|
||||
|
ЧАСТЬ II Мультивселенная ГЛАВА5 Порталы в другие измерения и путешествие во времени
Общая теория относительности подобна троянскому коню. Внешне теория великолепна. Сделав несколько простых допущений, можно получить основные характеристики космоса, включая искривление звездного света и сам Большой Взрыв, которые были измерены с поразительной точностью. Даже теорию инфляции можно подогнать к решению, вписав подобранную космологическую константу в уравнения юной Вселенной. Эти решения дают нам убедительнейшую теорию возникновения и смерти Вселенной. Однако внутри троянского коня мы находим притаившихся демонов и гоблинов, в том числе черные дыры, белые дыры, пространственно-временные туннели и даже машины времени, которые находятся за пределами здравого смысла. Эти аномалии считаются настолько странными, что даже сам Эйнштейн отрицал возможность их обнаружения в природе. В течение многих лет он напряженно боролся с этими странными решениями. Сегодня мы знаем, что эти аномалии нельзя просто так сбрасывать со счетов. Они — неотъемлемая часть общей теории относительности. И, по сути, могут даже дать шанс на спасение любому разумному созданию, столкнувшемуся с угрозой Большого Охлаждения. Но самой странной из этих аномалий, скорее всего, является возможность существования параллельных вселенных и врат, их соединяющих. Если мы вспомним шекспировскую метафору о том, что весь мир — сцена, то тогда можно сказать, что общая теория относительности допускает возможность существования люков на сцене. Но мы видим, что вместо того, чтобы вести в подвальный этаж, люки ведут на параллельные сцены, подобные нашей. Представьте себе сцен› жизни, состоящую из многоярусных сцен, одна поверх другой. На каждой сцене актеры читают свои роли и передвигаются среди декораций, считая, что их сцена — единственная, и не задумываясь о возможности существования других реальностей. Однако если однажды они случайно провалятся в люк, то обнаружат себя на совершенно новой сцене с новыми законами, новыми правилами игры и новым сценарием. Но если может существовать бесконечное множество вселенных, то получается, что жизнь возможна в любой из этих вселенных в соответствии с иными физическими законами? Это тот самый вопрос, который Айзек Азимов поставил в своей классическом научно-фантастическом романе «Сами Боги», где создал параллельную вселенную с ядерным взаимодействием, отличным от нашего. Возникают захватывающие возможности, когда отменяются обычные законы физики и вводятся новые. История Азимова начинается в 2070 году, когда ученый Фредерик Хэллем обращает внимание на то, что обычный вольфрам-186 странным образом превращается в загадочный плутоний-186, у которого слишком много протонов и который поэтому должен быть неустойчив. Хэллем выдвигает теорию, гласящую, что этот странный плутоний-186 появляется из параллельной Вселенной, где ядерное взаимодействие намного сильнее и поэтому оно преодолевает отталкивание протонов. Поскольку этот странный плутоний-186 выделяет большие количества энергии в виде электронов, его можно использовать для получения дешевой энергии неслыханных объемов. Это позволяет создать знаменитый электронный насос Хэллема, который решает проблему энергетического кризиса на Земле и делает Хэллема богатым человеком. Но за это нужно заплатить свою цену. Если определенное количество чужого плутония-186 будет привнесено в нашу Вселенную, то возрастет сила ядерного взаимодействия в целом. Это означает, что в результате процесса синтеза будет высвобождаться все больше энергии, Солнце станет светить все ярче и в конце концов взорвется, уничтожив при этом Солнечную систему! А тем временем обитатели параллельной вселенной строят совсем другие планы. Их вселенная умирает. Ядерное взаимодействие в их вселенной довольно сильно, а это значит, что звездам очень быстро потребуется водород и они скоро погибнут. Инопланетяне организуют обмен: бесполезный плутоний-186 отсылается в нашу Вселенную в обмен на бесценный вольфрам-186, который позволяет создать позитронный насос, спасающий их умирающий мир. Хотя они понимают, что ядерное взаимодействие усилится в нашей Вселенной и из-за этого взорвутся наши звезды, но их это не волнует. Кажется, что Земля обречена на катастрофу. Человечество пристрастилось к «энергии Хэллема» и отказывается верить, что Солнце вскоре взорвется. Еще один ученый находит гениальное решение этой головоломки. Он убежден в существовании параллельных вселенных. Он успешно модифицирует мощный ускоритель частиц для создания дыры в пространстве, которая соединит нашу Вселенную со многими другими. Он ищет и наконец находит среди них одну параллельную вселенную, которая совершенно пуста, если не считать «космического яйца», содержащего неограниченные количества энергии, но с более слабым ядерным взаимодействием. При помощи перекачивания энергии из этого космического яйца ученому удается создать новый энергетический насос и в то же время ослабить ядерное взаимодействие в нашей собственной Вселенной, что предотвращает надвигающийся взрыв Солнца. Однако и такое решение событий имеет свою цену: в параллельной вселенной сила ядерного взаимодействия возрастет, что приведет к взрыву этой параллельной вселенной. Но ученый рассуждает следующим образом: взрыв лишь даст возможность этому яйцу «вылупиться», что вызовет новый Большой Взрыв. По сути, он понимает, что станет акушером, принимающим роды новой расширяющейся вселенной. Научно-фантастический роман Азимова — один из немногих, где используются действующие законы физики для «раскрутки» истории о жадности, интригах и спасении. Азимов был прав, предполагая, что изменение силы взаимодействий в нашей Вселенной имело бы катастрофические последствия, что звезды в нашей Вселенной стали бы гореть ярче, а затем взорвались бы, если бы ядерное взаимодействие усилилось. Это поднимает неизбежный вопрос: согласуются ли законы параллельных вселенных с нашими законами физики? А если это так, то что необходимо для того, чтобы попасть в одну из них? Чтобы сообразить, о чем идет речь, прежде всего необходимо понять природу пространственно-временных туннелей, отрицательной энергии и, конечно, природу загадочных объектов, называемых черными дырами. Черные дырыВ 1783 году британский астроном Джон Мичелл впервые задался вопросом, что же произойдет, если звезда увеличится настолько, что ее не сможет «покинуть» даже свет. Ему было известно, что у каждого объекта есть «скорость убегания», то есть та скорость, которая необходима, чтобы преодолеть гравитационное притяжение. (Например, для Земли «скорость убегания» составляет 40 ООО км/ч, это та скорость, которую должна развить ракета, чтобы преодолеть действие гравитации Земли.) Мичелл заинтересовался тем, что же случится, если звезда станет настолько массивной, что ее «скорость убегания» сравняется со скоростью света. Ее гравитация будет настолько неимоверной, что ничто не сможет освободиться от ее силы притяжения, даже свет, а потому сам объект будет казаться наблюдателю из внешнего мира абсолютно черным. Обнаружить такой объект в космосе в каком-то смысле невозможно, поскольку он невидим. О «темных звездах» Мичелла не вспоминали полтора столетия. Вопрос снова всплыл в 1916 году, когда Карл Шварцшильд, немецкий физик, работавший на армию и находившийся тогда на русском фронте, нашел точное решение уравнений Эйнштейна для массивной звезды. Даже в наши дни решение Шварцшильда известно как одно из простейших, изящнейших и точных решений уравнений Эйнштейна. Эйнштейн был изумлен, узнав, что Шварцшильду уда-; лось найти решение сложных тензорных уравнений, прячась от артиллерийских снарядов. Он был еще больше удивлен, обнаружив, что решение Шварцшильда имело свои особые свойства. На первый взгляд, оно было справедливо для гравитации обычной звезды, и Эйнштейн быстро использовал решение для вычисления гравитации Солнца и проверки своих ранних расчетов, в которых допускал приближения. Он всю жизнь был благодарен Шварцшильду за это. Но в своей второй работе Шварцшильд доказал, что очень массивную звезду окружает воображаемая «магическая сфера», обладающая странными свойствами. Эта «магическая сфера» является критической точкой, откуда уже вернуться нельзя. Любого проникшего сквозь эту «магическую сферу» немедленно засосало бы гравитацией в звезду и никто бы больше никогда его не увидел. «Даже свет был бы полностью поглощен, если бы прошел сквозь эту сферу. Шварцшильд не знал того, что заново открыл «темную звезду» Мичелла с помощью уравнений Эйнштейна. Затем он вычислил радиус этой «магической сферы» (называемый радиусом Шварцшильда). Для объекта размером с наше Солнце радиус «магической сферы» равнялся примерно трем километрам. (Для Земли радиус Шварцшильда равняется приблизительно 