и практичный источник электричества.
Если через разряженную сухую батарею особыми импульсами пропустить ток, ее можно вновь «оживить». Эту операцию порой проделывают по несколько раз. Однако уча ненадолго восстанавливает элемент.
Постойте, постойте... Как бы там ни было, получается, что гальванический элемент – тот же аккумулятор! Заряжая его электрическим током, восстанавливая, мы накапливаем в нем электроэнергию, которую затем расходуем. Так ли это?
Оказывается, и так и нет. Прежде всего, не каждый гальванический элемент можно подзарядить. Нельзя это сделать, например, с элементом, в котором присутствуют два электролита. Таков элемент Даниэля, где две разные жидкости разделены пористым стаканчиком. Постепенно просачиваясь через стаканчик, электролиты смешиваются, реагируют друг с другом и выделяют ток. Этот элемент, если он уже отработал свой срок, не восстановишь.
Другие элементы с твердыми электродами в принципе подзаряжаются, накапливают энергию. Но процесс накопления так неэкономичен и неэффективен, что многие считают его излишним. Накапливается только ничтожная часть поданной на элемент электроэнергии, а сам элемент после нескольких таких зарядок разрушается. Чтобы стать хорошим накопителем, гальванический элемент должен достаточно хорошо «переносить» процесс зарядки. И этого наконец удалось добиться в середине прошлого века.
В 1859 году французский ученый и инженер Гастон Плантэ провел любопытный опыт, внешне очень похожий на опыт Вольты. Как и Вольта, Плантэ построил гальванический элемент, однако в качестве электродов он взял две свинцовые пластины, в обычных условиях покрытые пленкой окиси свинца. Электролит был все тот же – разбавленная серная кислота. Плантэ подключил к электродам источник постоянного тока и некоторое время пропускал ток через свой элемент, совсем как при подзарядке сухих элементов. Потом он отключил ток и подключил к электродам гальванометр. Прибор показал, что элемент Плантэ стал сам вырабатывать электроток и при этом выделяет почти всю энергию, затраченную на зарядку. Зарядку можно было повторять большое число раз – элемент неизменно работал исправно, не разрушался, подобно сухим батареям.
Этот гальванический элемент назвали элементом второго рода, или аккумулятором.
Как же происходит накопление энергии в аккумуляторе Плантэ? При пропускании тока через электролит из серной кислоты на свинцовой пластине, соединенной с отрицательным полюсом источника тока – катодом, выделяется водород, который восстанавливает окись свинца в чистый свинец. На электроде, соединенном с положительным полюсом – анодом, выделяется кислород, который окисляет окись свинца до перекиси. Аккумулятор зарядится, когда катод целиком станет чистым свинцом, а анод – перекисью свинца. Тогда между электродами окажется наибольшее напряжение.
Соединяя пластины-электроды проводником с потребителем, расходуя энергию, мы разряжаем аккумулятор. Направление тока при разрядке противоположно тому, что было при зарядке. Положительно заряженная пластина будет восстанавливаться водородом, а отрицательная – окисляться кислородом. Как только пластины станут одинаковыми, аккумулятор прекратит давать ток. Надо повторить зарядку.
Ясно, что энергия в этом аккумуляторе накапливается не в виде электрического или магнитного поля, как в предыдущих накопителях электрической энергии, а в виде вполне осязаемого вещества – свинца, переходящего с выделением энергии в перекись свинца. Сам процесс накопления и выделения энергии здесь происходит иначе, чем в чисто электрических аккумуляторах – конденсаторах и электромагнитах. Поэтому такой аккумулятор принято называть электрохимическим.
В конструкциях автомобильных свинцово-кислотных аккумуляторов ученые постарались как можно больше увеличить поверхность электродов, не нарушая при этом их прочности. Ведь именно от величины поверхности зависит энергоемкость аккумулятора. Сейчас пластины аккумулятора изготовляются в форме свинцовых решеток, покрытых перекисью свинца (положительный электрод) и губчатым свинцом (отрицательный электрод). Электролитом служит 25...35-процентный водный раствор серной кислоты. Заряженный автомобильный аккумулятор имеет напряжение на клеммах 2...2,2 вольта. При разрядке это напряжение падает, и когда оно достигает 1,8 вольта, разрядку обычно прекращают, иначе решетка из свинца может слишком истончиться в ходе реакции и пластины, потеряв прочность, рассыплются.
Мне очень хотелось узнать, что будет с аккумулятором, если попробовать хотя бы кратковременно получить от него ток большой мощности. Однажды я упросил одного знакомого водителя включить стартер, питаемый, как известно, от аккумулятора, при не включенном двигателе. Двигатель, естественно, не завелся, а секунд через 15...20 стартер начал сбавлять обороты. Еще через некоторое время он вообще остановился. Было полное впечатление, что аккумулятор разрядился и больше из него «выжать» ничего нельзя. Я думал, водитель рассердится, скажет, мол, видишь, к чему привели твои опыты. Но он неторопливо выключил стартер, а потом, спустя 2...3 минуты, снова включил его. Стартер заработал! Откуда взялись «силы» у аккумулятора? Не мог же он, как живое существо, «отдохнуть»?
В самом деле, поведение аккумулятора и живого организма здесь поразительно похоже. При усталости мышц от интенсивной работы их сила резко снижается, и нужно время, чтобы она восстановилась. Человек сделает гораздо больше, если он будет работать поравномернее, с постоянной, но небольшой по мощности нагрузкой. Например, если попытаться бегом взбежать на 20-й этаж дома, с одного раза это вряд ли получится, потребуется отдых. Да и усталость после этого будет ощущаться немалая. А если идти спокойно, то 20 этажей можно преодолеть без особой усталости.
Так и в аккумуляторе: при включении его на большую мощность серная кислота, которая была в порах пластин, быстро израсходуется, в результате реакции она превратится в воду, и выделение тока прекратится. Только через некоторое время, когда серная кислота постепенно вновь заполнит поры, можно опять разряжать аккумулятор.
Поэтому разряжают и заряжают аккумуляторы – это касается практически всех видов электрохимических аккумуляторов – обычно с достаточно малой нагрузкой, небольшими токами и продолжительное время – несколько часов. Здесь и кроется один из главнейших недостатков электрохимических аккумуляторов – их малая мощность, приходящаяся на килограмм массы аккумулятора, так называемая удельная мощность или плотность мощности.
Свинцово-кислотные аккумуляторы весьма экономичны, однако они и капризны, часто портятся, недолговечны. К тому же свинец – сравнительно редкий и дорогой металл, а кислота – опасна в обращении. Естественно, что ученые стали искать новые материалы и новые принципы работы аккумуляторов. Так возник второй основной тип электрохимических аккумуляторов – щелочные аккумуляторы. Создание их тесно связано с именем знаменитого американского ученого и изобретателя Томаса Эдисона.
В этих аккумуляторах электролитом служит уже не кислота, а щелочь – 20-процентный раствор едкого кали. Пластины изготовлены из стальных решеток с карманами в них. У положительных пластин карманы заполнены смесью, содержащей окись никеля, а у отрицательных – губчатым кадмием. Корпус щелочного аккумулятора стальной, что придает устройству большую прочность.
Щелочные аккумуляторы дороже кислотных и менее экономичны. Но, несмотря на это, положительные их качества преобладают – они неприхотливы, прочны, долговечны. Поэтому они все больше входят в технику. Например, на троллейбусах применяются именно такие накопители. Их можно видеть в транзисторных приемниках, телефонных и слуховых аппаратах, карманных фонариках и в других устройствах. Во многих радиоприборах присутствуют миниатюрные аккумуляторы, тоже щелочные, под названием «кнопочные», так как они внешне напоминают кнопку. Ценность их в том, что они герметично закрыты, совершенно нечувствительны к перезаряду и переразряду, не требуют ухода. Обычные крупные аккумуляторы этим «похвастать» не могут.
На некоторых спутниках связи и космических станциях применяются очень дорогие, но зато великолепные по своим характеристикам серебряно-цинковые щелочные аккумуляторы. Им нипочем ни большие токи, ни низкие, до минус 60 градусов, температуры. Плотность энергии, накапливаемой в них, в пять раз выше, чем у кислотных аккумуляторов, а плотность мощности – вдвое выше.
Всем хороши серебряно-цинковые аккумуляторы, хоть сейчас ставь их на автомобиль. Масса аккумулятора для прохождения стокилометрового пути не превысит ста килограммов...
Но, увы, стоимость этого аккумулятора будет во много раз выше стоимости самого автомобиля. И надежд на его удешевление никаких – серебра на Земле становится все меньше и меньше, и дорожает оно на мировом рынке все больше и больше. Не лишне сказать, что подобная участь ждет в недалеком будущем многие металлы, в том числе столь необходимый для аккумуляторов свинец. Чтобы аккумулятор мог стать поистине массовым и перспективным, он должен содержать материалы, которых на Земле вдоволь.
Сейчас ученые связывают свои надежды с необычным на первый взгляд аккумулятором, в котором используются гальванические пары «сера – натрий» и «хлор – литий». Металлы – натрий или литий – там расплавлены, их температура достигает нескольких сот градусов. Расплавленный натрий соединяется в аккумуляторе с горячей жидкой серой, а литий взаимодействует с раскаленным газом – хлором. Из-за того, что содержимое таких аккумуляторов при работе нагрето до 300...800 градусов, они получили название горячих.
Мне происходящее внутри горячих аккумуляторов почему-то сразу напомнило мифологический ад, о котором я в детстве немало начитался. Достаточно было представить расплавленную серу, в которой «варится» расплавленный же натрий, тот самый натрий, что и от воды-то загорается и даже взрывается! О хлоре и говорить нечего – это один из наиболее ядовитых газов, чрезвычайно активный даже при комнатной температуре, а что будет при восьмистах градусах! Недаром ученые который уж год бьются над созданием корпуса к этому «адскому» накопителю – мало какой материал выдерживает такую начинку.
Однако к чести горячих аккумуляторов, они при низкой своей стоимости развивают плотность энергии раз в десять большую, чем свинцово-кислотные аккумуляторы, и плотность мощности у них значительно выше. Если свинцово-кислотные аккумуляторы накапливают в килограмме своей массы 64 килоджоуля энергии, а щелочные – 110, то горячие серно-натриевые – 400...700 килоджоулей!
Автомобилю для пробега в 100 километров хватило бы всего 50 килограммов серно-натриевого аккумулятора. 150 килограммов на 300 километров пробега – это неплохие результаты. Но... горячие аккумуляторы перед началом работы надо разогревать, оболочка их не выдерживает долго «адское» содержимое. Да и при аварии машины с этим аккумулятором присутствовать даже зрителем никому не пожелаешь.
Более спокойный «характер» у новых, медно-литиевых аккумуляторов. Они имеют катод из медного сплава и анод из пористого лития. Электролит органический, с высокой электропроводностью. Плотность энергии в опытных образцах этих аккумуляторов в полтора раза выше, чем у серебряно-цинковых, но, что самое важное, у них возможно получение высоких удельных мощностей. Если же вместо меди взять фтористое соединение никеля, то и процесс зарядки аккумулятора можно сильно сократить, всего до нескольких минут, что также очень существенно.
Интересны аккумуляторы на основе цинка и... обыкновенного воздуха. Цинковый анод здесь просто окисляется кислородом воздуха, поэтому весь запас энергии в батарее обусловлен только количеством цинка. Катод изготовлен из пористого никеля и почти не расходуется, а анод по мере износа заменяется новым или восстанавливается пропусканием зарядного тока.
Своеобразие этих батарей заключается в том, что они могут работать как в режиме аккумуляторов, так и в режиме обычных гальванических элементов, попросту «сжигая» цинк в кислороде воздуха. Именно в этом случае цинковые аноды приходится заменять, но плотность энергии элемента при этом получается почти вдвое большей, чем у аккумулятора.
Однако как ни хороши описанные выше аккумуляторы-рекордсмены, специалисты все-таки считают, что проблему создания современного электромобиля с дальностью пробега 120...150 километров должны решить не они, а дешевые и недефицитные никель-цинковые аккумуляторы. По плотности энергии и мощности такие аккумуляторы находятся между обычными и серебряно-цинковыми аккумуляторами. Возникли они в результате замены у серебряно-цинковых элементов дорогого серебра на сравнительно дешевый никель.
Тем не менее будущее, хотя и отдаленное, все же за горячими аккумуляторами, несмотря на все трудности и неудобства, связанные с их постройкой. Их разработкой занимаются сейчас самые солидные фирмы и институты, в том числе и у нас в стране. Успехи же весьма скромны – создать конструкцию такого накопителя для серийного производства ученым до сих пор не удалось. Из лабораторий горячий аккумулятор пока не вышел. Вряд ли мне будет под силу тягаться в этом с целыми научными коллективами.
Особенно смутило меня то обстоятельство, что теоретический предел у электрохимических аккумуляторов уже близок. По расчетам ученых, основной показатель аккумулятора – плотность энергии здесь можно повысить по сравнению с уже достигнутыми результатами максимум раза в 3...4. Безусловно, маловато получается для «капсулы». Кроме того, как я хорошо знал, подойти вплотную к теоретическому пределу невероятно сложно. Вспомнить хотя бы, сколь трудным оказалось подобраться к абсолютному нулю температуры, к полному вакууму, к совершенно чистым материалам. Подобных примеров можно привести множество из самых разных областей человеческой деятельности.
Поэтому, отдавая должное всесилию электричества и бесспорным преимуществам электроаккумуляторов, я все-таки мечтал найти такой накопитель, теоретический предел которого если не бесконечен, то хотя бы отодвинут достаточно далеко. Лишь тогда можно будет всерьез говорить об «энергетической капсуле».
Электромобили
Прежде чем расстаться с электроаккумуляторами, я решил испытать их на электромобиле. Все прочитанное мною про электромобиль было настолько противоречиво, что мне захотелось непременно составить о них собственное мнение.
На электромобили иногда смотрят как на какую-нибудь новинку. А ведь они были созданы задолго до первого автомобиля с двигателем внутреннего сгорания. Как только в 30-х годах прошлого столетия появился первый электродвигатель, его сразу же поставили на экипаж. Питался этот двигатель от батареи гальванических элементов.
Автором первого в мире электромобиля был англичанин Роберт Дэвидсон. Его машина, построенная в 1837 году, представляла собой четырехколесную коляску длиной 4,8 и шириной 1,8 метра, с метровыми колесами – то есть достаточно крупное сооружение. Большую часть коляски занимали батарея гальванических элементов и пока еще примитивный, внушительных размеров электродвигатель. О ходовых качествах этого электромобиля достоверных сведений не осталось.
В России первый электромобиль сконструировал инженер И. Романов в 1896 году. Машина имела скорость 25 километров в час и запас хода 40 километров. Вскоре тот же Романов построил первые электрические автобусы, на 15 пассажиров каждый. Талантливый инженер мечтал создать в Петербурге широкую сеть электробусных перевозок пассажиров, им был составлен подробный план всех необходимых работ. Однако этому плану не суждено было сбыться.
В самом начале нашего века электромобилей было уже так много, что в американском городе Чикаго, например, их число вдвое превышало число автомобилей! Электромобилисты чувствовали себя тогда весьма уверенно – даже мировые рекорды скорости принадлежали им, а не автомобилистам. Еще в 1898 году этот рекорд был равен 63 километрам в час, а годом позже – 105,9 километра в час. По тем временам это было совсем немало.
Впоследствии, когда стали добывать много дешевого бензина (он поначалу даже считался побочным продуктом перегонки нефти, и его просто сжигали!), автомобили вытеснили своих электрических собратьев. Для подзарядки электромобилей, число которых сильно возросло, уже не хватало мощности электростанций.
Сегодняшний возврат к электромобилям (как и к паромобилям, воздухомобилям и т.п.) вызван отнюдь не тем, что у инженеров появились какие-нибудь принципиально новые идеи, могущие коренным образом улучшить электромобили. Нет, просто стало трудно дышать в крупных городах из-за выхлопных газов двигателей, и к тому же быстро кончаются мировые запасы топлива. Отсюда возникла необходимость спешно найти замену автомобилю с двигателем внутреннего сгорания. Вот и вспомнили про электромобили.
Как я уже сказал, меня удивляла противоречивость сообщений об электромобилях. Например, в одной из публикаций я прочел, что японские инженеры построили электромобиль с дальностью пробега 500 километров, а скорость и разгон у него – ну прямо как у спортивных автомобилей. Спустя какое-то время после этого сообщения американские специалисты решительно заявили, что электромобили пока способны проходить лишь 50...60 километров с одной зарядки, максимальная скорость у них не выше 80 километров в час, а разгон – из рук вон плохой. В гору такой электромобиль вообще не может быстро двигаться. По своим характеристикам это скорее не электромобиль, а электрокар – аккумуляторная тележка, какие ездят по территории заводов.
Чего только не приходилось читать и про зарядку аккумуляторов. Писали, например, что уже созданы электронные установки для зарядки аккумуляторов за считанные минуты и чуть ли не секунды. Но тем не менее до сих пор аккумуляторы еще заряжают в течение многих часов.
Короче говоря, я задумал построить модель электромобиля, чтобы все проверить самому. Признаться, осуществить задуманное оказалось нелегко. Постоянно вставали вопросы: где раздобыть то? Где найти это? Но раз уж взялся за дело, нужно было доводить его до конца.
В своей конструкции я использовал раму от маленького спортивного автомобиля – карта. Задние колеса взял побольше, от мопеда, а передние – от детского самоката. На раму позади сиденья поставил одну аккумуляторную батарею от автомобиля МАЗ (там две такие батареи), которую выпросил на время у знакомого водителя. Масса этой батареи – около 40 килограммов, батарея была совершенно новая и очень емкая.
В качестве тягового двигателя я применил стартерный двигатель от легкового автомобиля. Правда, пришлось двигатель разобрать и заменить в нем шестерню такого же размера стальным цилиндром с накаткой, как у напильников, для большей шероховатости. Впоследствии я убедился, что можно было и не снимать шестерню, а посадить на зубья стальное кольцо с накаткой, залив пространство между зубьями эпоксидным клеем. Такие цилиндры или кольца, передающие движение трением, в технике называются фрикционами.
Стартерный двигатель я установил у одного из задних колес, на качающемся рычаге. Вместе с фрикционом двигатель прижимался к колесу пружиной. С аккумуляторной батареей он был соединен несколькими толстыми проводами так, чтобы к нему можно было подключать различное напряжение: 6, 8, 10 и 12 вольт. Один провод – общий, а другие подключались к клеммам стартера через соответствующие переключатели. Каждому напряжению соответствовал отдельный переключатель. Получилась своеобразная коробка скоростей.
Управление машиной было несложным – руль и переключатели, которые обеспечивали нужную скорость. Тормоза я взял от мопеда. Задние колеса посадил на ось на подшипниках, привод был только на одно колесо. Это давало возможность автомобилю свободно поворачивать вправо и влево. Такие приводы характерны для микромобилей.
Я немало поездил на своем электромобиле. Выбирал и ровные, и наклонные дороги, развивал на некоторых участках скорость до 40 километров в час. Единовременный пробег в разных дорожных условиях составлял около десяти километров, дальше разряжать аккумулятор было ни к чему – он мог испортиться. Соотношение массы аккумулятора и мощности двигателя (стартера) с массой электромобиля (а он весил со мной вместе до 100 килограммов) оказалось примерно таким же, как и у стандартных зарубежных электромобилей. Поэтому мои выводы могли быть применимы для всех этих машин. А выводы были следующие: электромобиль прекрасно идет по ровным дорогам с постоянной скоростью; дальность пробега электромобиля в этих условиях может быть достаточно большой, в расчете, конечно, на емкие аккумуляторы; разгоняется электромобиль очень вяло, медленно набирает скорость. Он не может вписаться в городское движение. У светофора, например, он будет сдерживать всю колонну автомобилей позади себя; в гору электромобиль либо не едет вообще, либо едет очень медленно и очень недолго; аккумуляторы при этом мгновенно «садятся»; торможения и разгоны катастрофически сокращают дальность пробега электромобиля; десяток торможений и разгонов до предельной скорости поглощают всю энергию аккумулятора; зарядка аккумуляторов удручающе длительна.
