|
||||
|
Приложение А Скорость движения звезд Наши знания о Вселенной были бы куда скуднее, не будь спектрального анализа. Без него мы ничего не знали бы о химическом составе звезд и очень мало об их движении. Как это делается, замечательно рассказал Карл Шайферс. Здесь я сделаю упор прежде всего на то, как с помощью звездных спектров можно определить, с какой скоростью звезда движется вдоль луча зрения, т. е. по направлению к нам или от нас. Компонента скорости звезды вдоль направления луча зрения называется радиальной или лучевой скоростью. Эффект, позволяющий определить эту скорость, назван эффектом Доплера по имени австрийского физика Христиана Доплера (1803–1853). Если направить луч света от звезды на стеклянную призму, луч преломляется, причем величина угла преломления зависит от частоты света: синий свет, имеющий более высокую частоту, преломляется сильнее, чем красный с более низкой частотой. Если поставить призму перед объективом фотоаппарата, то вместо точечного изображения звезды мы получим на снимке линию: спектр звезды. Почернение пленки в различных точках этого следа обусловлено светом, имеющим разную частоту. В принципе современные спектрографы, которыми пользуются астрономы, действуют точно как же. В этих спектрографах свет от слабых звезд, сконцентрированный большими телескопами, определенным образом обрабатывается, прежде чем попадает на призму. Вместо призм часто используются другие устройства, в которых свет с различной частотой (т. е. разного «цвета») отклоняется по-разному. Если в нашем фотоаппарате спектр представлял собой узкую линию, то спектрограф растягивает спектр в полоску, чтобы легче было изучать его особенности (рис. А.1). Ценность звездных спектров объясняется тем, что атомы в атмосфере звезды поглощают свет на вполне определенных частотах. Эти частоты отсутствуют в спектре: на полоске, полученной с помощью спектрографа, имеются «линии», соответствующие определенным частотам в тех местах, где на фотопленку не попадает свет. Свет, имеющий эти частоты, поглощен атомами звездной атмосферы; соответственно темные линии в спектре называют линиями поглощения. Каждому элементу соответствует вполне определенный характерный набор линий поглощения, так что по спектру звезды можно определить химический состав ее атмосферы. Так проводится химический анализ звезд; высокого мастерства в этом достигли в школе Альберта Унзёльда в Киле. Все, что говорится в данной книге о химическом составе атмосфер звезд и межзвездного газа, основано на результатах спектральных измерений. Этим методом был установлен дефицит дейтерия у Солнца и недостаток лития. Но остановимся на этом и перейдем к эффекту Доплера.
Свет-это электромагнитная волна. В любой точке пространства, через которую проходит световой луч, напряженность электрического поля совершает периодические колебания. Максимум и минимум напряженности бегут в пространстве со скоростью света. Если источник излучает свет определенной частоты, то мы будем принимать его в точности на этой частоте лишь в том случае, когда расстояние между источником и приемником не изменяется. Если же источник движется по направлению к нам, то каждый следующий максимум проходит немного меньший путь, чем предыдущий. Поэтому волновые максимумы приходят к нам чуть чаще, чем их посылает источник. Свет от источника, движущегося по направлению к нам, кажется немного более высокочастотным (т. е. более «голубым»), чем свет от того же источника, когда он неподвижен. Наоборот, свет от источника, который удаляется от нас, кажется более низкочастотным (т. е. более «красным»), чем свет от такого же источника в лаборатории. Это, собственно, тот же эффект, который иллюстрируется на рис. 10.5, где интервал между принимаемыми рентгеновскими вспышками зависит от того, движется источник при своем обращении по орбите по направлению к нам или от нас. Доплеровский сдвиг особенно хорошо заметен в спектрах звезд (рис. А.2). Чтобы измерить его, лучше всего сравнить спектр звезды с полученным в лаборатории на том же спектрографе спектром поглощения вещества и посмотреть, находятся ли линии поглощения отдельных элементов в звездном спектре там, где они должны быть, или же они смещены. Из этого легко рассчитать, с какой лучевой скоростью движется звезда.
Особенно важны измерения лучевой скорости для тесных двойных систем. Звезда, обращающаяся вокруг другой звезды, в течение одного оборота движется сначала по направлению к нам, а затем от нас, если только мы смотрим не строго перпендикулярно к плоскости ее орбиты. Это периодическое изменение скорости может быть измерено с помощью спектров и затем использовано для определения масс звезд, как описано в приложении В. О многих звездах мы знаем, что они двойные, а не одиночные, именно благодаря доплеровскому сдвигу линий в их спектрах. Они находятся так далеко от нас в пространстве и расположены так близко одна к другой, что с помощью телескопа различить звездную пару невозможно. Но даже если они при обращении не затмевают друг друга, мы можем установить по периодическому смещению линий в их спектрах, что здесь две звезды обращаются одна вокруг другой. |
|
||