1 см.) Это означало, что, если Солнце сжать до трех километров, оно превратилось бы в «темную звезду» и пожирало бы любой объект, пересекающий критическую «точку невозвращения». Экспериментальным путем доказать существование «магической сферы» не представлялось возможным: кто возьмется сжимать Солнце? Не существует никаких известных нам механизмов, способных создать такую фантастическую звезду. Но с точки зрения теории это было полной катастрофой. Хотя общая теория относительности Эйнштейна могла принести блестящие результаты, такие, как искривление звездного света вокруг Солнца, но эта теория не имела никакого смысла при приближении к «магической сфере», где гравитация возрастала бесконечно. Голландский физик Иоганнес Дросте доказал позже, что решение было еще более сумасшедшим. Он утверждал, что, согласно теории относительности, лучи света значительно искривлялись, приближаясь к объекту подобного рода. По сути, на расстоянии в 1,5 радиуса Шварцшильдалучи света начинали путешествовать по орбите вокруг звезды. Дросте показал, что искривления времени, обнаруженные в общей теории относительности, применительно к таким массивным звездам были намного больше, чем те, которые обнаруживала специальная теория относительности. Он также утверждал, что если вы приближаетесь к «магической сфере», то наблюдатель, находящийся далеко от вас, рассчитал бы, что ваши часы идут все медленнее и медленнее, и так до тех пор, пока они не остановились бы вовсе, в момент, когда вы ударитесь о сам объект. По сути, наблюдатель из внешнего мира уверился бы в том, что вы застыли во времени в тот момент, когда достигли «магической сферы». Поскольку само время остановилось бы в этой точке, некоторые физики посчитали, что существование такого странного объекта в природе невозможно. Математик Герман Вейль подлил еще больше масла в огонь — он открыл, что если исследовать мир внутри «магической сферы», то, видимо, с другой стороны ее находится другая вселенная. Все это звучало настолько фантастично, что даже Эйнштейн не мог в это поверить. На конференции в Париже в 1922 году математик Жак Адамар спросил Эйнштейна, что бы произошло, если бы эта «сингулярность» существовала на самом деле, то есть если бы гравитация становилась бесконечной в пределах радиуса Шварцшильда. Эйнштейн ответил: «Это стало бы настоящей катастрофой для нашей теории; было бы очень сложно сказать a priori, что произошло бы с физической точки зрения, потому что формула больше не действовала бы». Позднее Эйнштейн назвал эту проблему «катастрофой Адамара». Но он посчитал, что вся эта полемика по поводу «темных звезд» имеет исключительно умозрительный характер. Во-первых, никто никогда не видел столь причудливого объекта, и вполне возможно, что «темных звезд» не существует, то есть их существование невозможно с физической точки зрения. Более того, если бы кому-то довелось упасть на одну из них, то он бы разбился насмерть. А поскольку никто никогда не смог бы пройти сквозь «магическую сферу» (поскольку время в этот момент останавливалось бы), то никто никогда не смог бы войти и в эту параллельную вселенную. В 1920-е годы физики были здорово сбиты с толку в этом вопросе. Но в 1932 г. Жорж Леметр, отец теории Большого Взрыва, совершил значительный прорыв. Он доказал, что «магическая сфера» была вовсе не сингулярностью, где гравитация стремилась к бесконечности; это была просто математическая иллюзия, вызванная неудачным выбором математического обоснования. (Если выбрать другой набор координат или переменных для изучения «магической сферы», то сингулярность исчезнет.) Отталкиваясь от этого, космолог X. П. Робертсон еще раз изучил первоначальные утверждения Дросте, что время останавливается на поверхности «магической сферы». Он обнаружил, что время останавливается только с точки зрения наблюдателя, следящего за тем, как ракета пересекает «магическую сферу». С точки же зрения самой ракеты понадобилась бы доля секунды, чтобы гравитация засосала ее внутрь «магической сферы». Иными словами, корабль, прошедший к своему несчастью, сквозь магическую сферу, разбился бы практически мгновенно, но стороннему наблюдателю показалось бы, что этот процесс занял тысячи лет. Это было важным открытием. Это означало, что «магической сферы» достичь можно, а также то, что не нужно было сбрасывать ее со счетов как математическое уродство. Необходимо было серьезно изучить вопрос, что же могло случиться с объемом при прохождении через магическую сферу. Физики рассчитали, на что могло бы быть похоже путешествие сквозь «магическую сферу». (Сегодня «магическую сферу» называют «горизонтом событий». Слово «горизонт» обозначает самую далекую точку, которую мы можем увидеть. В данном же контексте оно относится к самой далекой точке, которой может достичь свет. Радиус этого «горизонта событий» и называется радиусом Шварцшильда.) Приближаясь в ракете к черной дыре, вы бы увидели свет, захваченный в плен черной дырой миллиарды лет назад, когда сама черная дыра еще только образовалась. Иными словами, перед вашими глазами развернулась бы вся история этой черной дыры. При приближении приливные силы разорвали бы на части атомы, составляющие ваше тело, и в конце концов даже сами ядра атомов напоминали бы спагетти. Путешествие за горизонт событий стало бы путешествием в один конец, поскольку сила тяготения была бы настолько велика, что вас неизбежно засосало бы к самому центру, где бы вы разбились насмерть. Оказавшись за пределами «горизонта событий», вернуться назад было бы уже невозможно. (Чтобы выбраться из-за горизонта событий, понадобилось бы развить скорость, большую, чем скорость света, что невозможно.) В 1939 году Эйнштейн написал работу, в которой попытался оспорить существование «темных звезд», утверждая, что они не могли бы образоваться естественным путем. Он начал с предположения, что звезда образуется из кружащегося скопления пыли, газа и звездных обломков, вращающихся по окружности и постепенно притягивающихся друг к другу благодаря силе гравитации. Затем он показал, что такое скопление кружащихся частиц никогда не сколлап-сирует до радиуса Шварцшильда, а потому никогда не превратится в черную дыру В лучшем случае эта вращающаяся масса частиц достигла бы величины в 1,5 радиуса Шварцшильда, а потому образование черной дыры практически невозможно. (Чтобы пересечь предел в 1,5 радиуса Шварцшильда, пришлось бы опять же развить скорость выше скорости света.) «Основным результатом данного исследования является ясное понимание того, почему «сингулярностей Шварцшильда» в физической реальности не существует», — писал Эйнштейн. У Артура Эддингтона также были свои глубокие соображения насчет черных дыр, он всю жизнь сомневался в их существовании. Однажды он сказал, что должен существовать «закон Природы, чтобы не дать звезде вести себя столь странно». По иронии судьбы, в том же году Дж. Роберт Оппенгеймер (который позднее создал атомную бомбу) и его студент Хартленд Снайдер доказали, что черная дыра и в самом деле могла образоваться, но иным путем. Вместо того чтобы предположить, что черная дыра появилась из вращающегося скопления частиц, сжимающегося под воздействием сил гравитации, они в качестве точки отсчета взяли старую массивную звезду, которая сожгла все свое ядерное топливо и взрывается вовнутрь под действием силы гравитации. К примеру, умирающая звезда массой в 40 солнечных масс могла бы израсходовать ядерное топливо и сжаться под действием силы гравитации до радиуса Шварцшильда в 130 км; в этом случае она бы неизбежно сколлапсировала в черную дыру. Оппенгеймер и Снайдер предположили, что существование черных дыр не просто возможно, они могли бы быть естественной конечной точкой эволюции миллиардов умирающих в галактике звезд-гигантов. (Возможно, именно идея взрыва вовнутрь, предложенная в 1939 году Оппенгеймером, всего через несколько лет вдохновила его на создание механизма внутреннего взрыва, использующегося в атомной бомбе.) Мост Эйнштейна-РозенаХотя Эйнштейн считал, что черные дыры — явление слишком невероятное и в природе существовать не могут, позднее, такова ирония судьбы, он показал, что они еще более причудливы, чем кто-либо мог предположить. Эйнштейн объяснил возможность существования пространственно-временных «порталов» в недрах черных дыр. Физики называют эти порталы червоточинами, поскольку, подобно червю, вгрызающемуся в землю, они создают более короткий альтернативный путь между двумя точками. Эти порталы также называют иногда порталами или «вратами» в другие измерения. Как их ни назови, когда-нибудь они могут стать средством путешествий между различными измерениями, но это случай крайний. Первым, кто популяризовал идею порталов, стал Чарльз Доджсон, который писал под псевдонимом Льюис Кэрролл. В «Алисе в