Я привел свои выводы лишь потому, что они почти полностью согласовались с мнениями специалистов по электромобилям, которые я прочел гораздо позже. Видимо, к тому же пришли и конструкторы электромобилей в начале века – идея электромобиля за это время не претерпела каких-либо существенных изменений. Вот если бы электромобиль смог по резвости соревноваться с обычным автомобилем, тогда ему, как говорится, цены бы не было!
В чем тут дело? Казалось бы, электродвигатель обладает всеми положительными качествами, необходимыми для автомобиля, – способностью переносить перегрузки, удобством управления, экономичностью. Троллейбус, который приводится в движение электромотором, при разгонах оставляет далеко позади себя автобусы с двигателем внутреннего сгорания, перегоняет их при движении на подъемах. Почему же электромобиль отстает от троллейбуса?
Да потому, что троллейбус получает энергию извне, от электросети, а электромобиль – от собственной батареи. А электроаккумуляторы, даже с большой плотностью энергии, обеспечивающей долгий пробег, имеют очень небольшую плотность мощности. Этот показатель у электроаккумуляторов во много раз ниже, чем у автомобильных двигателей.
Например, хороший двигатель массой в сто килограммов может развить до 80...100 киловатт мощности. А аккумуляторная батарея той же массы – не более восьми киловатт! И то при этом она достаточно быстро разрядится. Для того чтобы полностью сравняться с автомобилем, электромобиль должен иметь аккумулятор, основные показатели которого – плотность энергии и мощность – в пять – десять раз выше. Что ж, видимо, этим и придется заняться специалистам.
Водородные генераторы
В романе Жюля Верна «Пять недель на воздушном шаре» и в других его произведениях встречается идея получения энергии путем разложения воды электрическим током на водород и кислород, а затем соединения этих элементов снова в воду. Если бы это производилось с помощью не гальванических элементов, а какого-нибудь менее дорогого источника энергии, то метод вполне подошел бы для решения задачи накопления энергии. Во всяком случае, суть «водородного аккумулирования» именно такова.
Представим себе ветроэлектростанцию, которая вырабатывает энергию только тогда, когда есть ветер. Ветер может дуть всю ночь, но в это время электроэнергия практически не нужна, а днем при максимальной потребности в энергии он вдруг стихает. Ветру не прикажешь дуть или не дуть. Заманчиво, конечно, накапливать энергию ночью в электроаккумуляторах, однако их потребуется слишком много, да и долговечность их невелика.
А что, если попробовать при избытке электроэнергии, например ночью, использовать ее для разложения воды на водород и кислород? Газы можно накапливать в специальных емкостях – газгольдерах, а потом, при прекращении ветра, сжигать в двигателях внутреннего сгорания или в паровых двигателях с целью последующей выработки электроэнергии. Достаточно вал двигателя, работающего на водородно-кислородной смеси, соединить с валом электрогенератора.
В таком примерно виде этот метод был разработан полвека назад известным изобретателем А.Г. Уфимцевым. Но, подсчитав все «за» и «против», сам же А.Г. Уфимцев отказался от своей идеи. Дело в том, что КПД газового двигателя внутреннего сгорания не выше 25 процентов. К тому же на чистом водороде и кислороде ни один из существующих двигателей работать не будет – столь опасная смесь просто взорвет его. КПД паровых двигателей еще ниже. И плюс ко всему – нужно крутить электрогенератор, в котором свои потери энергии. Выходит, что работа целого комплекса сложных машин не принесет нам желаемого результата, отдача энергии здесь будет очень мала.
Может быть, сделать иначе? Получая из воды водород и кислород, мы пропускаем через нее ток по электродам. Вода, подкисленная или подсоленная, является здесь проводником тока, электролитом. Нельзя ли, подавая кислород и водород снова к электродам, получить взамен ток? Вернуть ту электроэнергию, которая была затрачена на разложение воды?
Оказывается, ученые работают над этим давно. Еще в прошлом веке было замечено, что если в горячий раствор едкого кали опустить платиновые электроды и к одному из них медленно подавать водород, а к другому кислород, то на электродах появляется разность потенциалов. Платина играла роль катализатора реакции окисления – восстановления водорода и кислорода. Соединив электроды, ученые получали электрический ток. Ток вначале был невелик, и вся последующая работа над прямым преобразованием энергии топлива в электричество заключалась как раз в увеличении мощности этого процесса.
Ныне существует множество типов установок для преобразования энергии, называемых топливными элементами или, если они работают на водороде, водородными генераторами. Есть высокотемпературные (как горячие аккумуляторы) топливные элементы, а есть работающие и при комнатной температуре. Применяются также элементы с промежуточными температурами: 100...200 градусов по Цельсию. Электролитами могут служить и щелочь и кислота, причем в твердом и жидком виде.
Разнообразно и топливо, которым питаются такие элементы. Это газы – водород и кислород; жидкости – спирт, гидразин; твердые вещества – уголь, металлы. В качестве окислителя используют кислород, воздух, перекись водорода. КПД топливных элементов очень высок, он достигает 70 процентов, что, по меньшей мере, вдвое выше, чем у двигателей.
Как же все-таки работает современный топливный элемент?
В водородно-кислородном элементе водород поступает на поверхность отрицательного электрода, а кислород – на поверхность положительного электрода. Газы эти доставляются к электродам по трубкам. Ионы водорода в процессе реакции окисления – восстановления соединяются с ионами кислорода, образуя обычную воду. Энергия химической реакции передается электродам в виде электрической энергии.
Получаемая в топливном элементе вода удаляется оттуда через особый фитиль. Она настолько чиста, что ее можно использовать для питья и приготовления пищи. Так поступают, например, космонавты в длительном полете – на космических станциях тоже установлены топливные элементы. Это еще одно достоинство прямого преобразования топлива в ток.
Водородно-кислородные топливные элементы, если брать в расчет только массу топлива – водорода и кислорода, имеют громадную плотность энергии – около мегаджоуля на килограмм. Но ведь надо учитывать и массу самого устройства – топливного элемента со вспомогательным оборудованием. А это уже снижает плотность энергии до уровня обычных электроаккумуляторов – топливные элементы очень тяжелы. Лишь после многочасовой работы, когда будет израсходовано значительное количество водорода и кислорода, топливные элементы окажутся легче электрохимических аккумуляторов с тем же запасом накопленной энергии.
Плотность мощности у топливных элементов совсем мала, около 50 ватт на килограмм массы, или втрое меньше, чем у горячих аккумуляторов. Для автомобилей это явно недостаточно.
Накопители энергии, имеющие в основе своей работы принцип водородного аккумулирования, могут появиться в промышленности и на транспорте в лучшем случае к самому концу нашего века.
Очень уж сложна и трудоемка их разработка, слишком дорогими получаются пока составляющие их устройства.
Интересно, что прямое преобразование химической энергии в электроэнергию свойственно и некоторым видам рыб: например, электрическим скатам. Эта рыба, обитающая в теплых морях, переводит энергию, выделяющуюся при переработке пищи, в электроэнергию, совсем как электрохимические генераторы – топливные элементы. Трудно сказать наверняка, но возможно, скат умеет и накапливать ее, как мы, например, отдыхая, накапливаем силы.
Электрические органы ската, расположенные по бокам головы, весят около пуда. По своему строению они поразительно похожи на батарею гальванических элементов. Состоят эти органы из многочисленных пластинок, несущих положительные и отрицательные заряды, причем пластинки расположены столбиками (как бы соединены последовательно), а столбики связаны между собой. Каждый электрический орган покрыт «электроизолирующей» тканью.
Скат способен давать ток силой 8 ампер при напряжении в 300 вольт, то есть развивать мощность почти 2,5 киловатта, что больше трех лошадиных сил. Это завидные показатели для электроаккумуляторов, во всяком случае для тех, которые мы используем при запуске автомобильных двигателей. Подсчитав плотность мощности электрических органов ската, получим свыше 150 ватт на килограмм! Как отмечают многие исследователи, создание аккумулятора с плотностью мощности 100...150 ватт на килограмм открыло бы широкие возможности для применения электрохимических источников тока на транспорте, в частности для привода электромобилей. Сегодняшним аккумуляторным батареям это пока не под силу. Браво, скат!
Но хотя скат и обогнал аккумуляторную технику, не разводить же его специально для накопления энергии. Нет, скат – не «капсула», он и не захочет быть ею, даже если попытаться одомашнить его для целей электроснабжения. Это все, скорее, из области фантастики...
Неразгаданная тайна шаровой молнии
Поиски «энергетической капсулы» заставили меня поближе познакомиться и с таким загадочным 70 явлением природы, как шаровая молния. По правде говоря, никто пока точно не знает, накопитель это или нет. Но я с некоторой долей риска все-таки решил считать шаровую молнию аккумулятором энергии.
Вот кратко те характеристики шаровой молнии, которые составлены на основе большого количества свидетельств очевидцев: энергия, заключенная в молнии, – от 0,1 до 4 кВт·ч; время существования – от нескольких секунд до минут; масса – от 0,5 до 50 г; плотность – от 0,0013 до 0,015 г/см3.
Конечно, у шаровой молнии есть и другие характеристики, например, сила свечения, скорость движения и т.д., но меня прежде всего интересовали ее аккумулирующие возможности.
В общей сложности учеными собрано несколько тысяч описаний шаровой молнии, естественно, отличающихся друг от друга. Однако особенно примечателен так называемый «опыт с бочонком», описанный английским профессором Б. Гудлетом. Никто не планировал этот эксперимент, просто обстоятельства сложились столь удачно, что профессор даже смог достаточно точно подсчитать внутреннюю энергию (энергоемкость) шаровой молнии.
Шаровая молния размером с большой апельсин (10...15 см диаметром) залетела в дом через окно на кухне и оказалась в бочонке с водой. Хозяин дома, присутствовавший при этом и со страхом ожидавший развязки, заметил, что вода в бочонке, недавно принесенная из колодца, кипит. Вскоре вода перестала кипеть, но и 20 минут спустя в нее нельзя было погрузить руку. Шаровая молния, израсходовав свою энергию на кипячение воды, исчезла без взрыва. Похоже, что она в течение нескольких минут находилась под водой, поскольку ее не было видно.
В бочонке помещалось около 16 литров воды, значит, энергия, необходимая для ее кипячения, должна составлять от 1 до 3,5 кВт·ч. В действительности энергия молнии наверняка была еще больше, так как по пути к бочонку молния пережгла телеграфные провода и опалила оконную раму.
Профессор Гудлет определил также плотность энергии молнии. Зная примерный объем шаровой молнии – около 1 литра и взяв средний показатель плотности 0,01 г/см3, он получил массу 10 г. Это типичная для шаровой молнии масса, в пределах 0,5...50 г. Плотность энергии молнии оказалась соответственно 100 кВт·ч, или 360 мегаджоулей на килограмм массы! То есть плотность энергии шаровой молнии в сотни и тысячи раз выше, чем у лучших электрохимических аккумуляторов!
«Опыт с бочонком» не был единичным. Попадание шаровых молний в баки, канистры и ведра с водой во все последующие времена везде вызывало вскипание содержимого. Просто «опыт с бочонком» профессора Б. Гудлета наиболее подробно и достоверно разобран учеными.
Американский исследователь Гарольд У. Льюис высказал мнение, что если бы объем шаровой молнии был заполнен напалмом или желеобразным бензином, то энергия напалмового шара равнялась бы энергии шаровой молнии таких же размеров. Правда, плотность энергии в этом случае будет в несколько раз меньше – около 50 мегаджоулей на килограмм, но, в общем-то, и это чрезвычайно много!
Из множества попыток объяснить природу шаровой молнии пока ни одна не увенчалась успехом. Мне же наиболее любопытными показались две противоположные гипотезы. Согласно первой из них, выдвинутой в прошлом веке знаменитым французским ученым Домиником Араго, шаровая молния – особое соединение азота с кислородом, энергия взаимодействия которых и расходуется на существование шаровой молнии. Этой же точки зрения придерживался французский астроном и физик Матиас, который полагал, что энергия шаровой молнии – «грозовой материи» – вчетверо больше, чем энергия такого же шара, наполненного нитроглицерином.
К сожалению, подобных соединений химикам создать пока не удалось, хотя, как можно судить по некоторым сообщениям, надежд на это они все-таки не теряют. Уверяют, что горение искусственной «грозовой материи» по своему эффекту будет мало чем отличаться от взрыва шаровой молнии.
Известный советский физик Я.И. Френкель, сторонник первой гипотезы, считал шаровую молнию сфероидным вихрем смеси частиц пыли или дыма с химически активными (из-за электрического разряда) газами. Такой шар-вихрь, подчеркивал ученый, способен на длительное независимое существование. Действительно, согласно наблюдениям, шаровая молния появляется в основном при электрическом разряде в запыленном воздухе и оставляет после себя дымку с острым запахом.
Недавно открытое советскими учеными явление хемилюминесценции вновь вызвало интерес к первой гипотезе возникновения шаровой молнии. Ряд исследователей утверждают, что шаровая молния не что иное, как хемилюминесцентное образование – ХЛО, которое тоже наблюдается в запыленном воздухе.
Так или иначе, но эта гипотеза, по которой вся энергия шаровой молнии находится внутри ее самой, нравилась мне больше остальных. Может быть, потому, что она позволяет считать шаровую молнию накопителем энергии.
Совершенно противоположную точку зрения на происхождение шаровой молнии высказал академик П.Л. Капица. Прежде всего он считает неприемлемой первую гипотезу, так как она якобы противоречит закону сохранения энергии. «Если в природе, – пишет П.Л. Капица, – не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».
При этом П.Л. Капица ссылается на так называемое высвечивание, то есть прекращение сияния шаровой молнии. Время высвечивания сияющего шара прямо пропорционально его диаметру. Экспериментальные ядерные взрывы показали, что огненное облако диаметром в 150 метров высвечивается примерно за 10 секунд. Стало быть, шаровая молния диаметром 10 сантиметров (наиболее вероятный ее размер) высветится всего за 0,01 секунды!
Исходя из этого, П.Л. Капица полагает, что шаровую молнию, существующую в тысячи раз дольше расчетного времени, питают приходящие извне радиоволны, преимущественно длиной от 35 до 70 сантиметров. Взрыв шаровой молнии объясняется внезапным прекращением подвода энергии (например, если резко меняется частота электромагнитных колебаний) и представляет собой простое «схлопывание» разреженного воздуха.
Хотя эта теория нашла горячих приверженцев, многое в ней не соответствует наблюдениям. Во-первых, радиоволны в диапазоне 35...70 сантиметров, появляющиеся в результате атмосферных разрядов, современными радиоустановками не зафиксированы. Во-вторых, эта теория не соответствует «опыту с бочонком», описанному профессором Б. Гудлетом. Дело в том, что вода является практически непреодолимой преградой для радиоволн. Если бы даже их энергия передалась воде мгновенно, это не вызвало бы сколько-нибудь заметного нагрева ее.
Неувязка получается и со взрывом шаровой молнии. Хорошо известно, что этот взрыв способен вызвать большие разрушения. Шаровая молния легко переламывает при соприкосновении толстенные бревна, волочит по земле тяжелые предметы, переворачивает трактора, совершает другие «силовые» трюки. Взрыв молнии, нередко оглушительный, способен разнести в куски прочнейшие предметы. Был даже случай, когда шаровая молния «нырнула» в реку и взорвалась там, подняв огромный фонтан воды. «Схлопывание» же шаровой молнии по своему эффекту напоминало бы скорее лопающийся резиновый воздушный шарик. Что касается высвечивания, которое приводят в качестве основного аргумента критики гипотезы внутренней энергии шаровой молнии, то длительность его вовсе не противоречит закону сохранения энергии при допущении, что энергия переходит в свечение не сразу, а постепенно. Если внутренняя энергия шаровой молнии как аккумулятора выделяется медленно, то свечение может продолжаться достаточно долго. Так например, литр легкого газа ацетилена, медленно сгорая в воздухе, обеспечивает яркое свечение, соизмеримое с силой света шаровой молнии, в течение нескольких десятков секунд. А ведь вещество шаровой молнии может таить энергию и в сотни раз большую.
Я уже почти не сомневался, что шаровая молния несет свою энергию внутри себя. То есть она и есть настоящая «энергетическая капсула», только созданная не человеком, а искусницей природой.
Однако загадка шаровой молнии до сих пор остается неразгаданной, пока не удалось получить шаровую молнию искусственно. Возможно, что, добившись этого, человек будет иметь едва ли не самый емкий аккумулятор энергии! Но в нынешнем виде «грозовая материя» показалась мне слишком опасной, чтобы строить «капсулу» на ее основе.
Часть II. Держу мечту!
Мечте – 5500 лет!
Глава первая, в которой автор, запутавшись в сложности поиска «энергетической капсулы», решил искать ее самым простым путем и, кажется, не ошибся...
Метеорит на привязи
Итак, я перебрал почти все идеи, казавшиеся мне сколь-нибудь перспективными, но «капсулы» не нашел. Каждый раз все складывалось вроде бы отлично, появлялись радужные надежды, а затем возникали непредвиденные осложнения, они громоздились друг на друга, и мои надежды в конце концов рушились.
Неужели всякая победа в технике достается только многолетним кропотливым трудом? Известно, что так работал, например, великий Эдисон, тратя на сон и другие «бесполезные», с его точки зрения, занятия минимум времени. Но ему же принадлежат слова: «Огромное большинство людей предпочитает безмерно трудиться, лишь бы немного не подумать».
Разумеется, я был совсем не против того, чтобы найти в природе какой-нибудь аналог накопителя и, отталкиваясь от него, «немного подумать». Однако попробуй найди такой аналог.
Раскаленное Солнце? Было, это же тепловой аккумулятор. Сила гравитации? Тоже было – аккумулятор Армстронга, или попросту поднятый груз. Упругие ветви деревьев? Пружина. Электрический скат? Электроаккумуляторы. Грозовые облака? Конденсаторы.
Шаровая молния? Ею я занимался только что.
Может, метеориты? Они все таки имеют гигантскую скорость, способны насквозь пробить космический корабль, если столкнутся с ним. Пусть даже их скорость будет весьма небольшой по космическим масштабам, километров десять в секунду, тогда кинетическая энергия каждого килограмма массы метеорита составит половину квадрата скорости, или... 50 мегаджоулей. Это ведь столько, сколько накапливает шаровая молния! А есть метеориты гораздо быстрее.
Разгонишь метеорит до вдвое большей скорости – накопишь вчетверо большую энергию.
Я не поверил себе. Решение лежало на самой поверхности. Возможно ли, что никто раньше не додумывался накапливать энергию в бешено мчащемся метеорите?
Ну хорошо, а как эту энергию отобрать у метеорита? Гнаться за ним на космическом корабле? Неудобно, сам при этом превратишься в аккумулятор такой же по величине энергии. Стало быть, надо привязать метеорит тросом к некой оси, и пусть он ходит вокруг нее по кругу. Вращая эту ось, можно будет разгонять метеорит – накапливать в нем энергию и, напротив, замедлять его бег при отборе энергии. Пожалуй, лучше даже взять несколько таких метеоритов на привязи, состыковать их один к одному, чтобы получилось кольцо. И пространство удастся сэкономить, и...
К моему удивлению, вышло нечто очень знакомое. Так это же маховик, обычный маховик в виде тяжелого колеса со спицами! Маховики давным-давно применяют для выравнивания хода машин, они присутствуют в любом автомобильном двигателе, в магнитофонах, в швейных машинах, механических ножницах, прессах... В общем, труднее, наверное, назвать машину, где бы совсем не было маховика или какого-нибудь тяжелого колеса, играющего его роль.
Почему же тогда маховики не используют для накопления больших количеств энергии? Ведь если даже плотность энергии маховика окажется в сотни раз меньше, чем я подсчитал для метеорита, все равно он будет на уровне лучших аккумуляторов, созданных когда-либо человеком!
Любое серьезное дело, как я уже понял, требует основательной подготовки. Мне теперь предстояло подробнее познакомиться с маховиками, и начать я решил прямо с момента их появления.
Открытие древнего гончара
Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.