Зазеркалье» он представил портал в виде зеркала, которое соединяло пригород Оксфорда и Страну Чудес. Поскольку Доджсон был математиком и преподавал в Оксфорде, ему было известно об этих многосвязных пространствах. По определению, многосвязное пространство таково, что лассо в нем нельзя стянуть до размеров точки. Обычно любую петлю можно безо всякого труда стянуть в точку. Но если мы рассмотрим, например, пончик, вокруг которого намотано лассо, то увидим, что лассо будет стягивать этот пончик. Когда мы начнем медленно затягивать петлю, то увидим, что ее нельзя сжать до размеров точки; в лучшем случае, ее можно стянуть до окружности сжатого пончика, то есть до окружности «дырки». Математики наслаждались тем фактом, что им удалось обнаружить объект, который был совершенно бесполезен при описании пространства. Но в 1935 году Эйнштейн и его студент Натан Розен представили физическому миру теорию порталов. Они попытались использовать решение проблемы черной дыры как модель для элементарных частиц. Самому Эйнштейну никогда не нравилась восходящая ко временам Ньютона теория, что гравитация частицы стремится к бесконечности при приближении к ней. Эйнштейн считал, что эта сингулярность должна быть искоренена, потому что в ней нет никакого смысла. У Эйнштейна и Розена появилась оригинальная идея представить электрон (который обычно считался крошечной точкой, не имеющей структуры) как черную дыру. Таким образом, можно было использовать общую теорию относительности для объяснения загадок квантового мира в объединенной теории поля. Они начали с решения для стандартной черной дыры, которая напоминает большую вазу с длинным горлышком. Затем они отрезали «горлышко» и соединили его с еще одним частным решением уравнений для черной дыры, то есть с вазой, которая была перевернута вверх дном. По мнению Эйнштейна, эта причудливая, но уравновешенная конфигурация была бы свободна от сингулярности в происхождении черной дыры и могла бы действовать как электрон. К несчастью, идея Эйнштейна о представлении электрона § качестве черной дыры провалилась. Но сегодня космологи предполагают, что мост Эйнштейна-Розена может служить «вратами» между двумя вселенными. Мы можем свободно передвигаться по Вселенной до тех пор, пока случайно не упадем в черную дыру, где нас немедленно протащит сквозь портал и мы появимся на другой стороне (пройдя сквозь «белую» дыру). Для Эйнштейна любое решение его уравнений, если оно начиналось с физически вероятной точки отсчета, должно было соотноситься с физически вероятным объектом. Но он не беспокоился о том, кто свалится в черную дыру и попадет в параллельную вселенную. Приливные силы бесконечно возросли бы в центре, и гравитационное поле немедленно разорвало бы на части атомы любого объекта, который имел несчастье свалиться в черную дыру. (Мост Эйнштейна-Розена действительно открывается за доли секунды, но он закрывается настолько быстро, что ни один объект не сможет пройти его с такой скоростью, чтобы достичь другой стороны.) По мнению Эйнштейна, хотя существование порталов и возможно, живое существо никогда не сможет пройти сквозь какой-либо из них и рассказать о своих переживаниях во время этого путешествия. Мост Эйнштейна-Розена. В центре черной дыры находится «горлышко», которое соединяется с пространством-временем другой вселенной или другой точкой в нашей Вселенной. Хотя путешествие сквозь стационарную черную дыру имело бы фатальные последствия, вращающиеся черные дыры обладают кольцеобразной сингулярностью, которая позволила бы пройти сквозь кольцо и мост Эйнштейна-Розена, хотя это находится еще на стадии предположений. Вращающиеся черные дырыОднако в 1963 году взгляд на вещи стал меняться, когда математик из Новой Зеландии Рой Керр нашел точное решение уравнений Эйнштейна, описывающее, возможно, наиболее реалистично умирающую звезду, вращающуюся черную дыру. Из-за сохранения кинетического импульса, когда звезда коллапсирует под действием силы гравитации, она начинает вращаться еще быстрее. (Это та же причина, по которой вращающиеся галактики выглядят подобно флюгерам, и именно поэтому фигуристы вращаются быстрее, когда прижимают руки к телу.) Вращающаяся звезда могла бы взорваться, образовав кольцо нейтронов, которое осталось бы устойчивым из-за большой центробежной силы, толкающей их «наружу» и уравновешивающей действие силы гравитации. Такая черная дыра обладала бы удивительным свойством: если бы вы упали в керровскую черную дыру, то вы бы не разбились насмерть. Наоборот, вас бы протянуло сквозь мост Эйнштейна-Розена в параллельную вселенную. «Проходишь сквозь это волшебное кольцо и — престо! — ты в совершенно иной вселенной, где радиус и масса отрицательны!» — обращаясь к коллеге, воскликнул Керр, обнаруживший это решение. Иными словами, оправа зеркала Алисы была похожа на вращающееся кольцо Керра. Но любое путешествие сквозь Керрово кольцо было бы путешествием без возврата. Если бы вы пересекли «горизонт событий», окружающий кольцо Керра, гравитация была бы не настолько сильна, чтобы раздавить вас, но ее будет вполне достаточно, чтобы помешать вам вернуться из-за «горизонта событий». (В черной дыре Керра, по сути, есть два горизонта событий. Некоторые считают, что для обратного путешествия может понадобиться второе кольцо Керра, соединяющее параллельную вселенную с нашей.) В каком-то смысле черную дыру Керра можно сравнить с лифтом в небоскребе. Лифт представляет мост Эйнштейна-Розена, который соединяет различные этажи, только каждый этаж — это отдельная Вселенная. По сути, в этом небоскребе бесконечное количество этажей, и каждый из них отличается от других. Но лифт никогда не сможет уехать вниз. В нем есть только кнопка «вверх». Уехав с вашего этажа-вселенной, вернуться назад вы уже не сможете, поскольку пересечете «горизонт событий». Мнения физиков по поводу того, насколько устойчиво кольцо Керра, разделились. Согласно некоторым расчетам, если попытаться пройти сквозь кольцо, то само присутствие человека дестабилизирует черную дыру и проход закроется. Например, если бы луч света упал в черную дыру Керра, он бы присоединил к себе невероятное количество энергии, падая к центру, и приобрел голубое смещение — то есть его частота и энергия возросли бы. При приближении к «горизонту событий» он уже будет обладать столь большой энергией, что убьет любого, кто попытается пройти сквозь мост Эйнштейна-Розена. Кроме того, луч создает свое собственное гравитационное поле, которое вступило бы во взаимодействие с первоначальной черной дырой, что, возможно, стало бы причиной закрытия прохода. Иными словами, в то время, как одни физики считают, что черная дыра Керра — самая реалистичная из всех черных дыр и действительно может контактировать с параллельными вселенными, остается невыясненным, насколько безопасно будет прохождение через этот мост, а также то, насколько устойчив будет проход. Наблюдение за черными дырамиИз-за странных свойств черных дыр их существование еще в 1990-е годы считалось научной фантастикой. «Если бы 10 лет назад вам довелось обнаружить объект, который вы посчитали бы черной дырой в центре галактики, то половина ученого мира решила бы, что вы немножко сбрендили», — заметил астроном Дуглас Ричстоун из Мичиганского университета в 1998 году. С тех пор астрономы обнаружили в открытом космосе несколько сот черных дыр при помощи космического телескопа Хаббла, Космической рентгеновской обсерватории «Чандра» (измеряющей рентгеновское излучение мощных звездных и галактических источников), а также радиотелескопом в Нью-Мехико — «Очень большой решеткой» (Very Large Array — VLA), состоящей из серии мощных антенн. Многие астрономы считают, что, по сути, в центре большинства космических галактик (которые имеют утолщение, или балдж, в центре своих дисков) находятся черные дыры. Как и предвиделось, все обнаруженные в космосе черные дыры стремительно вращаются; некоторые вращаются со скоростью около 1,6 млн км/ч, как было вычислено при помощи космического телескопа Хаббла. В самом центре можно наблюдать плоское округлое ядро, размеры которого зачастую составляют около светового года в поперечнике. Внутри этого ядра находится горизонт событий и сама черная дыра. Поскольку черные дыры невидимы, для их обнаружения астрономы вынуждены пользоваться методами непрямого наблюдения. На фотографиях они пытаются найти «аккреционный диск» вращающегося газа, окружающего черную дыру. Сегодня астрономы собрали коллекцию прекрасных фотографий аккреционных дисков. (Такие диски обнаружены почти везде у наиболее стремительно вращающихся объектов во Вселенной. Даже у нашего Солнца наверняка был такой диск, когда оно возникло 4,5 млрд лет назад, но он сконденсировался, образовав планеты. Причиной образования таких дисков является то, что они