В небольшом гончарной мастерской, с виду довольно старой, служившей, вероятно, не одному поколению, перед гончарным станком сидит смуглый мужчина с остроконечной бородкой. Грубая крепкая деревянная тренога поддерживает массивный диск из обожженной глины диаметром около метра. На глаз в нем никак не меньше центнера. Гончар кладет на этот диск кусок размятой глины и принимается колдовать над ней. Диск, несмотря на явную тяжеловесность, легко вращается – по-видимому, он достаточно искусно посажен на ось, подвижно закрепленную в треноге. Но вот его вращение замедлилось. Мастер завел правую руку под диск и, нащупав там рукоятку, с силой потянул ее на себя, откинувшись в мощном движении...
Эта сценка из далекого прошлого ожила перед нами благодаря знаменитому английскому археологу Леонарду Вулли, который в 1929 году нашел в развалинах Урского могильника не совсем обычный гончарный круг. Гончарное ремесло в те времена получило уже довольно широкое распространение, и найденный диск не должен был особенно заинтересовать археологов. Но Леонард Вулли оказался достаточно проницательным, чтобы не пройти мимо некоторых странностей в устройстве диска. А привлекли внимание ученого два момента.
Во-первых, зачем понадобилось делать гончарный круг столь большим и тяжелым? В Египте, например, находили гончарные круги лет на тысячу старше. Изготовленные из дерева, они были гораздо меньше по размерам, легче и прекрасно служили в качестве простой вращающейся подставки. Такими же кругами пользовались и в Междуречье. И все-таки гончар из Ура сделал свой круг тяжелым и громоздким, как будто назло самому себе.
Во-вторых, для чего было проделано маленькое отверстие в торце диска? Если большое отверстие в центре предназначалось для закрепления в нем оси, то маленькое отверстие сбоку поначалу казалось археологам совсем ненужным.
И тут Вулли высказал блестящую мысль: в маленькое отверстие втыкалась деревянная рукоятка, с помощью которой древний мастер приводил диск во вращение. А массивность и большие размеры диска ему нужны были для того, чтобы подольше сохранить это вращение и работать на своего рода «механизированном» станке.
Гончар из города Ура сделал гениальное открытие – он изобрел маховик! Как и миллионы нынешних маховиков, их предок – гончарный круг, вращаясь, переносил энергию во времени. Именно он, по признанию ученых, положил начало эре механизированного труда.
В поисках серьезной работы
Спустя 1200 лет после изобретения маховика в Междуречье, в древнем Китае был изготовлен другой гончарный круг маховичного типа. Известно даже имя хозяина гончарной мастерской близ Желтой реки, который, по-видимому, сам дошел до идеи маховика. Звали его Ланг Шан. К чести китайца, его маховик был значительно совершеннее. Вытесанный из камня, что придавало ему большую прочность и долговечность, массивный диск приводился во вращение ногами. Это позволяло развивать немалую скорость – ноги ведь гораздо сильнее рук.
Новое маховичное устройство появилось тоже в Китае примерно через полторы тысячи лет. В долине реки Ло Хо постоянно дули сильные ветры, которые сдували слои земли, образуя глубокие овраги. В этих оврагах на глубине 10...12 метров можно было найти воду, необходимую для орошения полей. Китайцы сооружали большие колеса с парусами на шестах, к колесам цепями крепили кожаные ковши для воды. Ветер надувал паруса и вращал колеса, поднимая воду из оврагов.
Однако когда ветер вдруг затихал, такое колесо останавливалось, а затем под тяжестью ковшей с водой начинало крутиться в другую сторону, сливая воду обратно в овраг. Чтобы этого не было, у колеса оставляли дежурить двух рабов, скованных цепью друг с другом. Как только ветер прекращался, они повисали на противоположной наполненным водой ковшам стороне колеса и удерживали его от обратного хода до следующего порыва ветра.
Однажды какой-то хозяин колеса, которому рабы понадобились для другой работы, решил заменить их тяжелым камнем. Ничего не получилось, все равно кто-то должен был в нужный момент привязывать камень к колесу, а потом отвязывать его. Хозяин махнул уже было на свою затею рукой, но тут налетевший ветер раскрутил колесо вместе с камнем, который не успели снять, и оно стало быстро вращаться, поднимая ковши с водой, причем не сразу остановилось, когда ветер опять стих.
Сообразительный хозяин тут же приказал привязать еще камней под каждый парус и стянуть шесты веревками. Так его колесо превратилось в огромный маховик, накапливавший энергию ветра и постепенно расходующий ее во время затишья. Благодаря маховику появилась возможность поднимать воду без постоянного контроля со стороны человека.
Сейчас такое сооружение назвали бы автоматическим водоподъемником маховичного типа, а тогда его именовали «Большое колесо Мандарина». Сохранилось и другое название маховичного колеса, по имени древней китайской цивилизации, на закате которой оно было создано, – колесо Пан-По.
Колесо Пан-По имело, по описаниям того времени, «четыре человеческих роста над землей и два – под землей». Крепкие «спицы», на концах которых были закреплены паруса и тяжелые камни, соединялись между собой распорками и канатами. Вал колеса покоился на подшипниках-втулках из твердых пород дерева, обильно поливаемых водой. Чем не современная жидкостная смазка подшипников?! Да, «Большое колесо Мандарина» было настоящим шедевром древних инженеров, на много лет опережавшим техническую мысль своей эпохи.
Маховики, правда, несравненно меньших размеров, применялись в старинных смычковых сверлилках-дрелях. Здесь роль маховика играл тяжелый диск, насаженный на сверло. Через него, обвиваясь, проходила тетива смычка. Двигая смычком вперед-назад, мастер разгонял маховик, а затем, надавливая на тупой конец сверла камешком с углублением, просверливал отверстия, используя накопленную в маховике энергию. Подобным способом можно было бы не только сверлить, но и добывать огонь трением.
Уже в древности появились первые маховичные игрушки. И раньше других – волчок, который радует детей и сейчас, спустя тысячелетия. Волчок весьма поучительная игрушка: он показывает сразу оба главных свойства маховика – накапливать и сохранять энергию, а также сохранять ось вращения в пространстве – так называемый гироскопический эффект. Эти свойства и обусловили применение маховиков в миллионах современных машин.
Детство мое и моих сверстников протекало в военные и первые послевоенные годы. Тогда стране было не до игрушек, и мы сами делали их из дерева, глины, отливали из свинца. Иногда волчки получались очень удачные – закрутишь такой, бросишь на пол и подстегиваешь кожаной плетью.
Волчок гудит, подпрыгивает от ударов и крутится, крутится чуть ли не часами.
Не менее интересную игрушку мастерили мы из крупного грецкого ореха. Орех просверливали или прожигали гвоздем в двух местах близ центра так, чтобы расстояние между отверстиями не превышало сантиметра. Потом пропускали в эти отверстия нити, связывали концы – и игрушка готова. Мы называли ее «жужжалкой». Многие из нас в то время считали, что «жужжалку» выдумали недавно, а она, оказывается, описана еще в древних кавказских рукописях.
Для запуска игрушки нужно было надеть концы нитяной петли на пальцы, растянуть ее, а затем, закрутив орех на несколько оборотов, отпустить его. Орех начинал раскручиваться и вскоре по инерции уже сам закручивал нить в другую сторону. Здесь следовало чуть ослабить натяг нити, чтобы дать ей возможность закрутиться на большее число оборотов, и снова растянуть. С каждым разом орех все стремительнее вращался вперед-назад, причем с сердитым жужжанием. Скорость его вращения достигала нескольких тысяч оборотов в минуту.
Еще одна старинная маховичная игрушка – «йо-йо». На глиняный, деревянный или металлический маховик с кольцевой проточкой посередине наматывалась нить длиной около метра. Держа свободный конец нити в руке, маховичок приподнимали над землей и отпускали. Падая, он раскручивался, приобретая все более быстрое вращение. При этом в нем накапливалась энергия, достаточная для его последующего подъема вверх по нити почти до самой руки. Если при падении маховичка нить слегка натягивали, а при подъеме чуть ослабляли, то маховичок наезжал прямо на руку.
По принципу этой игрушки действует хорошо знакомый всем по урокам физики прибор – маятник Максвелла, демонстрирующий переход потенциальной энергии в кинетическую и наоборот.
Маховичные игрушки много дали для развития идеи накопления энергии во вращающихся маховиках. Во все времена не только дети, но и ученые любили наблюдать за ними, изучали их свойства. Например, великий Ньютон, поясняя открытый им закон инерции, описывал вращение волчка. Однако минуло немало лет, пока для маховика нашлась серьезная работа.
Маховик берется за дело
Средневековая Европа. Пылают костры инквизиции. По малейшему подозрению в ереси уничтожаются ценнейшие книги. Процветают схоластика, алхимия, не сидят без работы и астрологи. Странный и страшный период в истории Европы, на несколько веков погрузилась она во мрак отсталости и невежества.
О маховиках тогда, конечно, никто и не думал. Да и о каких маховиках могла идти речь, когда «ученые мужи» были заняты поисками «философского камня», изгнанием дьявола, размышлениями на тему: «Сколько ангелов уместится на булавочной головке?»
Но почти через тысячу лет после гибели высокоразвитого античного Рима в Европе постепенно опять начинают заниматься делом. Медленно, но верно развиваются технические науки, появляются машины.
Машины поначалу были несложные, приводимые в движение вручную с помощью рукояток.
Тот, кто пробовал завести двигатель автомобиля рукояткой, хорошо знает, как это трудно. В наши дни такими рукоятками пользуются сравнительно редко. А каково же было людям средневековья? Для того, чтобы машина работала, им приходилось крутить рукоятку постоянно с утра до вечера, изо дня в день, из месяца в месяц, из года в год. Будучи, по существу, «живыми двигателями» средневековых машин, они быстро выбивались из сил, производительность их труда заметно падала. Разумеется, с таким положением нельзя было мириться. И вот однажды кто-то догадался снабдить рукоятку маховиком. Это позволило значительно облегчить труд работников. Отныне маховик стали применять в самых различных технических устройствах.
Характерным примером использования маховика в старинных машинах может служить ковшовый водоподъемник XV века, колесо которого должен был поворачивать вручную специально нанятый для этого работник. В те моменты, когда человеку было удобно вращать рукоятку, укрепленный на ней достаточно большой маховик «принимал» у него часть энергии и возвращал ее тогда, когда крутить рукоятку становилось очень неудобно. В результате и человек меньше утомлялся и машина работала более равномерно.
Другой пример – поршневой насос конца XV – начала XVI века. Помимо неудобства пользования рукояткой, здесь требовалось преодолеть еще одну сложность. Когда поршень поднимал воду, крутить рукоятку было намного тяжелее, чем во время его спуска. И нередко случалось так, что при подъеме у работника просто не хватало сил провернуть рукоятку, оказавшуюся в неудобном для него положении. Применение маховика позволило решить эти проблемы.
Даже тогда, когда машины стали приводить в движение с помощью водяного колеса, маховик не утратил своего значения. В XVI веке, например, его использовали в машинах для распиловки досок. Поднимать пилу вверх было легко: в это время она не пилила – наклон зубьев был в другую сторону. Опускать же оказывалось совсем непросто. Ведь при этом и происходила собственно распиловка доски. Без маховика пила бы часто застревала в доске, и водяное колесо не в силах было бы протянуть ее дальше. Теперь же маховик, разгоняясь при свободном ходе пилы вверх, отдавал ей свою энергию при рабочем ходе вниз. Пила не застревала, и дело шло быстро. Маховик здесь был уже гораздо больше по размерам и массе, чем на ручных машинах, – мощность тут требовалась изрядная.
В XVIII веке изобрели паровой двигатель, а в XIX – двигатель внутреннего сгорания. Оба поршневые. Главный же недостаток поршневой машины – неравномерность выделения энергии, неравномерность хода. Машина выделяет энергию лишь в момент подачи пара в цилиндр или в момент сжигания в нем горючего. Все остальное время она только расходует ее на свое прокручивание. Это необходимо, чтобы машина не остановилась.
Тут-то и пригодился маховик. Посаженный на вал двигателя, маховик при сжигании горючего – то есть при рабочем ходе машины – накапливает энергию, а потом за счет нее сам прокручивает машину для подготовки следующего рабочего хода. Если кто-нибудь думает, что едущий автомобиль постоянно приводится в движение двигателем, то он ошибается. Часть времени машину тянет двигатель, а часть – именно маховик. И изрядные расстояния мы, сами того не подозревая, проезжаем на маховичном автомобиле. Правда, такой маховик накапливает очень незначительную энергию по сравнению с другими аккумуляторами той же массы, и поэтому претендовать на роль «энергетической капсулы» он не может.
Часто маховик присутствует в машинах незримо, он «замаскирован» в них под какую-то деталь, но выполняет самую что ни на есть «маховичную» работу. Те, кто бывали на заводе, наверное, видели там механические ножницы. Мотор с помощью ремня крутит шкив, а от этого шкива приводится в движение нож. На первый взгляд шкив как шкив. А будь он полегче, не такой массивный, каким его изготовили, не сработали бы тогда ножницы – упершись в заготовку, нож сразу бы остановился. Только маховик, «замаскированный» в этом случае под шкив, позволяет за счет накопленной энергии развивать огромные силы и мощности, необходимые для работы.
«Маскируется» маховик обычно под шкивы, муфты, зубчатки, колеса и другие круглые, а подчас и не совсем круглые детали. В самом деле, почему бы и не использовать свободный обод маховика для размещения на нем ремня или зубьев? Это очень даже удобно.
Кстати, уж коли мы заговорили про колеса, то велосипедные колеса – настоящие маховики, на которые надеты шины. Но здесь используется главным образом другое свойство маховика – гироскопический эффект. Это он помогает сохранять устойчивость велосипеду, как и вращающемуся волчку – игрушке, на которой впервые этот эффект был подмечен.
Более чем 200 лет тому назад английский изобретатель Серсон попытался использовать это свойство волчка для создания «искусственного горизонта» – особого прибора, крайне необходимого в мореплавании: ведь нередко из-за тумана естественного горизонта не видно. Этот прибор нужен был морякам для астрономических наблюдений, чтобы выяснить, где находится в данный момент корабль. Раньше применяли для этих целей отвес, но при волнении на море отвес сильно раскачивался наподобие маятника и «поймать» горизонт было невозможно.
Судьба оказалась несправедливо жестокой к изобретению и к самому изобретателю. Фрегат «Виктори», на котором был установлен «искусственный горизонт», потерпел крушение, Серсон погиб. Об его изобретении лет на сто забыли.
Свойство маховика сохранять ось вращения в пространстве поначалу поражало меня, как, впрочем, и каждого, кто с ним впервые сталкивается. Только позже я понял, чем оно объясняется. Но уже до этого, наблюдая гироскопический эффект, я твердо решил применить его, если будет построена маховичная «энергетическая капсула».
Маховик перебирается на транспорт
Наступил XIX век, век настоящего расцвета машиностроения. Неизменный спутник машин маховик завоевывал себе прочное место на транспорте. А впервые он был использован там в 1791 году гениальным русским механиком-самоучкой И.П. Кулибиным, который применил его в своей знаменитой «самокатке».
Надо сказать, что «самокатки», «самобеглые коляски» и прочие «безлошадные» транспортные средства появились задолго до Кулибина. Но Кулибин не знал об этом и создавал все заново. Не подозревая о предшествующих конструкциях «самокаток», где маховиков и в помине не было, он положил начало новому применению маховичных накопителей.
Еще в Древнем Риме дети катались на досках с приделанными к ним четырьмя колесами. Это были первые примитивные тележки без животной тяги, работающие на мускульной энергии самого пассажира.
В 1257 году английский ученый и общественный деятель Роджер Бэкон предсказал возможность создания больших тележек с мускульной тягой, имеющих практическое значение.
В 1447 году в европейских городах на новогодних празднествах видели закрытую повозку, приводимую в движение «скрытым механизмом» – по-видимому, спрятанными внутри повозки людьми.
Великий художник А. Дюрер сконструировал целых девять «самобеглых» повозок для императора Максимилиана I. Даже сам Ньютон в ранней молодости построил «самокатку», которая ездила по полу в его доме.
В XVII...XVIII веках были известны не менее десяти разновидностей «безлошадных» самоходных повозок, в том числе «самобеглая коляска» талантливого русского механика Леонтия Шамшуренкова, построенная в 1752 году.
В наш век «самобеглые» получили как бы второе рождение. Люди хотят больше двигаться, ведь не секрет, что мы страдаем от недостатка движения. К тому же мускульные транспортные машины не имеют двигателей, сжигающих горючее, они совершенно безвредны. Сейчас создано много новых конструкций не только велосипедов, уже завоевавших мир, но и мускульных автомобилей – педикаров, которым еще предстоит это сделать. Ряды сегодняшних «изобретателей велосипедов», в лучшем смысле этих слов, множатся с каждым днем.
У всех «самобеглых» есть общий недостаток – они плохо преодолевают подъемы. Велосипедисты знают, как тяжело даже на современных легких педальных машинах ехать в гору. Можно понять, насколько трудно это было для водителей педикебов – велосипедных колясок, в которых, помимо самого водителя, нередко сидели еще два пассажира. Между тем, по отзывам очевидцев, «самокатка» Кулибина в гору шла быстрее, чем по ровной дороге!
Дело здесь в применении маховика, который, разогнавшись, за счет накопленной энергии помогал преодолевать подъемы и, кроме того, снижал скорость «самокатки» на спусках. Водитель, вращая педали, раскручивал маховик, расположенный под сиденьем, а уже от маховика движение посредством механической передачи шло на колеса.
Маховик – не единственный накопитель энергии, использованный Кулибиным в «самокатке». Он применил тут в качестве тормоза специальные пружины, могущие накапливать энергию экипажа при торможении. Пружины помещались в тормозном барабане, играющем одновременно и роль коробки передач. Можно только удивляться гению Кулибина, почти на полтора столетия опередившего техническую мысль своего времени.
В Политехническом музее в Москве демонстрируется прекрасная действующая модель «самокатки» Кулибина в масштабе 1:5. Измерениями на модели я определил диаметр маховика в полную величину – он был около 1,5 метра, масса обода – 50 килограммов.
Считается, что человек, спокойно работая ногами, способен развить мощность около одной десятой лошадиной силы. Учитывая потери энергии маховика на трение о воздух и в подшипниках, я получил максимальную скорость, до которой может быть разогнан такой маховик, – 500 оборотов в минуту. Это очень низкая скорость для маховиков, но и при этом маховик Кулибина мог накопить около 800 джоулей энергии на килограмм массы, а всего – около 40 килоджоулей. Полагая, что масса экипажа была примерно 400 килограммов и соответственно сила сопротивления его движению по дороге – около 0,1 килоньютона, я определил путь, который могла пройти «самокатка» только на энергии маховика, – он оказался равен 400 метрам. Для преодоления встретившегося подъема «самокатке» достаточно было энергии самого маховика. А ведь при этом человек тоже не переставал работать педалями. Поэтому и казалось, что «самокатка» в гору шла быстрее, чем по равнине.
«Самокатка» Кулибина – прекрасный пример удачного использования маховика на транспорте, даже соотношение масс маховика и экипажа словно взято из современных книг!
Следующим применил маховик на транспорте другой наш соотечественник, инженер-поручик З. Шуберский.
В июле 1862 года в газете «Современная летопись» появилась такая заметка: «Два года назад в «Журнале путей сообщения» было заявлено об остроумном изобретении г-на Шуберского. Маховоз господина Шуберского, состоящий из системы маховых колес, предполагается к употреблению при всходе и спуске поездов по крутым скатам железных дорог. Умеряя быстроту движения при спуске с горы и употребляя сбереженную скорость при подъеме в гору, снаряд г-на Шуберского дает возможность проводить железные дороги со значительными склонами, уменьшая количество земляных работ и искусственных сооружений. Опыты над моделью маховоза оказались удовлетворительными, и изобретатель намеревается приступить к опытам в большом виде».
Я разыскал этот журнал и обнаружил подробное описание, расчеты и чертежи первого рельсового маховичного экипажа.
Три пары огромных железных маховиков посажены своими осями на ободы ведущих колес маховоза. Таким образом, вращение передается от ведущих колес на оси маховиков при спуске и, напротив, от осей маховиков ведущим колесам на подъеме только силой трения. Это самый простой и в данном случае наиболее подходящий способ передачи механического движения при высокой мощности и минимальных потерях энергии в опорах и на приводе. Кроме того, оси маховиков помещены в подшипниках и могут быть приподняты в случае торможения маховоза, чтобы не гасить при этом энергию маховиков. Последние в это время будут вращаться вхолостую.
Маховоз предполагалось цеплять позади паровоза, перед вагонами. Предусматривалось также снабдить маховиками паровоз и тендер. Размеры и масса маховиков весьма внушительны: каждый маховик диаметром 12 футов (3,6 м) и около 300 пудов (5 тонн) массой. Сам маховоз имеет массу 2330 пудов (40 тонн). Окружная скорость обода маховика связана со скоростью поезда и превышает ее в 12 раз. Кинетическая энергия, накапливаемая маховиками при этом, – около 2,3 миллиона пудо-футов (114 МДж).
Набирая кинетическую энергию на спусках или на ровном пути посредством «подталкивания» паровозом, маховоз должен был помогать поезду преодолевать крутые подъемы. Допустим, сам паровоз может преодолеть уклон только в 5 тысячных (подъем на 5 метров за 1 километр пути), а с маховозом он взойдет по подъему, в три раза более крутому, на высоту 135 футов (40 м), из которых 2/3 подъема будут преодолены за счет энергии маховоза и лишь 1/3 самим паровозом.
Шуберский предлагал использовать свое изобретение и для поездок «малыми поездами» на небольшие расстояния. Например, если прицепить к маховозу один пассажирский вагон массой 625 пудов (10 тонн), то этот поезд при разгоне его паровозом до скорости 28 верст в час (30 км/ч) на участке в 2 версты (2,1 км) пройдет за счет энергии маховиков внушительное расстояние – 55 верст (60 км) до остановки.
Если не доводить поезд до полной остановки и использовать, скажем, 75 процентов всей кинетической энергии, пробег сократится до 40 верст (43 км). Если же удвоить скорость поезда, то есть довести ее до 60 километров в час, вполне нормальной и даже низкой скорости для поездов, то пробег учетверится и составит уже 170 километров. Это весьма неплохо для поезда, движущегося за счет аккумулированной энергии!
Тщательный расчет, проведенный Шуберским, показал, что расход топлива с применением маховоза может быть снижен не менее чем на 25 процентов. Цифра, удивительно близкая к современным данным по маховичным рельсовым машинам, например, к такому же показателю у поезда с маховиками в нью-йоркском метро.
Свое описание маховоза Шуберский заканчивает словами, полными патриотизма: «Вполне я был бы счастлив, если бы мое изобретение обратило бы на себя внимание и могло послужить в пользу скорейшего развития отечественных железных дорог».
Потом маховиком заинтересовался американец Дж. Хауэлл. Правда, машину, на которую он его поставил, лишь условно можно назвать транспортом, так как это была торпеда, доставляющая взрывчатку к атакуемому кораблю. Маховик торпеды Хауэлла, разработанный в 1883 году, раскручивался паровой машиной за 1 минуту, после чего торпеда проходила около 1,5 километра с достаточно высокой скоростью – 55 километров в час. Маховик имел диаметр 45 сантиметров, массу 160 килограммов, скорость вращения его достигала 21 тысячи оборотов в минуту. Накопленная в маховике энергия составляла 10 мегаджоулей. Вращение от маховика с помощью конических шестерен передавалось на гребной винт с регулируемым углом наклона лопастей.
Если отвлечься от военного назначения торпеды, думаю, что в «мирном» варианте это была бы неплохая прогулочная быстроходная лодка без мотора, горючего, дыма и треска. Ее с успехом можно было бы использовать в черте города, на переправах, в местах отдыха людей. А раскручивать маховик не обязательно паровой машиной – с этим еще лучше справился бы электромотор.
В 1905 году англичанину Ф. Ланчестеру был выдан патент на изобретение, имеющее отношение к «...применению для механического движения мотора в форме тяжелого, быстровращающегося маховика, с целью приведения в движение моторного экипажа». Колеса экипажа Ланчестера соединялись приводом с маховиком или даже с системой из двух маховиков, вращающихся в противоположные стороны. Раскручивали маховики на остановках, где для этого были установлены стационарные двигатели. Ланчестер предусмотрел также разгон маховиков с помощью встроенного электродвигателя, который подключался на остановках к электрической сети.
В 1918 году русский изобретатель-самоучка А.Г. Уфимцев получил патент на маховичный накопитель – инерционный аккумулятор. А в 20-х годах он предложил использовать маховик для приведения в движение трамвая в своем родном городе Курске. Из-за разрухи в народном хозяйстве в те годы проект этот не был осуществлен.
Эпоха современного применения маховиков на транспорте начинается с разработки маховичных тележек для внутризаводских перевозок. В цехах ездить на грузовиках нельзя, мешают выхлопные газы, а электрокары невелики, грузоподъемность их мала. Вот умельцы на заводах и стали делать грузовые тележки с приводом от маховика. В Казани на компрессорном заводе до сих пор работает такая маховичная тележка грузоподъемностью до 10 тонн.
Еще важнее для промышленности оказались маховичные локомотивы, работающие в шахтах и рудниках. Атмосфера некоторых подземных выработок настолько насыщена взрывоопасными газами, что там становится невозможным использование обычных электровозов. Только один вид транспорта – маховичный – дает полную гарантию от искры или пламени, могущих вызвать взрыв.
И вот у нас в стране начался выпуск маховичных локомотивов, способных проходить с одной раскрутки маховика массой 1,5 тонны несколько километров, таща за собой состав вагонеток. Раскручивается маховик от сжатого воздуха, а с колесами локомотива его соединяет механическая передача, полностью гарантирующая от искр.
«Транспортом пороховых складов» прозвали маховичный транспорт за его пожаро- и взрывобезопасность.
И, наконец, применение маховиков на автомобилях началось с изготовления швейцарской фирмой «Эрликон» маховоза-гиробуса, опытный образец которого был построен в 1945 году. Уже в 1953 году фирма выпустила серию гиробусов, добросовестно проработавших 20 лет в самой Швейцарии, в Бельгии и в Африке.
Масса гиробуса была 11 тонн, а с пассажирами – 16 тонн. Его тяговые электродвигатели питались от генератора, приводимого во вращение маховиком. Маховик, выкованный из прочной стали, имел диаметр 1,5 метра и массу 1,5 тонны. Скорость его вращения составляла в начале движения 3000 оборотов в минуту, а по прошествии 4...6 километров пути снижалась вдвое. Из накапливаемых маховиком 33 мегаджоулей энергии использовалось 75 процентов.
Подзаряжался маховик на остановках через 1,2...2 километра в течение 40 секунд. Для этого штанги гиробуса поднимались до соприкосновения с контактами на высокой мачте. Генератор начинал работать в режиме двигателя и разгонял маховик. Хотя КПД гиробуса был невысок – всего 50 процентов, он показал себя очень экономичным транспортом. Расход энергии составлял 1,5 кВт·ч, или 5,5 мегаджоуля на километр пробега. Для сравнения напомню, что автобус того же класса, что и гиробус, расходует на пробег 1 километра не менее 400 граммов бензина, что в переводе на механическую работу в три раза больше – 17 мегаджоулей.
Гиробус совершенно не загрязнял окружающую среду. А ведь даже электроаккумулятор выделяет в атмосферу водород и пары, которые содержат в себе такие вредные вещества, как свинец, кадмий, хлор и другие. Гиробус не требовал, как троллейбус, для своего движения контактных проводов, уродующих вид города и создающих опасность поражения током. Он ехал совершенно бесшумно, его штанги не терлись и не искрили при движении.
И все же, несмотря на все эти преимущества, гиробус проиграл соревнование с дорогим, дымящим и шумным автобусом. Это произошло в основном потому, что гиробус приходилось часто подзаряжать. Он мог пройти на энергии маховика в идеальном случае 8 километров, а в действительности – около 6 километров, после чего останавливался. Для городского транспорта это слишком мало.
Я прикинул, что маховику гиробуса, чтобы стать «энергетической капсулой», нужно «похудеть» раз в десять и во столько же раз увеличить количество накапливаемой энергии.
Иначе говоря, требуется повысить плотность энергии маховика ни мало ни много – в сто раз! Это будет, конечно, меньше, чем у «метеорига на привязи», но гораздо больше, чем у самых совершенных аккумуляторов.
Итак, задача ясна. Если мне удастся «закачать» в маховик столько энергии, то проблему создания «энергетической капсулы» можно считать решенной.
Вот она, моя «капсула»!
Глава вторая, в которой «капсула» обретает не только плоть, но и душу...
Быстрее крутить нельзя
Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в сто раз – дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.
Швейцарский гиробус проходил до остановки шесть километров. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не двадцать километров, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?
Чтобы пройти впятеро больший путь, гиробус должен запасать во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить число оборотов примерно в 2,24 раза. То есть нужно разогнать маховик гиробуса до шести-семи тысяч оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что нет.
Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.
До четырех-пяти тысяч оборотов в минуту маховик внешне ничем не меняется – если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при оборотах, близких к пяти тысячам в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?
Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать»
маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.
Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может быть достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика массой по полтонны (а маховики почему-то чаще всего разрываются на три части) способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел вверх, а уже падая вниз, еще раз пробил крышу.
Маховик гиробуса в момент разрыва обладал бы энергией, которой хватило бы для пробега машины километров на двенадцать – восемнадцать. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на одну треть, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые четыре – шесть километров, о которых упоминалось выше.
Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее его разрыв, если он приключится, и тем больший запас прочности понадобится, чтобы уберечь маховик от разрыва.
«А что, если изменить форму маховика? – подумал я. – Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»
Оказывается, специалисты уже пытались это сделать. По сравнению с кругом древнего гончара и впрямь получалось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, – диски «равной прочности». Как это ни удивительно, но энергии они могли накопить раза в два больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.
Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и от прочности! Математическое доказательство этого я дал позже, когда уже окончил институт, а пока по мере своих возможностей высчитал, что если с изменением формы с самой худшей на самую лучшую прибавка энергии незначительна, максимум в три раза, то, повышая прочность, можно во столько же раз увеличивать плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.
Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому и вынуждены были маховики играть вторую, если не третью, роль среди накопителей энергии...
Одним выстрелом – двух зайцев
Решение я нашел не сразу. Долго старался всякими хитроумными способами увеличить прочность маховика – ничего не выходило. Попытки уменьшить последствия разрыва надрезанием обода на мелкие части – чтобы осколки были поменьше размером, тоже ни к чему не привели. Я вспомнил, что так же надрезали корпуса гранат-лимонок, но безопаснее они от этого не стали. Напротив, осколков прибавилось, и граната увеличила убойную силу.
Помогли мне здесь, как это ни странно, занятия гиревым спортом. Чтобы укрепить кисти рук, мы клали на два крючка ломик и медленно наворачивали на него тоненький стальной тросик с тяжелой гирей на конце. Свитый из проволок, этот тросик никогда не рвался сразу, а всегда постепенно, проволочка за проволочкой. Разумеется, о высокой прочности стальных проволок и тросов из них я знал и раньше, но до сих пор это как-то не увязывалось в сознании с массивным маховиком. И вот теперь, когда заброшенный на антресоли тросик случайно попался мне на глаза, я чуть было не воскликнул: «Эврика!» – и решил: маховик нужно делать из троса!
Я взял кусок троса в метр длиной, зажал его посередине в кольцевом зажиме – оправке, а саму оправку посадил на вал. Получился хоть и необычный, но маховик. Такие маховики в дальнейшем были названы супермаховиками.
В чем преимущества супермаховика? Если вращать вал с оправкой и тросом в ней, то трос, как и обычный маховик, накопит кинетическую энергию. При этом частицы троса, стремясь двигаться по инерции, будут все сильнее растягивать его, пытаясь разорвать. Наибольшая нагрузка тут приходится на середину троса. При увеличении скорости сверх меры трос начнет рваться, но рваться по частям, по одной проволочке. А тоненькие проволочки не способны пробить даже легкий защитный кожух. Стало быть, супермаховик из троса разрывается безопасно!
Однако это еще не все. Дело в том, что огромная прочность проволочек троса дает возможность супермаховику накапливать значительные количества энергии. Если прочность стальной струны выше прочности монолитного стального куска раз в пять, то супермаховик из струны при прочих равных условиях накопит энергии во столько же раз больше, чем обычный маховик с той же массой. Но ведь условия-то совсем не одинаковые!
Обычный литой маховик, разорвавшись, способен наделать много разрушений, а разрыв супермаховика снаружи даже и не заметишь. Выходит, супермаховику не нужен слишком большой запас прочности, и его следует уменьшить примерно вдвое по сравнению с маховиком. То есть получается, что супермаховик из троса может накопить в каждом килограмме массы в десять раз больше энергии, чем обычный стальной маховик. И при этом его разрыв безвреден для окружающих! Эти качества, присущие именно супермаховику, – высокая плотность энергии и безопасность разрыва – приблизили его к «энергетической капсуле».
Несмотря на то, что я был необычайно рад моей находке, идея вращать трос «поперек себя» мне не очень нравилась. Такой трос, помещенный в кожух, оставит там много свободного места, он будет бесцельно взбаламучивать воздух, как пропеллер, затрачивая на это энергию. Да и разорваться подобный супермаховик может, в принципе, целиком – оторвавшаяся проволочка не мешает свободно рваться другим. А это совсем нежелательно.
Поэтому после недолгих раздумий я решил навивать проволоку, из которой изготовляется трос, на барабан, как на катушку. Но вскоре мне в голову пришла мысль, что вместо проволочек можно взять такую же по прочности тонкую стальную ленту, чтобы намотка была плотнее, а для надежности склеить витки ленты между собой. Получится супермаховик, напоминающий по виду обычный маховик, только накапливающий гораздо больше энергии. Я назвал его ободковым, так как вся лента здесь должна была навиваться по ободу барабана.
Разрыв ободкового супермаховика обещал быть уже совершенно безопасным. При превышении скорости вращения первой разорвется наиболее нагруженная внешняя лента, которая тотчас же прижмется к корпусу и автоматически затормозит супермаховик. Оторванную ленту можно будет приклеить снова – и супермаховик опять готов к работе. От первоначальной идеи вращающегося троса я без колебаний отказался.
Наверное, я не мог бы так сразу отбросить идею тросового супермаховика, если бы знал тогда, что американские специалисты будут свыше десяти лет разрабатывать такие маховики. Правда, спустя годы они, убедившись в неудобстве подобных конструкций, тоже перешли к ободковым супермаховикам.
Но идея идеей, а пробовать надо – вдруг что-нибудь не так? Начались мои хождения по свалкам вторсырья, химическим и хозяйственным магазинам, по знакомым, работающим на производстве. Наконец я стал обладателем ящика с поржавевшей стальной лентой, банки резинового клея и бутылки бензина. На заводе друзья выточили мне несколько дисков из текстолита, на которые я намеревался навивать ленту. И вот в одно из воскресений я упросил товарища помочь мне изготовить супермаховики.
Мы очищали поверхность ленты бензином, мазали клеем и навивали на диски. Лента часто соскакивала, резала нам руки, падала на пол, так что приходилось всякий раз вновь стирать с нее пыль, но работу мы все равно закончили. Перед нами лежали три супермаховика диаметром по 30 сантиметров. Внешние слои ленты мы закрепили тонкой стальной проволокой и нагрели супермаховики в духовке, чтобы клей окончательно высох.
Я рассчитывал испытать мои супермаховики на разрыв с помощью двигателя от пылесоса. Пылесосный двигатель очень скоростной, вал его делает 15...18 тысяч оборотов в минуту.
Надев супермаховик на вал двигателя и закрепив его там, я зажал двигатель в тисках и включил в сеть. Начался разгон супермаховика. Вибрации то нарастали – казалось, что диск уже срывается с оси, – то снова стихали. Скорость вращения увеличивалась, о чем можно было судить по изменяющемуся реву двигателя. Но вот рев стал постоянным по тону, и я понял, что разгон прекратился, а супермаховик остался цел. Дальше двигатель не «тянул» – супермаховик гнал воздух, как вентилятор, от него дуло ветром, вся мощность двигателя уходила на создание этого ветра. Я выключил двигатель. Супермаховик долго, наверное с час, еще вращался, проходя через те же полосы вибраций, что и при разгоне.
Когда впоследствии мне удалось все-таки разорвать мои супермаховики на специальном разгонном стенде, я узнал, что эти кустарные изделия в несколько раз превзошли по плотности энергии маховики гиробуса фирмы «Эрликон» – лучшие по тем временам.
Но самое главное – разрыв, как и ожидалось, не доставлял никаких неприятностей. Разорвавшийся виток ленты не пробивал даже тоненького, как консервная банка, кожуха. Я приклеивал такой виток клеем, обвивал слоем проволоки, и супермаховик снова готов к работе.
А результат был немалый – разрыв наступал при 30 000 оборотах в минуту, что соответствовало почти пятистам метрам в секунду скорости обода или плотности энергии около 0,1 мегаджоуля на килограмм массы. Супермаховик «ручной работы» одним махом обогнал по важнейшему показателю свинцово-кислотные аккумуляторы, совершенствование которых идет уже более ста лет!
Впрочем, это еще не означало, что найдена желанная «энергетическая капсула». Надо было доказать, что супермаховик может стать недосягаемым для других аккумуляторов по плотности энергии так же, как для них недосягаем по плотности мощности обычный маховик. Ведь раскрученный маховик способен развить любую, самую высокую мощность, если его достаточно сильно тормозить. И разогнаться он может практически мгновенно, поглощая при этом мощность хоть целой электростанции. Ни один из накопителей не в состоянии воспринимать и выделять энергию при такой высокой мощности, как маховик.
Далеко ли предел!
Действительно, где «потолок» повышения плотности энергии супермаховиков? Только ли прочность материала определяет его? Например, тяжелый чугун и легкий дюралюминий почти одинаково прочны. Из какого же материала выгоднее делать маховик, из легкого или тяжелого?
Как ни парадоксально, но расчеты показали, что из легкого. Оказывается, не просто прочность, а удельная прочность, то есть отношение прочности к удельному весу материала, определяет плотность энергии маховика.
Максимум, что мы можем «выжать» из стали, даже самой совершенной, – это 30...50 килоджоулей на килограмм, дальше маховик разорвется. А маховик из более легких титана, дюралюминия, магниевых сплавов при той же массе накопит до разрыва в полтора раза больше энергии. Неплохим материалом для маховиков являются пластмассы, особенно усиленные стеклонитью, так называемые стеклопластики. Тяжелые же материалы практически не годятся для маховиков. Медный маховик не накопит и десятой доли энергии стального, а свинцовый – и сотой доли энергии титанового или дюралевого маховика.
Раньше мне показалось бы абсурдным изготовление маховиков из дерева или бумаги. Теперь я узнал, что маховики из дерева, фанеры, бумаги, склеенной в несколько слоев, могут накопить больше энергии, чем такой же по массе стальной, и значительно дешевле его.
Например, плотность энергии маховиков из бамбука почти в десять раз выше, чем у стального, и достигает 0,3 мегаджоуля на килограмм. Приблизительно вдвое хуже, но все-таки очень высокие показатели у маховиков из березы, сосны, ели. Плохо только, что объем их слишком велик – дерево очень легко. Объем маховиков с одним и тем же запасом энергии бывает равным лишь при одинаковой их прочности. Выходит, маховики из бамбука, дюраля и чугуна, имеющие одну и ту же прочность, при равном запасе накопленной энергии одинаковы и по объему. Однако дюралевый маховик в 3 раза, а бамбуковый в 10 раз легче, чем чугунный. Это подтвердили как расчеты, так и испытания.
Совершенной неожиданностью для меня были данные, которые я вычитал о таких, казалось бы, хрупких материалах, как стекло и горный хрусталь. Оказывается, специально закаленное стекло, как и лучшая проволока, выдерживает 3 кН/мм2, а хрусталь и даже кварц еще прочнее – 10 кН/мм2. И это при втрое меньшей плотности, чем у стали. В результате маховик из плавленого и закаленного кварца способен накопить в килограмме массы до 5 мегаджоулей энергии, или в 150 раз больше, чем стальной маховик! То есть он уже вполне может стать «капсулой». Автомобилю массой в одну тонну для прохождения ста километров будет достаточно пятикилограммового супермаховика из кварца.