представляют состояние наименьшей энергии для таких стремительно вращающихся объектов.) Применяя законы движения Ньютона, астрономы могут вычислять массу центрального объекта, зная скорость звезд, вращающихся вокруг него. Если масса центрального объекта настолько велика, что скорость «убегания» для этого объекта равняется скорости света, то даже сам свет не может «убежать», предоставляя тем самым косвенное доказательство существования черной дыры. «Горизонт событий» находится в самом центре аккреционного диска (к сожалению, он слишком мал, чтобы заметить его при помощи современных приборов. Астроном Фульвио Мелиа утверждает, что заснять на пленку «горизонт событий» для науки о черных дырах — все равно что найти Святой Грааль). Не весь газ, двигающийся по направлению к черной дыре, проходит «горизонт событий». Часть его проходит мимо «горизонта событий» и с огромной скоростью выбрасывается в космос, образуя две длинные газовые струи, извергающиеся из южного и северного полюсов черной дыры. Это делает черную дыру похожей на вертящийся волчок. (Причина, по которой струи газа извергаются именно таким образом, возможно, состоит в том, что линии магнитного поля коллапсирующей звезды, по мере того как поле становится все более напряженным, концентрируются над северным и южным полюсами. По мере того как звезда продолжает сжиматься, эти магнитные линии конденсируются в два пучка, исходящие из северного и южного полюсов. Когда ионизированные частицы падают в коллапсирующую звезду, они следуют по силовым линиям и извергаются как струи через магнитные поля южного и северного полюсов.) Пока обнаружено два типа черных дыр. Первый тип — черные дыры звездных масштабов. При образовании таких дыр гравитация разрушает умирающую звезду и та взрывается вовнутрь. Черные дыры второго типа обнаружить намного легче. У них галактические масштабы, они таятся в самом центре огромных галактик и квазаров, и их масса составляет от миллионов до миллиардов солнечных масс. Недавно было окончательно установлено существование черной дыры в центре нашей Галактики Млечный Путь. К несчастью, пылевые облака закрывают от нас центр галактики; если бы не они, то каждую ночь с Земли мы бы наблюдали огромный огненный шар в созвездии Стрельца. Если бы не было этой пыли, то центр нашей Галактики Млечный Путь наверняка затмил бы Луну и был бы самым ярким объектом ночного неба. В самом центре этого галактического ядра находится черная дыра массой примерно в 2,5 млн солнечных масс. Что касается ее радиуса, то он составляет около 0,1 радиуса орбиты Меркурия. По галактическим меркам это не самая массивная черная дыра; в квазарах могут быть черные дыры в несколько миллиардов солнечных масс. Черная дыра на нашем «заднем дворе» в настоящее время довольно статична. Следующая по близости к нам галактическая черная дыра находится в центре галактики Андромеды, самой близкой к Земле галактики. Эта черная дыра составляет 30 миллионов солнечных масс, а ее радиус Шварцшильда — около 96 млн км. (В центре галактики Андромеды находятся, по меньшей мере, два массивных объекта, видимо представляющие собой остатки прежней галактики, поглощенной галактикой Андромеды миллиарды лет назад. Если Галактика Млечный Путь в конце концов через миллиарды лет столкнется с галактикой Андромеды, что представляется весьма вероятным, то, возможно, наша Галактика закончит свой «жизненный» путь в «желудке» галактики Андромеды.) Одной из самых восхитительных фотографий галактической черной дыры является фотография галактики NGC 4261, сделанная при помощи космического телескопа Хаббла. На прежних фотографиях этой галактики, полученных при помощи радиотелескопа, ясно видно, как две струи грациозно извергаются из северного и южного полюсов галактики, но никто не знал, что приводит этот механизм в действие. Телескоп Хаббла сфотографировал самый центр этой галактики, продемонстрировав нам прекрасно различимый диск размером около 400 световых лет в поперечнике. В самом его центре находится крошечная точка, содержащая в себе аккреционный диск размером около светового года в диаметре. Черная дыра в его центре, которую нельзя наблюдать при помощи телескопа Хаббла, весит приблизительно 1,2 млрд солнечных масс. Галактические черные дыры, подобные этой, так энергетически мощны, что могут поглощать целые звезды. В 2004 г. НАСА и Европейское Космическое Агентство заявили, что стали свидетелями того, как огромная черная дыра в далекой галактике одним махом «проглотила» звезду. Космическая рентгеновская обсерватория «Чандра» и европейский спутник «ХММ-Ньютон» наблюдали одно и то же событие: вспышку рентгеновских лучей, испускаемую галактикой RXJ1242-11, это говорило о том, что черная дыра в центре галактики поглотила звезду. Масса этой черной дыры оценивается в 100 миллионов солнечных масс. Расчеты показали, что, когда звезда подходит опасно близко к «горизонту событий», невероятная сила гравитации деформирует и растягивает звезду настолько, что та разрывается на части, испуская обнаруживающую ее вспышку рентгеновских лучей. «Эту звезду растянуло больше, чем допускал предел ее прочности. Несчастная звезда просто забрела не в те окрестности», — заметила астроном Стефани Комосса из института Макса Планка в Гархинге (Германия). Факт существования черных дыр помог решить массу давних загадок. Например, галактика М87 всегда была для астрономов диковиной, поскольку выглядела как массивный шар из звезд, из которого выглядывал странный «хвост». Поскольку этот шар испускал сильное излучение, в какой-то момент астрономы посчитали, что это представляет собой струю антивещества. Но сегодня астрономы обнаружили, что существование хвоста обусловлено огромной черной дырой, массой, возможно, 3 миллиарда солнечных масс. А этот странный хвост сегодня считается гигантской струей плазмы, не устремленной внутрь галактики, а вылетающей из нее. Одно из наиболее впечатляющих открытий в области черных дыр произошло в тот момент, когда Космическая рентгеновская обсерватория «Чандра» сквозь небольшой прорыв в пылевых облаках смогла увидеть открытый космос и наблюдать там скопление черных дыр на границе видимой Вселенной. Было зафиксировано 600 черных дыр. Исходя из этого наблюдения, астрономы предполагают, что на небе существует, по меньшей мере, 300 миллионов черных дыр. Гамма-барстерыВозраст упомянутых выше черных дыр составляет, возможно, миллиарды лет. Но сегодня астрономам предоставляется редкая возможность наблюдать собственными глазами, как образуются черные дыры Некоторыми из них, похоже, являются загадочные источники всплесков гамма-излучения, испускающие больше всего энергии во всей Вселенной. По количеству выбрасываемой энергии они уступают только интенсивности Большого Взрыва. У этих источников гамма-всплесков очень интересная история, уходящая во времена холодной войны. В конце 1960-х годов Соединенные Штаты весьма обеспокоил тот факт, что Советский Союз или какая-либо другая держава в обход существующих соглашений могут тайно взорвать ядерную бомбу на пустынном участке Земли или даже на Луне. Поэтому Соединенные Штаты запустили спутник «Вела», специально предназначенный для отслеживания «ядерных вспышек», или несанкционированных взрывов ядерных бомб. Поскольку ядерный взрыв разворачивается в несколько этапов, микросекунда за микросекундой, каждая ядерная вспышка дает характерную двойную вспышку света, которую можно заметить со спутника. (Спутник «Вела» действительно уловил две такие ядерные вспышки в 1970-е годы недалеко от побережья острова Принца Эдуарда в Южной Африке в присутствии израильских военных кораблей. В ЦРУ до сих пор ведутся споры по поводу зафиксированных сигналов.) Однако Пентагон поразило то, что спутник «Вела» принимал сигналы гигантских ядерных взрывов в космосе. Может быть, Советский Союз тайно взрывал водородные бомбы в открытом космосе, используя неизвестные передовые технологии? Озабоченность тем, что Советский Союз, возможно, существенно обогнал Соединенные Штаты в вопросах разработки ядерного оружия, заставила США привлечь к анализу природы этих тревожных сигналов лучших ученых мира. После распада Советского Союза больше не нужно было классифицировать эту информацию, и Пентагон «выбросил» целые горы данных в астрономический ученый мир. Впервые за десятилетия было открыто совершенно новое астрономическое явление невероятной силы и масштаба. Астрономы быстро уяснили, что мощность этих гамма-всплесков (их назвали гамма-барстерами) была просто фантастической: за несколько секунд испускалось такое же количество энергии, как наше Солнце испустило за всю свою жизнь (около 10 млрд лет). Но эти вспышки были весьма скоротечны: с тех пор, как их уловил спутник «Вела», они настолько потускнели, что, когда в их сторону направили наземные телескопы, разглядеть что-либо было уже невозможно. (Большинство вспышек длится от 1 до 10 секунд, самая короткая длилась 0,01 секунды, но некоторые продолжались и несколько минут.) Сегодня космические телескопы, компьютеры и команды быстрого реагирования изменили наши возможности в обнаружении гамма-барстеров. Всплески гамма-лучей улавливаются по 3 раза на дню, и каждый из них приводит в действие сложную систему. Как только спутник регистрирует выброс энергии и всплеск гамма-лучей, астрономы при помощи компьютеров быстро определяют точные координаты всплеска и направляют на него телескопы и сенсоры. Данные, полученные при помощи этих новейших приборов, принесли поистине ошеломляющие результаты. В сердце гамма-барстеров обязательно находится некий объект, не очень большой, зачастую всего лишь в несколько десятков километров в поперечнике. Другими словами, невероятная космическая энергия гамма-барстеров сконцентрирована на территории размером, скажем, с Нью-Йорк. Долгие годы считалось, что причиной таких вспышек, вероятнее всего, служили столкновения нейтронных звезд в двойной звездной системе. Согласно этой теории с течением времени орбита нейтронных звезд искажалась и они двигались по смертельной спирали, пока в конце концов не сталкивались, в результате чего происходил выброс гигантского количества энергии. Такие события чрезвычайно редки, но поскольку Вселенная очень велика, а эти вспышки освещают всю Вселенную, то они должны быть видны несколько раз в день. Но в 2003 году собранные учеными новые факты позволили предположить, что вспышки гамма-лучей представляют собой результат взрыва «гиперновой», что создает массивную черную дыру. Быстро фокусируя телескопы и спутники в направлении вспышек гамма-лучей, ученые обнаружили, что они похожи на массивные «сверхновые». Поскольку взрывающаяся звезда создает магнитное поле невероятной силы и выбрасывает излучение через свои северный и южный полюса, может показаться, что «сверхновая» более активна, чем на самом деле: мы можем наблюдать эти вспышки только в том случае, когда они направлены прямо к Земле, а это создает ложное впечатление мощности, большей чем в реальности. Если гамма-барстеры — это действительно черные дыры в процессе образования, то следующее поколение космических телескопов должно позволить нам изучать этот процесс в подробностях и, возможно, ответить на некоторые из глобальных вопросов о времени и пространстве. В частности, если черные дыры могут закручивать пространство в кренделя, то могут ли они искривлять также и время? Машина времени Ван СтокумаТеория Эйнштейна объединяет пространство и время в одно неразрывное целое. В результате любой портал, соединяющий две точки пространства, может также соединять два момента времени. Иными словами, теория Эйнштейна допускает возможность путешествия во времени. Сам концепт времени развивался на протяжении веков. Для Ньютона время было похоже на стрелу; будучи выпущенной, она уже не меняла своей траектории полета и четко и равномерно двигалась к цели. Затем Эйнштейн предложил концепт искривленного пространства, а время стало больше похоже на реку, которая вилась по Вселенной, то ускоряя, то замедляя свой бег. Но Эйнштейна беспокоила опасность того, что река времени может замкнуться сама на себе. Возможно, в реке времени существовали водовороты и рукава. В 1937 году эту опасность заметили физики, когда В. Дж. Ван Стокум нашел решение уравнений Эйнштейна, которые делали возможным путешествие во времени. Он начал с бесконечно длинного вращающегося цилиндра. Хотя физически невозможно построить объект с бесконечными размерами, он рассчитал, что если бы такой цилиндр вращался со скоростью, близкой к скорости света, он бы увлекал материю пространства-времени с собой, подобно тому как патока увлекается лопастями миксера. (Этот «эффект скручивания» (frame-dragging) также известен как «захват системы отсчета» и был экспериментально обнаружен на подробных фотографиях вращающихся черных дыр.) Любого храбреца, отважившегося пройти мимо цилиндра, засосало бы внутрь с фантастической скоростью. При этом стороннему наблюдателю казалось бы, что тот человек превысил скорость света. Хотя сам Ван Стокум тогда так и не понял, что, облетев вокруг цилиндра, по сути, можно вернуться назад во времени, в момент, предшествующий моменту отлета. Если вы отбыли в полдень, то к тому времени, как вы вернетесь в точку отсчета, может быть, скажем, б часов вчерашнего дня. Чем быстрее вращение цилиндра, тем дальше вы можете унестись назад во времени (при этом единственным ограничением будет то, что вы не смогли бы попасть в момент времени до создания самого цилиндра). Поскольку сам цилиндр похож на майское дерево (украшенный цветами столб, вокруг которого танцуют в майские праздники в Англии), то каждый раз, когда вы в танце проносились мимо него, вы все дальше и дальше уходили во времени в прошлое. Конечно же, такое решение может быть с легкостью отброшено, поскольку цилиндр все-таки не может быть бесконечно длинным. Кроме того, если бы такой цилиндр все же можно было построить, то центробежная сила, действующая на него, была бы невероятно велика, что стало бы причиной разрушения материала, из которого сделан цилиндр. Вселенная ГёделяВ 1949 году великий математик и логик Курт Гёдель обнаружил еще более сложное решение уравнений Эйнштейна. Он предположил, что Вселенная вращается вся целиком. Подобно случаю с вращающимся цилиндром Ван Стокума, все увлекается пространством-временем, тягучим, словно патока. Во вселенной Гёделя человек, в принципе, может путешествовать между двумя любыми точками пространства или времени. Вы можете стать участником любого события, происшедшего в любой период времени, вне зависимости от того, насколько далеко он отстоит от настоящего. Из-за действия гравитации вселенная Гёделя имеет тенденцию к коллапсу. Поэтому центробежная сила вращения должна сбалансировать гравитационную силу. Иными словами, Вселенная должна вращаться с определенной скоростью. Чем больше Вселенная, тем больше ее тенденция к коллапсу и тем быстрее она должна вращаться для его предотвращения. К примеру, Вселенная нашего размера по Гёделю должна была бы совершать один полный оборот за 70 миллиардов лет, а минимальный радиус для путешествия во времени составлял бы 16 миллиардов световых лет. Однако путешествуя во времени в прошлое, вы должны двигаться со скоростью чуть ниже скорости света. Гёделю было прекрасно известно о парадоксах, которые могли возникнуть из такого решения, — возможность встретить самого себя в прошлом и изменить ход истории. «Совершая «кругосветное» путешествие на ракете по достаточно длинному маршруту, в этих мирах возможно путешествовать в любой момент прошлого, настоящего и будущего, а потом снова возвращаться обратно, также, как в других мирах возможно путешествовать в отдаленные области пространства, — писал он. — Такое положение дел, кажется, несет в себе элемент абсурда. Ибо оно позволяет человеку путешествовать в не очень отдаленное прошлое тех мест, где он сам жил когда-то. Там он обнаружил бы человека, который был бы им самим в более ранний период его же жизни. И тогда он смог бы сделать что-нибудь с этим человеком, чего, по его воспоминаниям, с ним самим не происходило». Эйнштейн был глубоко обеспокоен решением, найденным его другом и коллегой по Институту передовых исследований в Принстоне. Его ответ был достаточно прозрачен: Работа Курта Гёделя, на мой взгляд, представляет собой важный вклад в общую теорию относительности, особенно в анализ концепта времени. Проблема, рассмотренная в работе, беспокоила меня еще во время создания общей теории относительности, и я так и не достиг успеха в ее разрешении… Различие «раньше-позже» стирается при рассмотрении точек Вселенной, отстоящих далеко друг от друга в космологическом смысле, а при учете направления причинных связей возникают те парадоксы, о которых говорит господин Гёдель… Будет интересно разобраться, можно ли отбросить их по причине недостаточного физического обоснования. Ответ Эйнштейна интересен по двум причинам. Во-первых, он признал, что возможность путешествий во времени беспокоила его с того самого момента, когда он впервые сформулировал общую теорию относительности. Поскольку считается, что время и пространство похожи на кусок резины, который может сгибаться и искривляться, Эйнштейна обеспокоило то, что пространство-время может искривиться настолько, что путешествие во времени станет возможно. Во-вторых, он исключил решение Гёделя по причине недостаточного «физического обоснования», — то есть Вселенная не вращается, она расширяется. Когда Эйнштейн умер, стало известно, что его уравнения допускали существование странных явлений (путешествий во времени, порталов). Но никто о них