К сожалению, кварц слишком дорог, а разрыв его, как и стекла, опасен. Осколков тут, правда, не образуется, маховик мгновенно разлетается в пыль, но весь и сразу. Это хуже, чем взрыв такого же количества тротила, во всяком случае, энергии при разрыве маховика выделится больше.
А что, если монолитные стекло и кварц заменить волокнами, тончайшими нитями? Прочность у стеклянных и кварцевых волокон гораздо выше, чем у монолита. Например, тонкие волоконца из кварца во время испытаний показали прочность в 3...4 раза большую, чем у литого кварца, и в десять раз большую, чем у стальной проволоки. Супермаховик, навитый из такого волокна, даже с запасом прочности обеспечит плотность энергии в 5 мегаджоулей на килограмм.
Продолжая поиск, я выяснил, что необычайной прочностью обладают волокна из углерода. Да, да, из обычного угля, графита и даже алмаза, который по химическому составу – тот же углерод. И насколько алмаз прочнее мягкого графита, настолько же волокно алмазной структуры прочнее графитового. А ведь графит в виде волокна имеет ту же прочность, что и стальная проволока, при впятеро меньшей плотности! Маховик, навитый из графитового волокна, в 20...30 раз превзойдет стальной по плотности энергии, а навитый из алмазного волокна приобретет фантастическую энергоемкость – 15 мегаджоулей на килограмм!
Но пока цена такого материала тоже фантастическая, нить из него получить очень трудно – на сегодняшний день волоконца имеют длину всего в несколько микрон. Обнадеживает, однако, тот факт, что лет десять назад и графитовое волокно стоило весьма дорого, а теперь, когда его производство отлажено, из него делают даже лыжные палки. Поэтому можно надеяться, что и сверхпрочные волокна из алмаза скоро станут дешевыми, как уже подешевели, например, искусственно получаемые алмазы. Запасов же углерода, кварца, стекла в мире хоть отбавляй.
Итак, двадцать килограммов супермаховика для пятисоткилометрового пробега автомобиля! Это отличный результат для «капсулы». Но, как оказалось, прочностные возможности материалов еще далеко не исчерпаны.
Профессор А.В. Степанов из Ленинграда предсказал и рассчитал новые «сверхматериалы», как будто специально созданные для супермаховиков. По его мнению, можно так плотно «упаковать» атомы в кристалле углерода – в алмазе, что полученный «сверхалмаз» выдержит небывалую нагрузку – 400 кН/мм2. Но еще больших результатов следует ожидать от «плотноупакованного»... азота. Этот азот будет уже не газом, а металлом, с плотностью большей, чем у платины, – 25 т/м3. Предполагается, что он должен выдерживать нагрузку 2800 кН/мм2. Маховик из «плотноупакованного» азота достигнет плотности энергии, которую даже трудно вообразить, – 60 мегаджоулей на килограмм.
Иначе говоря, небольшой маховичок из «сверхматериала» – диаметром 30 сантиметров и толщиной 6 сантиметров – сможет обеспечить пробег автомобиля на расстояние 30 тысяч километров без подзарядки!
Это даже не «капсула», а «сверхкапсула», такой, пожалуй, пока и не надо. К тому же сверхматериалов, необходимых для ее создания, еще нет, хотя специалисты утверждают, что они появятся в ближайшем будущем. Во всяком случае, меня очень радовало то, что перспектив у супермаховиков стать настоящей «энергетической капсулой» сколько угодно и я не зря связал свои надежды с этим видом накопителя энергии.
Но пора было, что называется, спуститься с небес на землю и посмотреть, на что я со своей идеей «энергетической капсулы» могу рассчитывать сегодня. И вот к каким выводам я в результате пришел.
Имеющихся в промышленности материалов – стальных лент, проволок, стеклянных и кварцевых волокон, волокон из графита, бора, специального дешевого волокна – кевлара, идущего, кстати, на покрышки для автомобилей, – вполне достаточно для создания супермаховичных накопителей с плотностью энергии большей, чем у электроаккумуляторов. По другим полезным показателям – плотности мощности, КПД, долговечности, стоимости – супермаховики тоже намного превзойдут эти аккумуляторы.
«Заряжать» супермаховики можно с помощью обычного электродвигателя. Если требуется быстрая «зарядка», супермаховик нужно соединить с валом большого стационарного двигателя мощностью в сотни киловатт. Такой двигатель разгонит его за считанные минуты или даже секунды. А если время «зарядки» не регламентировано, то сгодится маломощный зарядный двигатель, который можно возить с собой на автомобиле и при необходимости подключать к электросети посредством шнура с вилкой, как мы включаем, например, пылесос.
То есть и по срокам «зарядки» супермаховики гораздо совершеннее электроаккумуляторов, которые, как известно, заряжаются часами. Кроме того, супермаховики воспринимают «зарядку» полнее, чем электроаккумуляторы, и стоимость накопленной в них энергии будет самая низкая по сравнению со всеми другими типами накопителей.
Теперь я уже мог со спокойной совестью работать над супермаховиками дальше, не опасаясь, что мои усилия пропадут впустую, а идея «энергетической капсулы» будет расценена как нереальная или преждевременная.
Чтобы выявить слабые и сильные стороны супермаховиков, я решил построить и испытать несколько образцов из ленты и проволоки. Казалось бы, взял ленту или проволоку, намотал на катушку – и готов супермаховик. Но не тут-то было. При создании супермаховиков я столкнулся со многими трудностями – расслоением ленточного витого обода, спаданием обода с центра – барабана, вибрациями при работе, закреплением последнего витка и другими. Какие хитроумные головоломки приходилось тут решать, я хочу показать на следующем примере.
Когда делаешь супермаховик из проволоки, навиваешь ее на катушку, один конец проволоки оказывается внутри, а другой обязательно выходит наружу. Это естественно – ведь им заканчивается намотка. Однако для супермаховика такой конец очень нежелателен – его негде крепить. Если скрутить конец с предыдущим витком, он этот виток размотает или порвет – каждый миллиграмм массы проволоки при вращении создает огромные силы, разрывающие ее. Самое лучшее было бы «подсунуть» наружный конец под первые витки, но как это сделать? Сначала такое казалось мне невозможным. И все-таки выход нашелся.
Я закрепил оба конца проволоки на катушке, состоящей из двух отдельных половинок на одном валу, и начал крутить эти половинки в разные стороны. Проволока стала навиваться на них как обычно, с той лишь разницей, что когда процесс намотки подошел к концу, оба свободных конца проволоки остались внутри, а последний внешний виток пришелся как раз посередине обмотки. Потом я пропитал обмотку супермаховика клеем и высушил.
Этот способ изготовления супермаховиков и другие найденные мною способы, а также ряд предложений по конструкциям супермаховиков были отмечены авторскими свидетельствами. Изобретения мои оказались более ранними, чем похожие на них зарубежные, авторы которых сделали их совершенно самостоятельно, ничего не зная о моих находках. Просто диву даешься, как одинаково могут думать люди в разных концах света!
Как отобрать энергию?
Шло время, в каждом килограмме моего самодельного супермаховика уже накапливалось больше энергии, чем в других аккумуляторах. И вот однажды я задумался: несомненно, что в будущем в супермаховиках удастся накапливать столько энергии, сколько ее, например, в летящем с космической скоростью метеорите, однако сможем ли мы «отбирать» эту энергию? Какие трудности здесь встретятся?
Первая же мысль была о подшипниках. Выдержат ли они столь высокие скорости вращения супермаховика? Существуют ли вообще подшипники, способные работать при таких скоростях?
Прежде всего я решил подсчитать скорости, которые могут быть у супермаховика на автомобиле. Для простоты взял супермаховик диаметром в один метр, что вполне годится и для автомобиля, и для автобуса, и для многих других машин.
Каждый материал для супермаховика способен выдержать лишь определенную окружную скорость (скорость на самом отдаленном от центра краю обода). При этом, оказывается, никакого значения не имеет диаметр супермаховика – так распорядилась природа. А прочность материала повышается пропорционально квадрату скорости точно так же, как возрастает и энергия.
Например, стальная лента выдерживала во время испытаний скорость 500 метров в секунду, а кевлар – 1000 метров; Отсюда и энергии в кевларовом супермаховике накапливалось в 4 раза больше, чем в таком же по массе ленточном. Если бы кевлар имел ту же плотность, что и сталь, то напряжения в нем при скорости 1000 метров в секунду были бы соответственно вчетверо больше напряжений в ленте, и супермаховик мог бы разрушиться. Но в действительности с ним ничего не случится. Ведь кевлар почти в пять раз легче стали, и удельная прочность у него значительно выше.
Итак, какие же обороты будут у стального и кевларового маховиков? Если поделить окружную скорость на радиус супермаховика, мы получим его угловую скорость, а по ней уже просто отыскать число оборотов как в секунду, так и в минуту. Ленточный супермаховик будет вращаться со скоростью 1000 радиан в секунду, что соответствует 160 оборотам в секунду, или 9 559 оборотам в минуту. Вращение кевларового супермаховика будет вдвое быстрее – около 19 тысяч оборотов в минуту.
Но ведь такую угловую скорость развивает двигатель даже обычного бытового пылесоса, и его подшипники прекрасно справляются с этим. Скорость вращения мощных газовых турбин бывает свыше 30 тысяч оборотов в минуту, а там есть подшипники, работающие в худших условиях, чем в супермаховике. В турбинах на подшипники действуют нагрев, сильные вибрации и другие отрицательные факторы, которые в супермаховике отсутствуют.
Сейчас есть подшипники, выдерживающие 100...150 и более тысяч оборотов в минуту, этого вполне хватило бы и для супермаховика из алмазного волокна. Если к тому же один подшипник вставить внутрь другого, то можно добиться вдвое большей скорости вращения, так как на каждый из них придется только половина общей скорости.
Хорошо бы, конечно, обойтись совсем без подшипников, ведь на их вращение с нагрузкой, тяжелым супермаховиком, тоже идет энергия, а она нам так дорога...
А что, если закрепить над супермаховиком кольцеобразный магнит, который будет воспринимать его силу тяжести? Правда, в этом случае супермаховик должен быть стальной. Чтобы получить тот же эффект с кевларовым, стеклянным и графитовым маховиками, надо вмонтировать в них подобный же магнит, взаимодействующий с первым. И лучше сделать так, чтобы магниты работали не на притяжение, а на отталкивание, тогда супермаховик сам «вывесится» на определенной высоте и в таком положении будет вращаться.
Нетрудно убедиться в этом, если взять два кольцевых магнита, например от старых динамиков из репродуктора, и надеть их на деревянную или любую другую немагнитную палочку одноименными полюсами друг к другу. Верхний магнит повиснет над нижним, и потребуется большая сила, чтобы сдвинуть их вместе.
Но все-таки и в такой магнитной подвеске нужны подшипники. Во-первых, супермаховик при тряске и толчках может «продавить» магнитную подвеску, достаточно мягкую. Во-вторых, постоянными магнитами нельзя полностью вывесить какое-нибудь тело: супермаховик здесь разгружен только от силы тяжести, а не от боковых сил. Подшипники будут лишь фиксировать подвеску, без нагрузки – ее ведь «нейтрализуют» магниты, – и энергии на их вращение потребуется немного.
Мои магнитные подвески были признаны изобретениями, и на них мне выдали авторские свидетельства.
Надо сказать, эти подвески производили огромное впечатление на тех, кто их видел. Одна из таких подвесок поддерживала супермаховик массой 7 килограммов и диаметром около полуметра. В ней были использованы 10 магнитов, каждый массой около 30 граммов и диаметром 3 сантиметра, и миниатюрные фиксирующие подшипники размером не больше таблетки. Показывая своим гостям устройство подвески, я как бы нечаянно подталкивал супермаховик, и он начинал медленно, со скоростью диска электропроигрывателя вращаться. Но если после выключения проигрывателя его диск через считанные секунды останавливается, мой супермаховик продолжал крутиться в течение всего разговора, и, казалось, скорость его не уменьшалась. Гости уже из принципа ждали час, другой, но супермаховик и не думал останавливаться, «Неужели это вечный двигатель?» – в изумлении спрашивали меня. «Подождите до утра, – отвечал я, – может, и остановится».
Судя по расчетам, такой супермаховик, раскрученный до скорости 30 тысяч оборотов в минуту, крутился бы до остановки многие месяцы! Да и этот срок можно было бы увеличить, если бы не фиксирующие подшипники, которые, несмотря на малый размер и ничтожные потери энергии в них, все же «подтормаживали» супермаховик.
А как вывесить супермаховик совсем без механического контакта в подшипниках? Надо проверить и такую возможность. Для этого подойдут большие кольца из диамагнетиков, – то есть из материалов, отталкивающихся от магнитов, например, из графита, – которые не дадут супермаховику «сваливаться» вбок. Кольца эти будут выполнять роль фиксирующих подшипников. Правда, они займут много места. Но если сам супермаховик изготовлен из графита?.. Над этим стоит подумать!
Чтобы «помочь» постоянным магнитам, можно установить еще и электромагниты. Как только супермаховик задумает «свалиться» вбок, это уловит специальный датчик и включит соответствующий электромагнит, который выправит положение. Такая система называется «следящей». С ее помощью советские ученые добились скорости вращения полностью вывешенного шарика в 800 тысяч оборотов в секунду или почти 50 миллионов оборотов в минуту!
Подвесив подобным образом маховик со значительной массой получим столь малое сопротивление, при котором разогнанный маховик будет вращаться до остановки десятки лет! Однако для этого в камере, где вращается маховик, необходимо создать высокий вакуум, иначе так называемые вентиляционные потери – потери из-за трения маховика о воздух – «съедят» весь запас энергии за считанные часы.
Интересно, что при вращении маховика в вакууме можно практически вообще избавиться от трения в опорах. Нужно подшипники маховика, изготовленные из вполне обычных материалов – графита, полиэтилена или на молибденовой основе, облучать потоком электронов. Это открытие принадлежит советским ученым, которые назвали его «эффектом аномально низкого трения», сокращенно – АНТ. Для облучения подшипников супермаховика достаточно миниатюрной «электронной пушки», наподобие электронно-лучевой трубки (кинескопа) телевизора, только в сотни раз менее сложной, крупной и мощной.
Тут возникает вопрос: а как же отбирать накопленную энергию через герметичную стенку вакуумной камеры? Ведь вал сквозь нее не пропустишь – никакие сальники и манжеты, как бы плотно они ни обхватывали вал, не смогут помешать доступу воздуха в камеру?
И все-таки есть способ вывести вал маховика наружу. Но для этого придется использовать не обычные уплотняющие устройства в виде сальников или резиновых манжет, а специальные, изготовленные из магнитной жидкости.
Магнитная жидкость – это коллоидный раствор тончайшего порошка феррита в керосине, масле, воде и любой другой жидкости.
Частицы феррита здесь настолько малы, что, выложив их цепочкой, мы на одном миллиметре длины уместили бы их сто тысяч штук!
Иначе и нельзя: если частички будут больше, раствор быстро осядет. Так, например, случается с крупномолотым кофе, размешанным в воде. Растворимый же кофе имеет очень тонкий помол и в воде превращается в стойкий коллоидный раствор. Поэтому и частицы феррита в магнитной жидкости, как правило, не крупнее частиц растворимого кофе.
Для того, чтобы надежно уплотнить стальной вал, нужно надеть на него кольцеобразный магнит, а зазор между магнитом и валом заполнить магнитной жидкостью. Теперь выведенный через стенку вакуумной камеры вал будет вращаться, не нарушая ее герметичности.
Я даже сделал модель для демонстрации действия магнитного уплотнения. В надутый прозрачный резиновый шар вставил заводную игрушку, ключ к которой через описанное магнитное уплотнение выходил из шара наружу. Сколько я ни заводил игрушку – уплотнение не пропускало воздуха.
Магнитные уплотнения необходимы, когда требуется именно механическое вращение вала супермаховика. Если же нам нужно получить от супермаховика электроэнергию, то дело проще. Устанавливаем внутри камеры вращения вместе с супермаховиком электрическую машину – генератор, а провода выводим наружу через герметические изоляторы. Подавая ток по проводам в машину, которая в этом случае будет работать в режиме электродвигателя, разгоняем супермаховик. Потом переводим машину в режим генератора, и она начинает выдавать нам электрический ток, отбирая энергию от супермаховика. Такой способ отбора энергии, пожалуй, наилучший. Ведь ток можно использовать для каких угодно целей – и для освещения, и для питания приборов, и для движения электромобилей.
Чтобы получить энергию в виде потока жидкости – например, масла под давлением для приведения в движение механизмов в шахтах, где электрическая искра способна вызвать пожар, – вместо электромашины в камеру вращения нужно поместить гидромашину. Она так же, как и электромашина, может работать в режиме двигателя, разгоняя супермаховик, и в режиме генератора – насосном режиме, качая масло энергией супермаховика. Разумеется, из камеры с супермаховиком будут выходить уже не провода, а трубочки, по которым потечет масло. Энергией потока масла можно приводить в действие гидродвигатели, гидроцилиндры, заряжать гидроаккумуляторы, о которых речь шла в самом начале книги.
Есть еще способ вывести энергию супермаховика наружу – посредством вращения его корпуса.
Допустим, нам понадобилось пробурить скважину, взять пробу грунта или проделать другую механическую работу на дне океана, на глубине около 5 километров, где давление воды огромно. В таких условиях очень трудно воспользоваться традиционными источниками энергии – двигателями и электроаккумуляторами. Действительно, двигателю нужен воздух, который, однако, с поверхности по трубке не подведешь – ее раздавит. Электрический кабель тоже не выдержит давления – будет пробой. Маховик же выделяет энергию непосредственно в виде вращения вала, без кабелей и труб. Он-то нас и выручит.
Конечно, помещать вращающийся маховик прямо в воду бессмысленно – его сразу же остановит сопротивление воды. Целесообразнее поступить следующим образом. Заключим маховик или, если нам надо много энергии, супермаховик в герметичную вакуумную камеру, лучше сферическую, чтобы она могла противостоять давлению. При этом закрепим его не в центре камеры, а сместив вниз. Супермаховик массой в несколько сот килограммов будет висеть, как маятник, стремящийся под воздействием гравитации сохранить свое наиболее низкое положение. Дальше все просто. Свяжем супермаховик понижающей механической передачей с камерой, и он станет вращать ее, только гораздо медленнее, чем вращается сам. Это очень напоминает бег белки в клетке-колесе. Белка выступает там как бы в роли супермаховика, а колесо – та же вращающаяся камера. Теперь мы можем отбирать энергию не от самого супермаховика, а от вращающейся, правда с меньшей скоростью, камеры.
К этой камере легко приделать любой инструмент – ковши, бур, фрезу – в общем, все, что надо. Когда камера встретит сопротивление (например, бур упрется в твердую породу), супермаховик начнет вращать ее с большим усилием. Но даже если бур и в этом случае не подастся, никакой поломки или аварии не произойдет. Супермаховик просто «заходит» по кругу внутри камеры, пока не уменьшат нагрузку.
Заряжаться – раскручиваться супермаховик сможет от вращения своей же камеры. Достаточно прикрепить прямо к ней, как к валу корабля, гребной винт, и она быстро закрутится во время спуска на дно за счет собственной тяжести и тяжести супермаховика.
Это супермаховичное «беличье колесо» и ряд других придуманных как мной самим, так и вместе с товарищами систем вывода энергии из вакуумной камеры были признаны изобретениями. Еще один шаг к «капсуле» сделан!
Что же удалось достичь? В супермаховике можно накопить огромную энергию, эту энергию несложно надолго «законсервировать», используя вакуумную камеру, магнитные подвески, быстроходные подшипники. Накопленная энергия выводится из вакуумной камеры, причем выводится в любом удобном для нас виде: в виде вращения вала или корпуса, в виде электрического тока, напора жидкости (масла). Но супермаховик, отдавая свою кинетическую энергию, постепенно останавливается. Отразится ли снижение скорости на работе «энергетической капсулы»?