серьезно не задумывался — ведь ученые считали, что эти явления не могут быть реализованы. Всеобщее мнение гласило: для этих решений не существует основы в реальном мире. Вы бы погибли, если бы попытались попасть в параллельную вселенную через черную дыру; Вселенная не вращается; цилиндр бесконечной длины изготовить нельзя, — все это придавало вопросу о путешествиях во времени чисто теоретический характер. Машина времени ТорнаО путешествиях во времени забыли на целых 35 лет до 1985 года, когда астроном Карл Саган написал роман «Контакт» и захотел описать, как его героиня смогла бы попасть на Бегу. Ему требовалось путешествие в оба конца, то есть чтобы героиня сначала попала на Бегу, а потом снова вернулась на Землю, — ас помощью порталов черных дыр это было невозможно. Саган обратился за помощью к физику Кипу Торну. Торн потряс мир физики новыми решениями уравнений Эйнштейна, которые допускали путешествие во времени в обход многих проблем. В 1988 году вместе с коллегами, Майклом Моррисом и Ульви Юртсивером, Торн объявил, что машину времени сконструировать возможно при условии, что каким-то образом будут получены странные формы вещества и энергии, такие, как «экзотическое отрицательное вещество» и «отрицательная энергия». Сначала физики скептически отнеслись к этому новому решению, поскольку никто никогда не видел этого «экзотического вещества», а отрицательная энергия существует только в малых количествах. Но все же это решение являло собой прорыв в нашем понимании путешествия во времени. Большим преимуществом отрицательного вещества и отрицательной энергии является то, что они могут сделать портал двусторонним и вы сможете совершить путешествие в оба конца, не беспокоясь о «горизонтах событий». По сути, группа Торна обнаружила, что путешествие с помощью машины времени было бы вполне мягким по сравнению со стрессом, который человек испытывает, путешествуя коммерческими авиарейсами. Однако проблема в том, что «экзотическое вещество» (оно же «отрицательное») обладает весьма удивительными качествами. В отличие от антивещества (которое, как известно, существует и, вероятнее всего, под воздействием гравитационного поля падает на Землю), отрицательное вещество «падает вверх», так что оно будет парить, всплывать вверх под воздействием земной гравитации, поскольку обладает антигравитацией. Оно отталкивается, а не притягивается обычным веществом и другим отрицательным веществом. Это также означает, что его довольно трудно обнаружить в природе, если оно вообще существует. С тех пор как Земля образовалась 4,5 млрд лет назад, любое отрицательное вещество уплыло бы далеко в космос. Так что, возможно, отрицательное вещество плавает в космосе вдали от всех планет. (Отрицательное вещество, возможно, никогда не столкнется с пролетающей мимо звездой или планетой, поскольку оно отталкивается обычным веществом.) Если отрицательное вещество никто никогда не видел (и вполне возможно, что его вообще не существует), существование от- рицательной энергии физически возможно, но встречается она чрезвычайно редко. В 1933 году Хенрик Казимир доказал, что две незаряженные параллельные металлические пластины могут создавать отрицательную энергию. Обычно ожидается, что две пластинки остаются стационарными, поскольку не имеют заряда. Однако Казимир показал, что между этими двумя незаряженными параллельными пластинками существует очень слабая сила притяжения. В 1948 году эта незначительная сила действительно была измерена, что доказало реальную возможность существования отрицательной энергии. Эффект Казимира использует довольно необычное свойство вакуума. Согласно квантовой теории, пустое пространство заполнено «виртуальными частицами», и это возможно благодаря принципу неопределенности Гейзенберга, который допускает, что исконные классические законы могут быть нарушены, если эти нарушения кратковременны. Например, благодаря принципу неопределенности существует некоторая вероятность того, что электрон и позитрон могут возникнуть из ничего, а затем аннигилировать друг друга. Поскольку параллельные пластины находятся очень близко друг к другу, эти виртуальные частицы не могут свободно попасть в пространство между пластинами. Таким образом, поскольку вокруг пластин находится гораздо больше частиц, чем между ними, это создает силу, направленную извне, которая слегка подталкивает пластины друг к другу. Этот эффект был точно измерен в 1996 году Стивеном Ламоро из Национальной лаборатории Лос-Аламос. Измеренная им сила притяжения оказалась крошечной (равной весу 1 /30000 такого насекомого, как муравей). Чем меньше расстояние между пластинами, тем больше сила притяжения. Итак, в этом заключается возможный принцип работы машины времени, выдуманной Торном. Высокоразвитая цивилизация могла бы начать с двух параллельных пластин, находящихся на крайне малом расстоянии друг от друга. Затем эти параллельные пластины были бы преобразованы в сферу, состоящую из внешней и внутренней оболочек. Затем они взяли бы две такие сферы и каким-либо способом протянули бы портал-червоточину между ними, таким образом эти сферы оказались бы соединены пространственным туннелем. Теперь каждая из сфер содержала бы вход в портал. Обычно течение времени синхронно в обеих сферах Но если мы поместим одну из сфер в ракету и запустим ее, сообщив ей скорость, близкую к световой, то для этой ракеты время замедлит свой ход, и две сферы больше не будут синхронизированы во времени. Часы в ракете идут намного медленнее, чем на Земле. Если затем прыгнуть в сферу на Земле, то через портал, соединяющий сферы, можно попасть в другую ракету, которая находится в прошлом (Однако, опять-таки, эта машина времени не может перенести вас во время, предшествующее созданию самой машины.) Проблемы отрицательной энергииНесмотря на то что, объявив о найденном решении уравнений Эйнштейна, Торн произвел настоящую сенсацию, реализация его идей затруднялась некоторыми серьезными препятствиями, трудноустранимыми даже в условиях высокоразвитой цивилизации. Для начала нтобходимо было получить большие количества отрицательной энергии, а она встречается довольно редко. Действие портала такого типа зависит от наличия большого количества отрицательной энергии, которая не дает порталу закрыться. Если получать отрицательную энергию, как это описал Казимир, действие ее довольно слабое и размер портала будет намного меньше атома, что делает нереальным путешествие через этот портал. Существуют и другие источники отрицательной энергии, кроме описанного эффекта Казимира, но все их довольно сложно контролировать. Например, физики Пол Дейвис и Стивен Фуллинг показали, что создание отрицательной энергии возможно с помощью быстро перемещаемого зеркала, при этом отрицательная энергия аккумулируется перед зеркалом по мере его передвижения К сожалению, для получения отрицательной энергии зеркало придется перемещать со скоростью, близкой к скорости света. Кроме того, как и в случае с эффектом Казимира, количество полученной отрицательной энергии чрезвычайно мало. Еще один способ получения отрицательной энергии связан с использованием высокомощных лазерных лучей Среди энергетических состояний лазера наличествуют «сжатые состояния», в которых сосуществуют положительная и отрицательная энергии Однако это юаимодействие тоже довольно трудно контролировать. Стандартный импульс отрицательной энергии может длиться 10"15 секунды, после чего за ним следует импульс положительной энергии. Отделить состояния положительной энергии от состояний отрицательной энергии возможно, хотя и чрезвычайно трудно. Более подробно я буду говорить об этом в главе 11. И наконец, оказывается, отрицательная энергия содержится и в черной дыре — у ее «горизонта событий». Как доказали Джейкоб Бекенштейн и Стивен Хокинг®, черная дыра не является идеально черной, поскольку она пусть медленно, но испускает энергию. Это происходит потому, что гринцип неопределенности делает возможным туннелирование излучения сквозь невероятную фавитацию черной дыры. Но поскольку такая черная дыра теряет энергию, со временем «горизонт событий» сужается Обычно, если положительное вещество (например, звезду) бросить в черную дыру, то «горизонт событий» расширяется Но если мы сбросим в черную дыру отрицательное вещество, то «горизонт событий» сузится. Таким образом, испускание энергии черной дырой создает отрицательную энергию возле «горизонта событий». (Некоторые ученые вьтдвигали идею поместить устье портала-червоточины рядом с «горизонтом собьпий», чтобы он собирал отрицательную энергию. Однако собирать отрицательную энергию подобным образом было бы крайне сложно и опасно, поскольку вам все время пришлось бы находиться чрезвычайно близко к «горизонту событий».) Хокинг доказал, что отрицательная энергия в целом