Возможен ли «мягкий» маховик
Что касается супермаховиков, от которых энергия отбирается электрическим или гидравлическим путем, то тут все ясно. Электро-и гидроприводы можно регулировать «мягко», так, что «потребитель» и не догадается об изменении скорости супермаховика.
Особенно успешно регулируется гидропривод. Гидронасос состоит из нескольких поршеньков, приводимых в движение шайбой, к которой они шарнирно прикреплены. Шайба обычно наклонена таким образом, что за один ее оборот поршенек проделывает вместе с ней некоторый путь вверх-вниз. Уменьшив угол наклона шайбы, поставив ее почти параллельно поршенькам, ход поршеньков можно сделать едва заметным, с увеличением угла наклона увеличится и ход поршеньков. Такая регулировка позволяет менять скорость вращения вала от нуля до самой высокой.
Предположим, на автомобиле установлены обычный гидродвигатель и супермаховик с гидравлическим приводом, причем на супермаховике – регулируемый насос. Как будет производиться движение машины?
Сначала шайба насоса чуть наклоняется, в гидродвигатель подается немного масла, и он тихонько «трогает» автомобиль. По мере разгона шайба наклоняется все больше и больше, повышая мощность насоса, а стало быть, и скорость автомобиля. Если супермаховик только что «заряжен» и скорость вращения его высока, то можно ограничиться малым наклоном шайбы; если же скорость вращения основательно упала, то надо увеличить угол наклона, и скорость автомобиля не изменится. Конечно, когда шайба дойдет до предельного положения, регулировка будет уже неэффективна.
Обычно допускается снижение скорости вращения супермаховика вдвое, например с 12 до 6 тысяч оборотов в минуту. Но не следует думать, что и энергии его мы используем тоже половину. Так как при снижении скорости вдвое энергия супермаховика уменьшается в 22, то есть в четыре раза, соответственно мы получаем от него 3/4, или 75 процентов, всей энергии. Вот какой «глубокий» отбор полезной энергии можно произвести от маховичных накопителей.
Точно так же обстоит дело и с электроприводом, только роль шайбы здесь играет так называемое импульсное управление. Оно позволяет отбирать ток от генератора и передавать его двигателю не постоянно, а импульсами, различными по величине и по частоте. Пока супермаховик вращается быстро, импульсы могут быть меньше и реже, а если он сбавил обороты, импульсы должны быть больше и чаще.
Чтобы понять суть импульсного управления, можно взять любой электромотор, хотя бы домашний вентилятор, и включать его в сеть через каждую секунду с такой же продолжительностью включения. Лопасти вентилятора будут вращаться почти равномерно, однако с меньшей скоростью, чем если бы прибор был включен постоянно. Попробуем увеличивать паузы между включениями – вентилятор закрутится медленнее, станем их уменьшать – быстрее. При импульсном управлении импульсы тока подаются автоматически. Такое управление тоже обеспечивает 75-процентный отбор энергии от супермаховика.
Но как ни удобны электро- и гидроприводы, они все-таки сложны. КПД гидропривода – около 0,8...0,9, КПД электропривода поменьше. Их масса и стоимость велики. А главное – эти приводы не позволяют отобрать у маховика всю энергию, довести его до остановки. Почему же нельзя получить от маховика больше энергии?
Дело в том, что всякий привод хорошо работает только на какой-то одной скорости, такой, на которую он рассчитан. Если супермаховик сильно снижает свою скорость, то электрогенератор, соединенный с ним, дает слабый ток, а гидронасос – невысокое давление масла. Привод становится маломощным, КПД его падает. Вот потому-то оставшаяся в супермаховике четверть всей накопленной энергии, как правило, не используется совсем.
Сказанное относится к разгону автомобиля. А что происходит при его торможении? Ведь чтобы не потерять при этом кинетическую энергию автомобиля, нам надо перекачать ее в супермаховик.
Для привода безразлично, передавать ли энергию от супермаховика автомобилю или от автомобиля супермаховику. Поэтому на схемах обычно изображают автомобиль в виде супермаховика на одном валу привода, а супермаховик-накопитель – на втором. Так вот, электро- или гидропривод сумеет отобрать от автомобиля, как и от супермаховика, те же 75 процентов энергии, снизив его скорость лишь вдвое. А куда годится такое торможение, после которого автомобиль все еще движется, хотя и с половинной скоростью?!
И я стал придумывать привод, который смог бы «перекачивать» энергию автомобиля в супермаховик и наоборот практически полностью, – своего рода «энергетический насос», способный отбирать энергию от супермаховика до самой его остановки. Причем КПД этого привода-насоса должен быть выше, чем у любого другого типа привода.
Что и говорить, задача была не из легких. Но неожиданно мне повезло. Однажды, когда я сосредоточенно думал о приводе, мой взгляд упал на... магнитофон. Вот этот магнитофон, вернее, его» вращающиеся кассеты и натолкнули меня на правильное решение.
Для проверки мелькнувшей у меня мысли я изготовил специальные кассеты, где намотка начиналась почти от самого вала, и, поставив их на магнитофон, включил его в режиме перемотки ленты. В то время как кассета, на которой ленты было немного, тронулась с места, другая, полная кассета почти не повернулась. Затем, по мере намотки ленты на первую кассету, вторая разгонялась все больше и больше. Наконец, когда первая кассета наполнилась, ее скорость вращения стала едва заметной. Зато вторая кассета, с которой лента смоталась, вращалась очень быстро, совсем как разогнанный супермаховик.
Идея была найдена, далее следовала техническая работа. Не вдаваясь в подробности изготовления привода, скажу лишь, что ленту для него я взял такую же, какую использовал в супермаховиках, – стальную, толщиной 0,1 миллиметра и шириной 40 миллиметров.
«Магнитофонный» привод позволял передавать энергию от автомобиля супермаховику или, что одно и то же, от одного супермаховика другому почти без потерь – 99 процентов! При торможении автомобиля неподвижный супермаховик разгонялся, воспринимая без малого всю энергию автомобиля, доводя его практически до остановки, а затем разгонял неподвижный автомобиль примерно до той же скорости, что была у него до торможения. Сам супермаховик при этом останавливался.
Свое новое изобретение я назвал ленточным вариатором.
Хотя мой вариатор получился значительно легче, меньше и экономичнее любого другого привода для разгона и торможения машин, он работал как бы по заданной программе, всегда одинаково. Регулировать его надо было заранее, до пуска. А ведь автомобиль приходится тормозить и разгонять каждый раз по-другому, в зависимости от ситуации на дороге. Вот для метропоезда, движению которого почти ничего не мешает, ленточный вариатор, наверное, подошел бы. Для автомобиля же лучше поискать что-нибудь иное.
Чтобы полнее использовать энергию маховика, регулировать скорость его вращения без какого-либо привода, можно менять расположение массы в маховике, то есть либо отодвигать ее от оси вращения, либо приближать к ней. Всем известно, например, что в танцах на льду, чтобы завращаться быстрее, спортсмену надо сгруппироваться, «собрать» руки и плечи поближе к туловищу. Для замедления вращения ему следует, наоборот, раскинуть руки пошире, отодвинув тем самым часть массы подальше от оси вращения. Так и в маховике: если изготовить его части раздвижными, то при сдвигании масс к центру скорость вращения будет увеличиваться, а при раздвигании – уменьшаться. И это все при постоянном запасе энергии в маховике.
Задача создания «раздвижных» маховиков уже давно привлекает изобретателей. Однако большинство энтузиастов избирают неверный путь. Об этом можно судить хотя бы по тому, что на высоких оборотах их маховики отказываются работать.
Многие устройства – почти точное повторение раздвижного патрона токарного станка. Только грузы в них раздвигаются где винтами, где рычагами. Я уже говорил, что при вращении маховика его частицы, стремясь двигаться по инерции, то есть прямолинейно, а не по кругу, создают настолько большие усилия, что рвут монолитную сталь. А здесь все эти гигантские силы приходятся на винты, рычажки и другие «хлипкие» механизмы. Где им устоять? Поэтому и рвутся «раздвижные» маховики, не достигнув и десятой доли энергоемкости даже обычных маховиков. Авторы будто специально позаботились о размерах и массе осколков, заранее разрезав монолитный маховик на части и скрепив их непрочными связями.
Не лучше показали себя заливные и насыпные маховики. Такие маховики изготовляют полыми, в виде бочки, и для увеличения инертности заполняют водой, ртутью или даже дробью. Когда же нужно уменьшить инертность, заполнитель либо изымают из маховика, либо тем или иным способом «стягивают» к центру.
Но изобретатели не учитывают, что жидкость или дробь сами не несут своей нагрузки. Все усилия, связанные со стремлением «вырваться» из кругового движения, заполнитель перекладывает на тонкую стенку полого маховика. Жидкость, а тем более дробь при вращении создает в маховике давление в тысячи атмосфер (сотни мегапаскалей), которое без труда взрывает тонкостенный сосуд – маховик. Попытки сделать стенку толстой не приносят успеха – слишком мало остается места для жидкости и сосуд превращается в заурядный монолитный маховик.
Другой порок «заливных» маховиков заключается в очень малом КПД. При заливке жидкости на ходу почти половина кинетической энергии маховика переходит в тепло, так как жидкость тормозит маховик, а при изъятии жидкости из маховика теряется вся ее кинетическая энергия – ведь жидкость нужно как бы остановить, сделать неподвижной. Как же быть с изъятием жидкости, если она будет иметь колоссальное давление и сверхзвуковую скорость? Тогда ее никаким насосом не выкачаешь!
Вот если бы жидкость, дробь и прочие заполнители сами несли свою нагрузку да еще были очень прочны... А почему бы не применить в качестве заполнителя стальную ленту, ту, что идет на намотку супермаховика? Пусть она наматывается на вал в центре ленточного же супермаховика, понижая его инертность, и, наоборот, сматывается с вала, прижимается к внутренней поверхности ленточного обода, повышая инертность супермаховика. К тому же лента заполнитель сама несет свою нагрузку.
Вышел обычный ленточный супермаховик, в котором лента, однако, была склеена только на поверхности обода. Отходя от обода в виде двух или нескольких ответвлений, она дальше наматывалась уже без клея. Когда намотка достигла вала супермаховика, я закрепил на нем концы ленты. Сам супермаховик был посажен на этот вал свободно в подшипниках. Стоило теперь остановить вал – лента начинала навиваться на него, уменьшая инертность супермаховика. Скорость его вращения при этом увеличивалась.
Картина получалась парадоксальная – супермаховик никто не разгоняет, он предоставлен самому себе, и все же он разгоняется! И будет разгоняться до тех пор, пока вся энергия, накопленная в супермаховике, не перейдет в тонкий внешний слой и не разорвет его!
Это явление напоминает эффект кнута. При ударе об пол вся кинетическая энергия длинного кнута постепенно переходит в его кончик, поскольку центральные части, прикоснувшись в полу, останавливаются. Сосредоточившись в самом кончике, кинетическая энергия так сильно разгоняет его, что мы слышим резкий взрывообразный звук, а кончик кнута при этом нередко отрывается.
Практическая польза от саморазгоняющегося супермаховика очевидна – время от времени подразгоняя маховик его же энергией, мы обеспечиваем наивыгоднейшие условия работы привода, ведь супермаховик до выделения всей своей энергии вращается с постоянной скоростью. А чтобы отпущенный вал не раскручивался в обратную сторону, его надо связать с супермаховиком храповой муфтой, допускающей вращение только в одну сторону.
Соединив вал подобного маховика с машиной мы получим «мягкость» рабочей характеристики, ценнейшую для большинства машин. В чем выражается эта «мягкость»? При торможении вала обычного маховика или двигателя он не замедлится – таково свойство маховиков и многих других двигателей. Если мы затормозим вал слишком сильно, то либо он сломается, либо двигатель заглохнет. Рабочую характеристику в этом случае называют жесткой. Если же мы попытаемся остановить таким образом вал «мягкого» супермаховика, то он сперва подастся, замедлится. Потом мы почувствуем, что вал как бы набирает силу, – на него навиваются все новые и новые витки ленты, диаметр намотки растет, – и мы уже не в силах удержать его – вал прокрутится. Чуть отпустив вал, мы тем самым ослабим нагрузку, и вал раскрутится быстрее супермаховика, передавая ему лишние витки ленты.
«Мягким» супермаховиком можно производить, например, плавные торможения и разгоны машин. Он способен работать даже в режиме «часовой пружины», только в тысячи раз более энергоемкой. Правда, «заводить» такую пружину посложнее, чем обычную.
Мои конструкции «самонесущих» маховиков переменной инертности тоже были признаны изобретениями.
Пока что резервы супермаховиков далеко не израсходованы. Но это не означает, что их еще рано использовать. Уже сегодня супермаховик может дать огромную экономию энергии и горючего, повысить производительность машин, предотвратить загрязнение атмосферы, спасти от аварий.
«Капсулу» – в упряжку!
Глава третья, и последняя, в которой автор, размышляя о будущем «энергетической капсулы», все более укрепляется в своем мнении, что она уже начала приносить людям немалую пользу...
Небольшая экскурсия в молодость
Как быстро пролетело время! Еще пятнадцатилетним юношей я решил искать «энергетическую капсулу», а сегодня мне уже сорок. Прошло четверть века, двадцать пять лет непрерывной работы, но проблема «энергетической капсулы», пожалуй, только сейчас встала передо мной во всей своей грандиозности.
Я не изменил своей мечте – все, что сделано и достигнуто мною, так или иначе связано с ней. К двадцати годам – первые изобретения, научные статьи, модели, к двадцати пяти – степень кандидата наук, первые опытные машины с маховиками, идея супермаховика, к тридцати пяти – докторская степень, звание профессора, испытания новых машин, накопителей. К сорока годам – новые книги, новые изобретения, новые машины. У меня появилось много молодых и талантливых коллег-маховичников, страстно увлеченных своим делом. И это самое приятное.
Не я один мечтал об «энергетической капсуле», не для меня одного она стала целью в жизни. Многое из того, о чем я думал, о чем писал, волновало и других людей, в других странах, причем приблизительно в одно и то же время. Вначале это поражало меня, особенно когда я узнал, что американские ученые почти одновременно со мной пришли к такой же идее супермаховика. Но потом, по мере того как число сообщений о похожих разработках и экспериментах росло, я удивлялся все меньше и даже не огорчался – напротив, это давало мне уверенность, что если одни и те же решения приходят к разным людям, живущим в разных полушариях Земли, то, наверное, эти решения правильны.
И все же понадобились годы опытов, доказательств, выступлений для того, чтобы преодолеть предубеждение скептиков – чтобы в супермаховики поверили.
Помню, когда в 1965 году в журнале «Изобретатель и рационализатор» я рассказал о моих новых изобретениях – супермаховиках из лент, проволок и сверхпрочных волокон, вращающихся в вакууме, да еще с магнитной подвеской, многие говорили, что это фантастика.
Я называл количество энергии, которое сможет накопить такой супермаховик, «серьезные» люди предлагали убрать два нуля сзади.
Мне доказывали, что маховик прокрутится несколько минут и остановится. Приходилось показывать маховик с магнитной подвеской, где за час терялось всего несколько оборотов в минуту.
Спорили, что, разорвавшись, маховик пробивает метровые стены, я демонстрировал фотографию разорванного супермаховика в целеньком кожухе, который был не чем иным, как большой жестяной банкой из-под килек.
Утверждали, что для ленточной передачи маховичного автобуса потребуется лента с рессору толщиной, тогда я клал на стол тоненькую стальную ленточку, из которой делают лезвия для безопасных бритв. Она была отрезана от той самой передачи...
Меньше всего, оказывается, убеждают цифры, формулы, математические доказательства. А вот опыты, фотографии, киносъемки действуют неотразимо, хотя они и не всегда бывают достоверны.
Как-то раз нам нужно было показать одному большому начальнику маховичную машину. Перед его приходом машина прекрасно работала, но только мы стали ее демонстрировать – отказала. Как потом выяснилось, в корпусе маховика открутилась гайка и заклинила маховик. Испытали без маховика. Походил, походил начальник вокруг нашей машины, да и подписал все, что нам требовалось. Математическим же формулам, которые не подвержены так называемому «визит-эффекту», которые не ломаются и не выходят из строя, он не верил. Не подписывал.
Сейчас уже почти все верят в супермаховики. Во много раз увеличилось число научных трудов, посвященных им, значительно возросло количество связанных с ними изобретений. Специалисты считают супермаховики одними из наиболее перспективных среди всех известных ныне накопителей энергии и прочат им блестящее будущее.
Американские ученые подсчитали, что внедрение супермаховиков в американскую технику позволит сэкономить миллиарды долларов в год. Думается, не меньший выигрыш может быть и у нас в стране.
Но главное, что получит человек от внедрения «энергетической капсулы», – это возможность действительно по-хозяйски, бережно использовать Ее Величество Энергию – бесценный дар природы, синоним которого сама Жизнь.
Работает супермаховик
Есть ли уже сегодня машины, на которых установлены «энергетические капсулы» – супермаховики? Да, есть. Может быть, эти машины и не выпускаются пока сериями, как «Жигули» или «Москвичи», но они существуют. Работают, ездят, удивляя всех, кто их видит.
Самым типичным автомобилем, питающимся энергией, накопленной в супермаховике, является, пожалуй, маленький двухместный махомобиль американского ученого-маховичника Дэвида Рабенхорста. Попробуем на его примере разобраться в устройстве махомобилей.
Супермаховик махомобиля соединен с валом разгонного электродвигателя, причем электродвигатель помещен в воздушной среде, чтобы он лучше охлаждался, а супермаховик – в вакууме, чтобы не было лишних потерь энергии. Вал уплотнен при выходе его из вакуумной камеры магнитным уплотнением. В принципе можно даже разрезать вал и вывести вращение специальными магнитными муфтами.
Другой конец вала супермаховика соединен с гидронасосом обратимого типа, который может переходить и на режим работы гидродвигателя; о таких гидромашинах я уже говорил. Жидкость – масло от гидронасоса через распределитель, или, что одно и то же, через механизм управления махомобилем, подается в четыре маленькие гидромашины, встроенные в колеса махомобиля. Таким образом, все колеса махомобиля ведущие, и это очень хорошо – махомобиль быстро разгоняется, движется устойчиво, без заносов.
В махомобиле нет таких привычных автомобильных частей, как сцепление, коробка передач, карданный вал, дифференциал, полуоси, электроаккумуляторы, стартер и генератор; отсутствуют топливный бак и вся топливная система, система охлаждения с вентилятором, глушитель и, наконец, сам двигатель внутреннего сгорания. Махомобиль бесшумен, он не выделяет никаких газов, приводится в движение практически мгновенно. Известно, что супермаховик может развивать громадные мощности, так необходимые автомобилям для быстрого разгона.
Зарядка энергией, или разгон супермаховика, производится включением разгонного электродвигателя в сеть. Время зарядки – 20...25 минут, это в десятки раз быстрее, чем тот же процесс у электромобилей. Для приведения махомобиля в движение повышают наклоном шайбы производительность насоса, и масло начинает поступать в гидродвигатели колес, разгоняя машину. Больше наклон шайбы – больше скорость.
Махомобиль рассчитан на крейсерскую, то есть постоянную скорость 90 километров в час, причем кратковременно эта скорость значительно повышается, например для обгонов. Он может развить скорость 100 километров в час с места за 15 секунд, что не под силу не только электромобилю, но и многим легковым автомобилям.
Путь пробега махомобиля с одной зарядки пока около 60 километров, но его планируется увеличить в три раза. Это при массе супермаховика 100 килограммов, скорости его вращения от 23 700 до 11 900 оборотов в минуту и запасе энергии 24 мегаджоуля. Удельная энергия супермаховика тогда составит 240 килоджоулей на килограмм массы. Правда, уже испытаны супермаховики с удельной энергией в 650 и даже 700 килоджоулей на килограмм, а это значит, что и путь пробега увеличится почти до 500 километров!
У махомобиля рекордно малая по сравнению с электро- и. автомобилями стоимость пробега – 0,6 доллара, или около 40 копеек, на 100 километров пути. Я думаю, вряд ли какой водитель откажется от такой машины!
Посмотрим теперь, каковы мощности и массы махомобиля Рабенхорста. Разгонный электродвигатель мощностью 30...40 киловатт – 18,4 килограмма, гидронасос мощностью 37,5 киловатта – 11,4 килограмма, четыре гидродвигателя колес такой же общей мощностью – 10 килограммов, приборы управления – 9 килограммов, шасси – 175 килограммов, кузов – 270 килограммов, 2 пассажира – 150 килограммов. Вместе с супермаховиком, его корпусом и подвеской выходит чуть более 600 килограммов.
Махомобиль не боится длительных стоянок – маховик может вращаться до 40 суток, или почти полтора месяца, без остановки. Это тоже не предел, потому что так называемые кольцевые супермаховики, о которых речь будет еще впереди, рассчитываются на более чем годичный выбег, а американский 45-килограммовый маховик в магнитном подвесе имеет столь малые потери, что способен крутиться до остановки свыше 10 лет!
Подвеска супермаховика в махомобиле тоже магнитная, только она практичнее, чем «абсолютный» магнитный подвес, здесь есть и подшипники, воспринимающие усилия при тряске или гироскопическую нагрузку при повороте оси супермаховика.
На сегодняшний день в разных странах уже построено много супермаховичных автомобилей и автобусов. Некоторые из них, как и швейцарский гиробус, оснащены штангами и могут двигаться, как троллейбус. Но при этом раскручивается и супермаховик, который потом питает током тяговые электродвигатели. Такие машины, названные гиротроллейбусами, не тратят время, подобно гиробусу, на раскрутку супермаховика, так как «зарядка» идет на ходу. Затем, после разгона супермаховика, гиротроллейбусы едут на накопленной энергии до конечной остановки через весь город.
Оставим наземный транспорт и спустимся под землю – в метро. И там маховик нашел себе применение. Поезда метро ходят очень быстро, развивая скорость до 80...90 километров в час. А останавливаться им приходится часто. Вот и получается, что не успеет поезд накопить в себе достаточную кинетическую энергию, как ее тут же надо «гасить» в тормозах.
Пробовали отдавать эту энергию в сеть в виде электроэнергии, но выходило не очень хорошо – скачки тока в сети мешали нормально работать остальным поездам. Тогда инженеры решили накапливать кинетическую энергию поезда при торможении в маховиках, близких по своим показателям к супермаховикам, а затем использовать ее при разгоне. Выяснилось, что два маховика массой по 250 килограммов каждый могут накопить при торможении кинетическую энергию одного вагона метро, а потом разогнать такой же вагон почти до первоначальной скорости или, в случае аварии сети, «тянуть» на себе целых два вагона до следующей станции. Маховичный метропоезд испытали в Нью-Йорке, где он экономил около 30 процентов всей затрачиваемой обычно на движение поезда электроэнергии.
Существуют проекты использования супермаховиков в авиации. В одном из них для взлета сверхзвуковых самолетов предлагают применять маховичную катапульту. Если разогнать крупный маховик электродвигателем, а затем подключить его к лебедке, соединенной тросом с самолетом, то маховик за несколько секунд разовьет гигантскую мощность, в десятки раз превышающую мощность электродвигателя. За считанные секунды самолет разгонится до 400 километров в час и взлетит. При этом путь разгона будет не более 100...150 метров. Такой запуск очень надежен и экономичен.
Двойную пользу можно получить от установки супермаховиков на легких тихоходных самолетах, у которых собственный двигатель развивает мощность не более 90 – 120 киловатт. Супермаховик массой всего 13 килограммов выдаст мощность 115 киловатт в течение 20 секунд, а массой 57 килограммов – 225 киловатт в течение 60 секунд – время, вполне достаточное для взлета. Кроме того, раскрученный супермаховик обеспечит безопасность экипажа в случае остановки мотора самолета. Энергии, накопленной в супермаховике, хватит для трехминутного полета самолета без мотора. Летчики успеют выбрать пригодную для посадки площадку и приземлиться.
Еще в 30-х годах в Шотландии был построен беспилотный маховичный вертолет. Разгоняли маховик на земле вместе с воздушным винтом, лопастям которого задавали нулевой угол атаки, чтобы разгон шел легче. Затем, раскрутив маховик, лопасти устанавливали под нужным углом, и машина взмывала в небо. Когда энергии в маховике оставалось уже мало, вертолет плавно опускался. Не правда ли, очень похоже на игрушечный вертолет, где разгон лопастей-маховиков производится пусковым шнурком?
А недавно создали такой же беспилотный вертолет, но с супермаховиками. Два легких кольцевых супермаховика диаметром 1,4 метра, вращающиеся в разные стороны, раскручивают воздушные винты, расположенные внутри колец супермаховиков. Кольца разгоняют до 4 тысяч оборотов в минуту на специальном базовом автомобиле, с которого вертолет стартует. Вертолет быстро поднимается на 100-метровую высоту, зависает там и, имея на борту фото- и телеаппаратуру, производит съемки или телепередачи. Подобный вертолет удобно использовать и для пожарных работ – его двигатель не заглохнет от дыма, а баки с горючим не загорятся, так как на этом вертолете нет ни двигателя, ни баков.
Если нужно попасть на борт вертолета, зависшего высоко над землей, или на какую-нибудь площадку на высоте 100 и более метров, лучше всего воспользоваться для этого маховичным подъемником, который позволяет поднять девять человек подряд, причем в 5 раз быстрее обычных моторных подъемников. Маховик подъемника разгоняется маленьким электродвигателем мощностью 1,5 киловатта до 28 тысяч оборотов в минуту.
Осуществить экстренный спуск с того же вертолета или из окна горящего высотного здания поможет маховичный лифт, в разработке которого довелось участвовать и мне. При пожарах нередко требуется срочно эвакуировать людей с верхних этажей дома, но в это время ток от здания, как правило, отключается и никакие подъемные механизмы не работают. Вот и придумали особое устройство для таких случаев.
Человек надевает специальный пояс с прикрепленной к нему лентой и прыгает вниз. Лента намотана на валу небольшого маховика или супермаховика, как в ленточном вариаторе, о котором речь шла выше. Сматываясь с вала, она разгоняет маховик, сначала медленно, затем все сильнее и сильнее. А человек, наоборот, приближаясь к земле, все больше и больше теряет скорость. И наконец мягко приземляется. Пояс с лентой сам поднимается вверх, за счет энергии маховика, раскрученного спускавшимся человеком. Так маховичный лифт может доставлять на землю одного за другим сколько угодно людей.
Поистине безграничные возможности открываются перед супермаховиками в космосе. В космическом вакууме у супермаховиков совершенно нет потерь на трение о воздух, а невесомость устраняет нагрузки на подшипники. В этом случае подшипники могут быть простыми «сухосмазывающимися» втулками.
К середине 80-х годов на французских спутниках связи предполагается использовать супермаховичные накопители энергии. Дело в том, что спутники связи, транслирующие на большие расстояния телефонные разговоры, телепрограммы и радиопередачи, питаются обычно не только от солнечных батарей. Приходится ставить на них и аккумуляторы энергии, которые дают ток, пока спутник загорожен от Солнца Землей и находится в тени. Однако время жизни электрохимических аккумуляторов невелико, они быстро выходят из строя, а из-за них прекращает существование весь спутник, который мог бы служить еще долго. Вот и пал выбор на супермаховики, которые очень долговечны. Их намечено поместить в магнитную подвеску и вращать со скоростью 40 тысяч оборотов в минуту. Плотность энергии супермаховиков для спутников связи будет примерно 0,1 мегаджоуля на килограмм массы.
Видимо, не обойтись без супермаховиков и в космических станциях, которые отправятся к далеким планетам, где почти нет солнечного света, дающего энергию для питания электронного оборудования станций. По мнению ученых, кратковременных включений пиропатронов будет вполне достаточно, чтобы с помощью газовой турбины так разогнать супермаховик, что его энергии надолго хватит для бесперебойной работы всех приборов.
В космосе супермаховики необходимы и для более прозаических дел – например, для ремонта станций, приведения в движение механизированного инструмента.
Допустим, космонавту нужно просверлить отверстие или завернуть гайку. Если он применит обыкновенные дрель и гайковерт, то реактивный момент, действующий на корпус ручного инструмента, закрутит в первую очередь самого космонавта. На Земле такое не случается благодаря силе тяжести и силе трения, а в условиях невесомости – закономерное явление.
Теперь проделаем следующий опыт. Возьмем самый простой детский волчок – юлу, укрепим на ее кончике сверло и, разогнав юлу, уберем руку. На первый взгляд как будто ничего удивительного – юла стоит на сверле и сама сверлит подставку. А ведь ни с какой из обычных дрелей подобный опыт не получится никогда. Даже у электрической дрели корпус тотчас завертится в противоположную сторону и порвет все провода.
Дело в том, что маховики и супермаховики обладают свойством «безреактивности», то есть при вращении они не оказывают реактивного воздействия на корпус и другие части устройства. Маховик связан с корпусом только подшипниками, которые, свободно проворачиваясь, не передают вращательных усилий.
Изготовленная мною маховичная дрель успешно сверлила любые доски, на которые я ее ставил. При этом она прекрасно выдерживала вертикальное направление благодаря еще одному свойству маховика, о котором уже упоминалось, – сохранять положение своей оси в пространстве.
Чтобы прочувствовать это свойство самому, лучше всего снять велосипедное колесо с вилки, взяться за концы оси и, держа колесо на вытянутых руках, попросить товарища раскрутить его. Если колесо раскручено как следует, никакие попытки повернуть ось ни к чему не приведут, несмотря даже на большие усилия. Колесо будет сопротивляться совсем как живое, стараясь вырваться из рук. Суть происходящего состоит в том, что ось вращающего маховика всякий раз стремится повернуться не туда, куда мы хотим, а под прямым углом к этому направлению.
Существует много способов узнать, куда будет поворачиваться ось маховика, но все они трудны и рассчитаны на специалистов. Поэтому я придумал для себя способ попроще, который назвал правилом колеса. Запомнить его ничего не стоит, достаточно иметь в кармане хотя бы одну монетку или колесико. Пустим монетку катиться по столу. Скоро она начнет падать набок, но что для нас особенно важно – она и сворачивать будет в ту же сторону. Теперь представим себе, что монетка – это вращающийся маховик. Допустим, мы пытаемся повернуть ось маховика в ту сторону, куда падает монета. Направление поворота монеты позволит нам определить, куда на самом деле будет сворачивать ось маховика. Вот и все правило.
Если никто не воздействует на ось маховика, то она безупречно сохраняет свое положение в пространстве. И это делает маховик незаменимым в навигационных приборах, которые сейчас устанавливают на всех кораблях, самолетах, ракетах. Называют такие приборы гироскопическими. Об этих интереснейших приборах написано много книжек, и я не буду подробно останавливаться здесь на них. А вот об автомобиле, в котором был применен как раз гироскопический эффект вращающегося маховика, думаю, сказать надо. Построил этот «гирокар» в 1914 году русский инженер П. Шиловский. Гирокар демонстрировался в Лондоне, где вызвал огромный интерес. Еще бы, машина Шиловского имела всего два колеса, как велосипед, однако она поддерживалась без каких-либо упоров в устойчивом состоянии, если даже все пассажиры садились на один ее бок. «Держал» машину раскрученный маховик благодаря гироскопическому эффекту.
Такие автомобили строились и позже. Возможно, что будущий махомобиль с супермаховичной «энергетической капсулой» спроектируют тоже двухколесным, чтобы использовать сразу оба замечательных свойства супермаховика – накапливать энергию и стабилизировать свое положение в пространстве.
«Капсула» разрастается...
Помните, мы говорили, что ученые разрабатывают проекты гигантских накопителей энергии на основе сверхпроводящих катушек – четверть километра диаметром и 50...70 метров высотой. И накапливать они должны десятки миллионов мегаджоулей энергии. Такие накопители нужны для аккумулирования энергии в период ночных недогрузок электростанций и для выделения ее при перегрузках в часы «пик». Наиболее чувствительны к недогрузкам и перегрузкам атомные электростанции, на долю которых с каждым годом будет приходиться все большая и большая часть электроэнергии, вырабатываемой как у нас в стране, так и во всем мире.
А пригодны ли супермаховики для накопления столь огромных количеств энергии и что они будут представлять собой в этом случае?
Применение маховичных накопителей на электростанциях тесно связано с именем известного русского изобретателя-самоучки А.Г. Уфимцева, которого Горький назвал «поэтом техники». Изобретения Уфимцева были необычайно широкого диапазона – от керосиновых ламп до самолетов. Тщательно проанализировав различные способы накопления энергии для ветроэлектростанций, в том числе «водородное» и тепловое аккумулирование, он пришел к выводу, что маховичный накопитель подходит для этих целей лучше других.
Первый маховичный аккумулятор был построен Уфимцевым в 1920 году из паровозного буфера. Маховик имел массу всего 30 килограммов и вращался в вакуумной камере с давлением около 5 гектопаскалей, делая 12 тысяч оборотов в минуту. Вывод мощности из камеры осуществлялся электрическим путем с помощью мотор-генератора.
Более крупную модель накопителя с маховиком массой 320 килограммов Уфимцев создал в 1924 году. После зарядки маховик обеспечивал равномерное горение нескольких электроламп по 1000 свечей в течение часа. Этот накопитель Уфимцев применил на ветроэлектростанции, которая существует в городе Курске и сейчас. Все куряне знают «ветряк Уфимцева» и гордятся им.
Маховик Уфимцева, как и сверхпроводящие накопители, аккумулировал электроэнергию в периоды ее избытка, во время порывов ветра, а затем равномерно распределял ее даже при полном отсутствии ветра. Крутиться он мог без подзарядки около 14 часов, однако, по словам старожилов, еще не было такого случая, чтобы ветер за это время ни разу не подул.
Идеи одаренного русского самоучки воплощены сегодня в любом маховичном накопителе для электростанций. Например, американский изобретатель Аллан Милнер разработал супермаховичный накопитель для солнечной электростанции. Известно, что солнечный свет, преобразованный в электроэнергию, может питать потребителей только днем, да и то в безоблачную погоду. А для того, чтобы использовать эту энергию ночью и в пасмурные дни, ее необходимо предварительно накапливать, и по возможности с минимальными потерями.
Накопитель Милнера состоит из супермаховика диаметром около метра, массой 2 тонны, вращающегося со скоростью 15 000 оборотов в минуту. Супермаховик подвешен на шести магнитных подшипниках, причем подвеска подстрахована обычными шарикоподшипниками. Разгон супермаховика и отбор энергии от него осуществляются мотор-генератором с постоянными магнитами, наиболее экономичным из известных машин подобного типа. Накопитель аккумулирует почти 150 мегаджоулей энергии, при этом потери составляют всего около 12 процентов. Плотность энергии такого накопителя в полтора раза превышает этот показатель у свинцово-кислотных аккумуляторов, а долговечность – во много раз.
Живут идеи Уфимцева и в проекте американского ученого Стивена Поста, предложившего для крупной электростанции гигантский супермаховик массой 200 тонн, диаметром 5 метров, вращающийся со скоростью 3500 оборотов в минуту. Такой супермаховик может накопить уже свыше 70 тысяч мегаджоулей энергии.
Супермаховик предполагается собрать из концентрических колец, навитых из кремниевого волокна и насаженных одно на другое с небольшим зазором, заполненным эластичным веществом, например резиной. Затем его заключат в герметичный корпус и соединят с валом мощного мотор-генератора. Сильная магнитная подвеска разгрузит подшипники от громадной тяжести супермаховика.
При внезапном разрыве этого супермаховика может выделиться энергия, равная взрыву тысячи тонн тола, но в момент разрыва корпусу передастся не более 1...2 процентов этой энергии. Остальная энергия будет выделяться достаточно медленно, вызывая лишь нагревание. На всякий случай супермаховик все же намечено установить под землей на безопасной глубине.
Большие перспективы сулят так называемые кольцевые супермаховики, о которых упоминалось выше. Единственной подвижной частью такого супермаховика является кольцо, навитое из высокопрочного волокна и помещенное в вакуумную камеру в форме бублика – тора. Поскольку кольцевой супермаховик лишен центра, в нем наиболее полно реализуются прочностные свойства волокон. Кольцо-супермаховик удерживается в камере в подвешенном состоянии с помощью магнитных опор, размещенных в нескольких местах по окружности. Само кольцо служит ротором мотор-генератора, а те места, в которых стоят обмотки магнитов, – статором. Это упрощает отбор энергии и зарядку супермаховика.
Если сравнивать кольцевой супермаховик со стальным маховиком из самой прочной стали, то выявится следующее. Плотность энергии кольцевого супермаховика в 2...3 раза больше и достигает 0,5 мегаджоуля на килограмм массы. Потери на вращение у него в 50...100 раз меньше, чем у стального, в связи с чем его свободное вращение достигает 750, а в перспективе – 12 тысяч часов. То есть такой супермаховик будет вращаться без остановки 500 суток, или полтора года!
Конструкция кольцевого накопителя привела меня с соавторами к идее «сверхнакопителя» энергии, который тоже был признан изобретением. Мы решили «переложить» с маховика на землю огромные разрывные напряжения, возникающие во вращающемся кольце, что позволит во много раз повысить плотность энергии накопителя. Но практически осуществить это будет возможно только в накопителях гигантских размеров.
В общих чертах идея «сверхнакопителя» такова. Кольцевой маховик в корпусе зарыт в землю горизонтально. На внешней поверхности кольца-супермаховика и на обращенной к ней внутренней поверхности корпуса одноименными полюсами друг к другу уложены сильные постоянные магниты. Взаимодействуя, они сжимают кольцо-супермаховик и растягивают корпус. От корпуса это растяжение передается фундаменту, в котором уложен корпус, а в результате и земле. Так как земля все равно существует и нам создавать ее заново не придется, то почему бы не использовать ее как гигантский и очень прочный корпус?
Может возникнуть вопрос: хватит ли сил у магнитов, чтобы противостоять колоссальному стремлению частей супермаховика удалиться от центра, а если и хватит, то не будет ли супермаховик «раздавлен» этими силами при остановке?
Все дело здесь, оказывается, в размерах, точнее, в диаметре супермаховика. Чем он больше, тем меньше магнитные силы. По мере разгона магниты супермаховика вследствие его растяжения все теснее поджимаются к соответствующим магнитам на корпусе, зазор между ними делается все меньше, а сила отталкивания – все больше. При остановке происходит обратное явление – магниты маховика отходят от корпуса, зазор увеличивается, и сила отталкивания падает. Поэтому маховик и не «раздавливается» в состоянии покоя.
У хороших постоянных магнитов при малых зазорах сила отталкивания может стократно превышать силу тяжести подвешиваемой массы. Постоянные магниты применяют для вывешивания над магнитными «рельсами» вагонов-магнитопланов. Подобные магнитопланы уже в недалеком будущем будут курсировать между городами со скоростями, доступными сейчас лишь самолетам.
Наш супермаховик-кольцо можно представить в виде как бы непрерывной кольцевой сцепки из таких «вагончиков», только гораздо меньших и состоящих почти из одних магнитов. Крутиться это «гибкое» кольцо будет в вакуумированной трубе, уложенной вокруг электростанции, завода или даже города. Если радиус кольца достигает, например, 16 километров (приблизительно столько же у кольцевой автострады вокруг Москвы), то с применением упомянутых постоянных магнитов скорость кольца-супермаховика составит 4 километра в секунду!
Плотность энергии нашего кольцевого гиганта должна быть 8 мегаджоулей на килограмм, что при сечении супермаховика всего 0,5 м2 даст полный запас энергии в накопителе – 2·1015 джоулей, или в 200 раз больше, чем в огромном сверхпроводящем накопителе, спроектированном французскими учеными. Этой энергии вполне хватило бы на освещение всех городов мира в течение вечера. А ведь объем французского накопителя вдвое превосходит объем нашего кольца.