необходима для стабипизации всех решений для порталов. Ход его рассуждений довольно прост. Обычно положительная энергия может создать вход в портал-червоточину, который концентрирует вещество и энергию. Таким образом, лучи света фокусируются в устье портала. Однако, если эти же лучи света появятся с другой стороны, то где-то в центре портала-червоточины лучи света должны расфокусироваться. Единственным возможным объяснением такого варианта событий является наличие отрицательной энергии Далее, отрицательная энергия отталкивает, что необходимо для предотвращения сжатия портала под воздействием силы фавитации. Поэтому ключом к созданию машины времени или портала может быть достаточное количество офицательной энфгии-чтобы устье-вход портала было открыто и находилось в устойчивом состоянии. (Многие ученые-физики уже обнаружили, что при наличии сильных гравитационных полей поля отрицательной энергии — явление обычное.) Так что, возможно, когда-нибудь гравитационную отрицательную энергию смогут использовать для управления машиной времени. Еще одним препятствием, не позволяющим создать такую машину времени, является следующее: где найти портал-червоточину? Торн опирался на тот факт, что порталы-червоточины создаются естественным путем в том, что называют «пеной» пространства-времени. Это возвращает нас к вопросу, который поставил более 2000 лет назад греческий философ Зенон: каково наименьшее расстояние, которое можно пройти? Зенон когда-то математически доказал, что реку пересечь невозможно. Сначала он заметил, что расстояние между берегами реки можно разделить на бесконечное количество точек. Но поскольку для того, чтобы пройти бесконечное множество точек, понадобится бесконечное количество времени, то реку пересечь невозможно. Или, если на то пошло, ничто вообще не может двигаться. (Для разрешения этой головоломки понадобятся еще два тысячелетия и соответствующее развитие вычислительной науки. Можно доказать, что бесконечное множество точек можно пройти за конечное количество времени, что, в конце концов, делает движение математически возможным.) Джон Уилер из Принстона проанализировал уравнения Эйнштейна с целью найти наименьшее расстояние. Уилер обнаружил, что на невероятно малых расстояниях, порядка длины Планка (10"см), теория Эйнштейна предсказывала, что искривление пространства будет достаточно велико. Иными словами, при длине Планка проявляется то обстоятельство, что пространство совсем не гладкое, а сильно искривленное, то есть его характеризуют неоднородность и «пенистость». Пространство становится комковатым и буквально бурлит; при этом крошечные пузырьки выпрыгивают из вакуума и снова исчезают в нем. Даже пустое пространство, если его рассматривать в таком масштабе, постоянно заполнено мельчайшими пузырьками пространства-времени, которые, по сути, представляют собой крошечные порталы-червоточины и вселенные-малютки. Обычно «виртуальные частицы состоят из электронных и позитронных пар, которые появляются, чтобы тут же аннигилировать друг друга. Но при длине Планка крошечные пузырьки, представляющие собой целые вселенные и порталы, могут возникать только для того, чтобы тут же раствориться в вакууме. Наша собственная Вселенная могла зародиться в виде одного из таких крошечных пузырьков, покачивающихся в «пене» пространства-времени, который потом раздулся по неизвестным нам причинам. Поскольку порталы-червоточины в естественном состоянии можно обнаружить в «пене», Торн предположил, что высокоразвитая цивилизация сможет извлечь эти порталы из «пены», а затем расширить их и стабилизировать с помощью отрицательной энергии. Хотя это достаточно сложный процесс, но он лежит в пределах возможностей, определяемых законами физики. Машина времени Торна кажется теоретически возможной, хотя, с точки зрения технологии, сконструировать ее чрезвычайно сложно; но существует еще один нерешенный вопрос: противоречат ли путешествия во времени фундаментальному закону физики? Вселенная у вас в спальнеВ 1992 году Стивен Хокинг попытался разрешить вопрос о путешествиях во времени раз и навсегда. Инстинктивно он был против путешествий во времени; ведь если бы путешествия сквозь время были таким же обычным явлением, как и воскресные пикники, то тогда мы должны были бы видеть туристов из далекого будущего, которые глазели бы на нас и фотографировали. Но физики часто приводят цитату из эпического романа Т. X. Уайта «Король былого и грядущего», где муравьиное общество заявляет: «Все, что не запрещено, обязательно к исполнению». Иными словами, если нет основополагающего физического принципа, запрещающего путешествия во времени, то они непременно являются физически возможными. (Причиной тому есть принцип неопределенности. Если только что-либо не запрещено, то квантовые взаимодействия и флуктуации в конце концов сделают это возможным при условии достаточно долгого ожидания.) В ответ Стивен Хокинг предложил «гипотезу защиты хронологии», которая запрещает путешествия во времени и тем самым «сохраняет историю для историков». Согласно этой гипотезе, путешествия во времени невозможны, поскольку противоречат частным физическим принципам. Поскольку с решениями для порталов-червоточин работать чрезвычайно трудно, Хокинг начал свое доказательство с анализа упрощенной Вселенной, открытой Чарльзом Мизнером из Мэрилендского университета: в ней наличествовали все составляющие, необходимые для путешествий во времени. Пространство Мизнера — это идеализированное пространство, в котором, например, ваша спальня становится целой Вселенной. Пусть каждая точка на левой стене спальни идентична соответствующей точке на правой стене. Это означает, что если вы пойдете по направлению к левой стене и не остановитесь вовремя, то вы не разобьете себе нос в кровь, а пройдете сквозь стену и возникнете вновь из правой стены. Это означает, что в каком-то смысле левая и правая стены соединены цилиндрически. Кроме того, точки на передней стене дома идентичны точкам на задней стене, а точки на потолке идентичны точкам пола. Таким образом, идя в любом направлении, вы пройдете сквозь одну из стен спальни и снова вернетесь в нее. Вы не можете выйти из нее. Иными словами, ваша спальня поистине является целой Вселенной! Далее, вглядевшись в левую или правую стену, вы увидите, что она, по сути, прозрачна и на другой стороне этой стены находится точная копия вашей спальни. В этой другой спальне стоит ваш точный клон, хотя вы и можете увидеть только его спину, но никогда — лицо. Если вы посмотрите вверх или вниз, то также увидите точные копии самого себя. По сути, существует бесконечная последовательность точных копий вас самих, стоящих спереди, сзади, внизу и над вами. Вступить в контакт с самим собой довольно трудно. Каждый раз, когда вы поворачиваете голову, чтобы взглянуть на лица клонов, вы обнаруживаете, что они тоже отворачиваются, и поэтому вы никак не можете увидеть их лица. Но если спальня достаточно маленькая, то вы можете просунуть руку сквозь стену и схватить за плечо клона, стоящего перед стеной. Вас может повергнуть в шок то, что клон сзади вас также протянул руку и схватил вас за плечо. Точно так же вы можете вытянуть руки направо и налево, схватив клонов, стоящих слева и справа, и тогда образуется бесконечная последовательность вас самих, держащихся за руки. В сущности, вы протянулись через всю В пространстве Мизнера Вселенная заключена в вашей спальне. Противоположные стены идентичны друг другу, а потому, пройдя сквозь одну стену, вы тут же появитесь из противоположной. Точно так же и потолок идентичен полу. Пространство Мизнера часто изучают по той причине, что его топология идентична топологии пор тала-червоточины, но с ним намного легче иметь дело в математическом отношении. Если стены двигаются, то во Вселенной Мизнера путешествия во времени, возможно, допустимы. Вселенную, чтобы схватить за плечо самого себя. (Не рекомендуется наносить вред своим клонам. Если вы возьмете пистолет и направите его на клона впереди вас, то вам, возможно, стоит пересмотреть свою позицию и не нажимать на курок, потому что клон сзади также целится в вас!) Представьте, что в пространстве Мизнера стены вокруг вас сжимаются. Ситуация становится интересной. Допустим, что спальня сжимается и правая стена медленно движется по направлению к вам со скоростью 3 км/ч. Если теперь вы пройдете сквозь левую стену, то снова появитесь из правой движущейся стены, но уже приобретете дополнительную скорость, равную 3 км/ч, сообщенную вам стеной, так что теперь вы будете двигаться со скоростью б километров в час. По сути, каждый раз, как вы совершаете полный проход, вам сообщается дополнительная скорость, равная 3 км/ч. После повторения путешествий вокруг Вселенной вы двигаетесь со скоростью 9, потом 12,15 км/ч — до