Советские ученые из Свердловска разработали магниты, сила которых превышает в тысячу раз их силу тяжести. Если такие магниты поставить на наш сверхнакопитель, то скорость кольца супермаховика достигнет 12,6 километра в секунду и превысит даже вторую космическую скорость. Плотность энергии тогда будет 80 мегаджоулей на килограмм, а вся энергия накопителя составит 2·1016 джоулей. Это значительно больше избыточной или нереализуемой энергии электростанций всего мира. То есть использовать подобный накопитель полностью пока не удастся.
Можно пойти по пути уменьшения размеров накопителя и ограничиться запасом энергии в 1011 джоулей. Получится все-таки достаточно емкий накопитель, могущий обеспечить равномерную работу большой электростанции. При радиусе накопителя 0,5 километра сечение его подвижных магнитов будет всего 5x5 сантиметров. Такой накопитель в виде тонкой кольцевой трубки нетрудно расположить вокруг любой электростанции со всем ее хозяйством.
На позициях сотрудничества
Накопители энергии издавна помогают друг другу в работе. Если паровой и, скажем, дизельный двигатели ни к чему ставить на автомобиль одновременно, то аккумуляторы разных типов, наоборот целесообразно объединять.
Я уже говорил о том, как тепловые аккумуляторы помогают газовым отдавать больше энергии, – рассказывал про трамвай, который «заправлялся» и сжатым воздухом и кипятком, про свой микромобиль, где газовый аккумулятор – баллон с углекислотой работал вместе с тепловым аккумулятором – кастрюлей с расплавленной солью. А могут ли столь же успешно «сотрудничать» маховичные накопители, ну, хотя бы с электроаккумуляторами?
Оказывается, это сотрудничество одно из самых перспективных. Помните недостатки электромобиля? Он медленно разгоняется, не идет в гору, не может использовать кинетическую энергию, выделяемую при торможении. И всему виной невысокая плотность мощности электроаккумуляторов. По той же причине сами электроаккумуляторы не выносят быстрой зарядки. Они либо портятся, как, например, свинцово-кислотные, либо просто тратят «лишнюю» мощность на нагрев, как щелочные. Обыкновенные же маховики, не говоря об «энергетических капсулах» – супермаховиках, развивают какие угодно мощности, лишь бы выдержал привод, и, кроме того, позволяют сохранять кинетическую энергию транспорта. Соединив эти два накопителя на одном электромобиле, получаем большой выигрыш.
Электроаккумуляторы движут такой электромобиль только по ровным дорогам без уклонов, где не требуется торможений и разгонов, – иными словами, они обеспечивают ему крейсерскую скорость. А там, где нужны разгоны, обгоны, торможения, подъемы в гору, берется за дело супермаховик. По сравнению с обычным электромобилем здесь значительно повышается максимальная скорость, вдвое и больше сокращается время разгона, путь пробега увеличивается почти в два раза.
Так, у последней модели американского «гибридного» электромобиля с супермаховиком длина пробега без подзарядки составляет 112 километров против 63 километров у обычного электромобиля. Масса супермаховика с приводом для полуторатонного электромобиля – всего 75 килограммов. Выпуск этих электромобилей «второго поколения», оснащенных супермаховиками, предполагается начать примерно с 1985 года.
Неплохой «гибрид» получается из электроаккумуляторов и гидрогазовых накопителей. Последние также помогают использовать кинетическую энергию машины, значительно повышают путь пробега, скорость электромобилей, сокращают время их разгона.
На маленьких электромобилях эффективны даже резиновые накопители. Они просты и вполне применимы для накопления небольшой энергии. Я совсем было собрался поставить на самодельный электромобиль для накопления энергии торможения свой накопитель от резиномобиля. Но когда узнал, что подобное уже сделали английские инженеры, раздумал – не хотелось повторять чужой эксперимент.
Можно соединять вместе и аккумуляторы одного вида. В Японии, например, на электромобиле установили два типа электроаккумуляторов – стартерные и тяговые батареи. Первые, хорошо переносящие большие токи и мощности, работают на разгонах и обгонах, а вторые, имеющие более высокие КПД и плотность энергии, – на крейсерской скорости, питая электромобиль на ровной дороге без подъемов и разгонов. Конечно, стартерные электроаккумуляторы по плотности мощности не идут ни в какое сравнение с маховичными или гидрогазовыми накопителями, но и эта «гибридизация» в чем-то полезна.
Очень широко распространены «гибриды» статических и динамических накопителей одного и того же вида энергии. Всем известный маятник, в том числе и балансир с пружинкой в наручных часах, – «гибрид» статического аккумулятора механической энергии в виде поднятого груза или скрученной пружины и динамического аккумулятора той же энергии – маховика. «Перетекание» энергии из статического аккумулятора в динамический и обратно носит колебательный характер. Эти колебания необычайно точны по частоте, что и обусловило их применение в самых разнообразных часах.
Совершенно такой же эффект получаем, объединив статический и динамический электрические аккумуляторы – конденсатор и катушку индуктивности. Вместе они образуют так называемый колебательный контур. Электрический колебательный контур – аналог механического маятника, законы колебаний и того и другого одинаковы. Потери энергии в обоих случаях приводят к одному и тому же – колебания затухают, накопленная энергия переходит при этом в тепло.
И все-таки электрический и механический «маятники», несмотря на общность законов их колебаний, не могут заменить друг друга в технике. Представьте себе, что было бы, если бы в подвеске автомобиля вместо рессор ставили конденсаторы, в телевизоре вместо конденсаторов – рессоры, а катушки заменили маховиками!
Успешно сотрудничают не только накопители разных типов. «Союз» с накопителями очень полезен и для тепловых двигателей. Любой двигатель хорошо работает на какой-то одной скорости, в каком-то одном режиме. Тогда у него и расход горючего наименьший и выхлоп менее вредный. Изменение режима всегда ухудшает работу двигателя.
К сожалению, постоянные скорость и мощность двигателя чаще всего не нужны машине, на которой он установлен. Автомобилю, например, для разгона и подъема в гору требуется наибольшая мощность, при движении по ровной дороге без уклона на невысокой скорости – совсем небольшая, а на спусках и при торможении мощность им не только не потребляется, но даже выделяется. Сейчас эта мощность безвозвратно теряется, впустую нагревая тормоза и изнашивая их, хотя накопители энергии, в первую очередь маховичные и гидрогазовые, отлично могли бы сохранять ее и отдавать при разгонах машины.
Поэтому специалисты если и видят будущее тепловых двигателей на автомобилях, то непременно в союзе с накопителями. Двигателю предоставят возможность работать в наилучшем для него режиме, выдавать среднюю мощность, «подпитывая» накопитель. А остальное – дело накопителя. Он будет или расходовать энергию на разгонах, подъемах, обгонах, или накапливать ее при торможениях и на спусках. Такой режим работы позволит чуть ли не вдвое снизить расход горючего, во много раз уменьшить вредность выхлопа, получить немало всяких других преимуществ.
Предвижу твой вопрос, читатель: «Почему же сегодня, несмотря на очевидные выгоды, причем выгоды огромные, мы еще не встречаем «энергетические капсулы» повсюду?»
Прежде всего потому, что супермаховик – изобретение молодое: ему нет и 20 лет. А первые серьезные опыты, показавшие преимущества супермаховиков над другими накопителями, проведены только несколько лет назад. К слову сказать, преимущества дизеля над бензиновым двигателем или щелочного аккумулятора над кислотным доказаны уже около 100 лет назад, но до сих пор ни те ни другие не вытеснили своих менее перспективных собратьев.
Кроме того, супермаховичная «энергетическая капсула» – устройство весьма непростое. Для изготовления полномасштабного супермаховика для реально работающей машины необходимо сложное и дорогое оборудование. Пока это могут позволить себе лишь крупные авиационные и аэрокосмические предприятия. Но постепенно такие устройства, как говорится, «спускаются на землю» и начинают служить, может быть, на менее экзотичных, но гораздо более распространенных машинах. Над созданием супермаховиков сейчас усиленно работают научные и инженерные коллективы многих высокоразвитых государств мира, включая нашу страну.
Уже получены успешно работающие опытные образцы автомобилей, электромобилей, метропоездов, солнечных и ветровых электростанций, различных приборов и многих других устройств, использующих супермаховики. Но и при разработке этих опытных образцов встречается много трудностей, порой непредвиденных.
Мне с товарищами по работе довелось строить и испытывать автобусы как с гидрогазовыми, так и с маховичными накопителями в соединении с тепловым двигателем. Поскольку накопители здесь могли сохранять, или, иначе говоря, рекуперировать, кинетическую энергию машины, мы их называли просто рекуператорами.
Признаться, строя свой, первый у нас в стране маховичный рекуператор, мы изрядно намучились. Виноваты были где-то и мы сами, где-то производственники, сказывалось и полное отсутствие опыта в этом новом деле. Все перипетии нашей работы я описал в шуточном рассказе, опубликованном лет десять назад в одном популярном журнале. Вот этот рассказ.
Как мы делали рекуператор
(шуточный рассказ)
На стадии проектирования почти каждую ночь меня озаряли новые идеи, а утром конструктор с ужасом узнавал, что чертежи опять надо переделывать. Наконец документация была готова, ее размножили и отдали на завод, директор которого после долгих уговоров согласился изготовить «этакую маленькую модельку». Начальник производства, увидев чертежи, наотрез отказался от работы, заявив, что это не «моделька», а адская машина и что она «не пойдет», то есть не будет работать. С полчаса мы препирались, пока я не спросил, а почему, собственно, «не пойдет»?
– Был у нас тут один доцент, – ответил начальник производства, – мы ему сделали тоже инерционный, но не рекуператор, а грохот. Грохот не работал. Стало быть, и ваш не будет.
Я столь же убедительно возразил, что то был доцент, а я профессор и наша конструкция будет работать.
Короче говоря, машину все таки запустили в производство. И тут началось...
Прежде всего корпус, в котором должен был вращаться маховик, изготовили меньшего диаметра, чем сам маховик. Пробовали затолкнуть его туда прессом, но я категорически запротестовал. Тогда решили расточить корпус и обточить маховик. Обрабатывая корпус, начисто срезали ему один бок, а взявшись за маховик, сбили ему центровку – появилась статическая неуравновешенность. На корпус наварили длинную латку, после чего его ужасно искривило, и подшипники не полезли в гнезда. Маховик переточили и к статической добавили динамическую неуравновешенность. Я было совершенно потерял голову, но заводчане, воспользовавшись моей вынужденной командировкой, затолкнули все таки маховик в корпус на стотонном прессе и, выкрасив агрегат в голубой цвет, торжественно передали нам. Пришлось принять, хотя я и заметил им, что можно было не трудиться и не красить, во всяком случае, поверхности трения. Но радушные заводчане ответили, что для хороших людей им ничего не жалко, и отгрузили рекуператор.
Для стендовых испытаний рекуператора институт выделил нам подвал в только что выстроенном здании. Стояла холодная зима, а в подвале было тепло, и это нас радовало. Мы целыми днями разбирали рекуператор на детальки и исправляли заводские дефекты. Убедились, что стотонный пресс на заводе работает хорошо: маховик выпрессовать мы так и не смогли. Пришлось заливать в корпус азотную кислоту и таким неслыханным способом выпрессовывать, а заодно и балансировать маховик. Помогали нам энтузиазм и сноровка, мешали пары азотной кислоты и темнота в наглухо закупоренном подвале.
Основные дефекты мы ликвидировали, оставалось только собрать рекуператор. Детальки были аккуратно разложены на полу, завернуты в бумажки и пронумерованы, на потолке горела недавно установленная лампочка, а в просверленную в потолке щелку проникало дыхание наступающей весны. Я спокойно уехал в командировку отчитываться о проделанной работе, поручив лаборанту сборку рекуператора, которую нужно было провести не торопясь, тщательно, а самое главное, соблюдая чистоту деталей и смазки.
Ох уж эта весна! Какую злую шутку сыграла она с нами! Вернувшись из командировки в радужном настроении, я заглянул в наш подвал и... обомлел. При тусклом свете лампы невозмутимый лаборант с сигаретой в зубах стоял в болотных сапогах чуть не по пояс в грязной воде. В руках он держал шланг, по которому мощная помпа гнала глинистый раствор наружу, через спасительную щелку в потолке. Подвал не был гидроизолирован, и в него прорвались талые воды. Две недели откапывали мы ржавые детали, узлы и, отчаявшись очистить их от грязи и ржавчины, собирали рекуператор как попало.
Настало время посылать агрегат на завод для установки его на автобусе. Наученный горьким опытом, я тщательно гидроизолировал ящик для рекуператора и только после этого отправил на товарную станцию. Но и этой предосторожности оказалось недостаточно. По дороге крышку ящика повредили, и на завод он пришел полный воды. Рекуператор плавал в ней, как огурец в рассоле.
Установив наш агрегат на автобусе и убедившись, что он не работает, завод возвратил его нам обратно вместе с автобусом. Опять грязегидравлические испытания, теперь по ноябрьским дорогам. Пробуем пустить машину сами – передача летит в куски. В чем дело? Ого! Приваривая ушко для крепления, заводской сварщик прожег корпус и накрепко приварил к нему маховик.
Наконец выкатили автобус во двор. Машиной управлял лаборант, а рекуператором с заднего сиденья – я. Договорились сигнализировать друг другу свистками: один долгий – тормоза отпустить, два коротких – нажать. Предстартовая нервозность сыграла свою роль, и я, запуская рекуператор, вместо одного длинного свистка дал два коротких. От обломков передачи пришлось спасаться бегством.
Я заметил, что каждый новый ремонт рекуператора занимал у нас все меньше времени. Мы привыкли к постоянному ремонту и не вылезали из-под автобуса. Нас даже прозвали «Карлсонами, которые живут под автобусом». Оттуда я консультировал студентов, там же выслушивал институтские новости и подписывал бумаги. Зимой мы примерзали спиной к асфальту. Нас вытаскивали из-под автобуса заботливые студенты.
Опять наступила весна. Мы вывели автобус бережно, как норовистого коня. Выбрали тихую улочку, разогнались, и я уверенно включил рекуператор. Но это я лишь решил, что включил его. На самом деле я перепутал тумблеры, которые были заменены только накануне, и вместо «пуска» включил «аварийную остановку». Полетела прочнейшая стальная лента, связывающая маховик с колесами машины. Тут же склеили ее клеем №88. Попробовали катить автобус – катится. Остановили – что-то с глухим стуком упало на асфальт. Глянули под автобус – батюшки, кардан! Поставили кардан, поехали. Снова включили рекуператор – не работает. Остановились, выбежали, осмотрели – ничего непонятно. Я в сердцах стукнул по нему кулаком, и автобус пошел – сам! – плавно набирая скорость. Едва догнали его. Теперь работает, и еще как!
Если хочешь быть счастливым...
Заключение, в котором автор говорит о том, как стать счастливым, и подкрепляет это конкретными советами, как житейскими, так и чисто техническими, не забывая, конечно, и об «энергетической капсуле»
В своих афоризмах небезызвестный Козьма Прутков сказал: «Если хочешь быть счастливым – будь им!» Что ж, ему не откажешь ни в остроумии, ни в глубокомыслии. Но совет уж больно расплывчатый, неконкретный. Нисколько не посягая на лавры Козьмы Пруткова, я расшифрую это изречение так, как понял его сам: «Если хочешь быть счастливым – будь изобретателем!» Ибо нет, пожалуй, людей счастливее, чем изобретатели.
Однако на этом пути, юный читатель, немало «подводных камней», как впрочем, и в любом другом серьезном деле. Попытаюсь уберечь тебя от наиболее опасных из них, а заодно дам несколько советов.
Никогда не берись изобретать то, о чем мало знаешь; удачи здесь почти никогда не бывает, зато прослывешь «горе-изобретателем».
Постарайся изучить как можно больше в той области, в которой хочешь изобретать, особенно те изобретения, что были сделаны раньше; отнесись к ним с уважением и вниманием – их делали неглупые люди.
Вместе с тем не попадай под гнет авторитетов, не ищи традиционных решений – толкового изобретения таким путем не сделаешь.
Думай постоянно о своем изобретении, не забывай вспоминать о нем и перед самым сном – не исключено, что во сне ты увидишь решение мучающей тебя задачи.
Будь дружен с наукой, всегда обращайся к ней в трудных случаях, не иди с ней вразрез – и ты никогда не станешь изобретать «вечные двигатели», «инерцоиды» и прочие химеры, которые превращают изобретателя из самого счастливого человека в самого несчастного...
Я рассказал тебе в этой книжке о моем поиске, который, к счастью для меня, был удачным – я все-таки нашел свою мечту, свою «энергетическую капсулу». Если ты будешь честно и добросовестно вести свой поиск, не пожалеешь для него времени, – тебя обязательно ждет удача. По-другому просто не бывает – это подтверждается многовековой историей человеческого поиска, это закон.
Интересных и увлекательных задач, решению которых можно посвятить себя, бесконечно много. Но мне очень хотелось бы, чтобы ты, так же как и я, отправился на поиски «энергетической капсулы». Иначе я не стал бы писать для тебя эту книжку.
Не подумай вдруг, будто все самое основное в поиске «энергетической капсулы» уже сделано и тебе остались лишь крохи. Сейчас трудно даже представить себе, какой в действительности окажется «энергетическая капсула» будущего, которую, возможно, построишь ты. Я надеюсь, что это будет супермаховик, моему коллеге электрику, видимо, больше по душе конденсатор или сверхпроводник, а химику, конечно, электрохимическая батарея! Решение же, вероятнее всего, где-то посередине, на «стыке» двух или нескольких направлений.
Я чувствую, что ты хочешь подтверждающего примера. Пожалуйста.
Возьмем палку с двумя грузами на концах и раскрутим ее на стенде, как стержневой супермаховик из куска троса – вокруг поперечной оси. Что мешает крутить быстрее? Да все та же малая прочность – грузы, стремясь двигаться по прямой, разорвут палку и разлетятся. Это ахиллесова пята всех маховиков – рано или поздно разрывается даже лучший из супермаховиков.
Обратимся за помощью к электричеству. Силы притяжения электростатических зарядов, оказывается, могут быть очень велики. Если поставить двух людей на расстоянии метра друг от друга и передать одному из них всего 1 процент электронов, взятых у другого, то сила притяжения этих людей будет равна... силе тяжести всего земного шара! Не знаю, поверишь ли ты мне, но это так.
Теперь используем это свойство зарядов в нашем стержневом маховике. Будем по мере раскрутки отнимать у одного из грузов электроны и добавлять их другому, заставляя их притягиваться друг к другу все сильнее. Так мы можем раскрутить маховик до сверхкосмических скоростей без разрыва палки и разлета грузов. При этом, кроме колоссальной кинетической энергии, будет накоплена и громадная электроэнергия в виде заряда.
Ну, как идея? Стоит поработать? Учти только, что я умышленно не говорю тебе о трудностях на этом пути.
Ты скажешь: «Ну что за накопитель энергии – палка с грузами на концах! Это несерьезно». Но подобная «несерьезная» идея может послужить основой для создания вполне реальной конструкции.
Помнишь, я рассказывал о супермаховике, который мы навивали из металлической ленты? Тебе ничего не напомнила эта модель супермаховика? Да ведь это же конденсатор, обычный конденсатор из фольги – накопитель электронов! Правда, в конденсаторах лента навита не в один, а в два слоя. Но и супермаховик тоже можно навить из двух лент. Если мы теперь станем раскручивать такой супермаховик, подавая постепенно на его ленты-обкладки напряжение, то эти ленты, накапливая электрическую энергию, будут одновременно прижиматься друг к другу, повышая прочность супермаховика. А это ведет к увеличению запаса кинетической энергии в нем. Вот такая конструкция, которую мы разработали с моим учеником, основанная на «несерьезной» идее, была недавно признана изобретением, и нам выдали авторское свидетельство.
Или взять, например, так называемые пульсары – звезды малых размеров, но с громадной массой. Ведь они вращаются с огромными окружными скоростями, не доступными никаким супермаховикам, накапливают фантастическую кинетическую энергию. Почему же эти пульсары не разрываются? Не «пускает» гравитация, она мешает частицам пульсара разлетаться по инерции. Может, что-нибудь подобное ты придумаешь для маховиков?
Итак, в добрый путь, читатель! Ищи свою мечту и находи ее! Удачи тебе в твоем поиске!