тех пор, пока не достигнете невероятной скорости, близкой к световой. В определенной критической точке вы двигаетесь в этой Вселенной Мизнера настолько быстро, что начинаете путешествие во времени назад — По сути, вы можете посетить любую предыдущую точку пространства-времени. Хокинг тщательно изучил пространство Мизнера. Он обнаружил, что с математической точки зрения правая и левая стены почти идентичны двум устьям-входам портала-червоточины. Иными словами, ваша спальня и есть портал, где правая и левая стены одинаковы и являются идентичными устьями-входами портала. Затем он отметил тот факт, что пространство Мизнера неустойчиво с точки зрения как классической, так и квантовой механики. К примеру, если вы направите луч фонарика на левую стену, то луч будет набирать энергию каждый раз, появляясь из правой стены. Этот луч приобретет голубое смещение — то есть будет содержать все больше энергии, до тех пор, пока она не станет бесконечной, а это уже невозможно. Или же луч фонаря приобретет такое количество энергии, что создаст свое собственное невероятно сильное гравитационное поле, которое сожмет спальню/портал. Таким образом, портал сожмется, если вы попытаетесь пройти сквозь него. Также можно доказать, что нечто, называемое тензором энергии-импульса, который измеряет энергетическое и вещественное содержимое пространства, станет бесконечным, поскольку излучение может пройти сквозь эти две стены бесконечное количество раз. Хокинг таким образом нанес завершающий смертельный удар по идее путешествий во времени — многочисленные эффекты излучения накладывались до тех пор, пока не начинали стремиться к бесконечности, создавая отклонения, губя путешественника во времени и закрывая портал. В своих работах Хокинг поднял вопрос об отклонениях, что вызвало оживленную дискуссию в физической литературе. Ученые разделились — «за» и «против» принципа защиты хронологии. По сути, несколько физиков бросились искать бреши в доказательстве Хокинга, выбирая подходящие значения для порталов, изменяя их параметры — длину и прочее. Они обнаружили, что в некоторых решениях для порталов тензор энергии-импульса действительно отклонялся, нов остальных решениях он был четко определен. Русский физик Сергей Красников рассмотрел вопрос отклонений в связи с различными типами порталов и сделал вывод, что «нет ни крупицы доказательств такого предположения, что машина времени должна быть нестабильна». Научная мысль так далеко отступила от выводов Хокинга, что физик из Принстона Ли-Синь Ли даже выдвинул гипотезу анти-хронологической защиты: «Не существует такого закона физики, который бы препятствовал появлению замыкающихся временных петель». В 1998 году Хокинг был вынужден в некотором роде пойти на уступку. Он написал: «Тот факт, что тензор энергии-импульса не выказывает отклонений [в определенных случаях], доказывает, что обратная реакция не навязывает нам существования принципа защиты хронологии». Это совсем не означает, что путешествие во времени возможно, это лишь доказывает, что наши познания в этой области еще далеко не полны. Физик Мэтью Виссер считает, что провал гипотезы Хокинга «вовсе не должен питать надежды энтузиастов путешествий во времени, а скорее указывает на то, что разрешение вопросов защиты хронологии требует доскональной разработки теории квантовой гравитации». Сегодня Хокинг уже не говорит, что путешествия во времени абсолютно невозможны. Он утверждает лишь, что они очень уж маловероятны и трудно осуществимы. Перевес совершенно очевидно не в пользу путешествий во времени. Но тем не менее нельзя полностью отбрасывать возможность их осуществления. Если бы можно было каким-либо образом использовать большие количества положительной и отрицательной энергии, то путешествия во времени и вправду стали бы возможны. (И, возможно, наше время только потому не наводнили толпы туристов из будущего, что самым отдаленным временем, в которое они могут отправиться, является момент создания самой машины времени, а машины времени пока что еще не сконструированы.) Машина времени ГоттаВ 1991 году Дж. Ричард Готт III из Принстона предложил еще одно решение эйнштейновских уравнений, которое допускало путешествия во времени. Его подход был интересен потому, что Готт выбрал совершенно новое, можно сказать, свеженькое направление, полностью отбросив вращающиеся объекты, порталы-червоточины и отрицательную энергию. Готт родился в Луисвилле (штат Кентукки) в 1947 году. В его речи до сих пор слышен мягкий южный акцент, который кажется несколько экзотичным в разреженном, беспорядочном мире теоретической физики. Он начал изучать физику еще в детстве, вступив в клуб астрономов-любителей, где наслаждался видом звездного неба. В школе Готт выиграл престижный конкурс Вестингауза «Поиски научных талантов», в котором поныне участвует как председатель жюри. Закончив Гарвард со степенью доктора математики, он отправился в Принстон, где работает и по сей день. Занимаясь исследованиями в области космологии, Готт заинтересовался «космическими струнами», «остатком» Большого Взрыва, существование которых предсказывается во многих теориях. Космические струны могут быть тоньше диаметра атомного ядра, но их масса может быть сравнима со звездной и они протягиваются в пространстве на миллионы световых лет. Готт первым обнаружил решение уравнений Эйнштейна, допускающее существование космических струн. Но затем он заметил в этих космических струнах нечто необычное. Если взять две космические струны и отправить их навстречу друг другу, то прямо перед тем, как они столкнутся, их можно использовать в качестве машины времени. Во-вторых, он обнаружил, что если облететь вокруг сталкивающихся космических струн, то пространство сжимается, что придает ему необычные свойства. Мы знаем, что, если, например, обойти вокруг стола и вернуться на место старта, мы совершим оборот (вокруг стола) в 360°. Но если ракета облетит две космические струны при их прохождении друг сквозь друга, то она, по сути, совершит неполный оборот, меньше 360°, потому что пространство сжимается. (Это топология конуса. Если мы облетим вокруг конуса, то обнаружим, что совершили неполный оборот.) Таким образом, стремительно облетев вокруг обеих струн, вы фактически могли бы превысить скорость света (с точки зрения находящегося в отдалении наблюдателя), поскольку общее расстояние будет меньшим, чем ожидалось. Однако это не противоречит специальной теории относительности, поскольку в вашей собственной системе отсчета скорость ракеты никогда не превысит скорости света. Но это также означает, что если вы облетите две сталкивающиеся космические струны, то сможете совершить путешествие в прошлое. Готт вспоминает: «Когда я обнаружил это решение, я чрезвычайно взволновался. В решении использовалось только положительное вещество, которое двигалось со скоростью, не превышающей скорость света. Для сравнения: решения, привлекающие порталы, требуют присутствия более экзотического отрицательно-энергетически-плотного вещества (то есть чего-то, что весит меньше, чем ничего)». Но количество энергии, необходимое для создания машины времени, просто невероятно. «Чтобы сделать возможными путешествия в прошлое, космические струны массой в 10 триллионов на сантиметр должны двигаться в противоположных направлениях со скоростями, составляющими, по меньшей мере, 99,999999996 % скорости света. Мы наблюдали во Вселенной протоны высокой энергии, двигающиеся так же быстро, а потому такие скорости возможны», — замечает он. Некоторые критики указывают на то, что космические струны — явление очень редкое, если они вообще существуют, а столкновение космических струн — еще более редко. Поэтому Готт предложил следующее: высокоразвитая цивилизация может обнаружить космическую струну в открытом космосе. Используя гигантские космические корабли и точнейшие приборы огромных размеров, люди будущего могли бы преобразовать эту струну в слегка неправильный прямоугольник-петлю (похожий на наклонный стул). По его теории, эта петля-прямоугольник может коллапсировать под воздействием своей собственной гравитации, так что два прямых отрезка космической струны могут пролететь друг мимо друга со скоростью, близкой к скорости света, создав тем самым машину времени. И тем не менее Готт признает: «Коллапсирующая петля из космической струны, достаточно большая для того, чтобы вы смогли облететь вокруг нее и отправиться хотя бы на год назад в прошлое, должна была бы иметь массу-энергию более половины всей галактики». Временные парадоксыТрадиционно еще одной причиной, по которой ученые отбрасывали идею путешествия во времени, были временные парадоксы. Например, если вы вернетесь назад во времени и убьете своих родителей до момента вашего рождения, то рождение ваше станет невозможным. Так что, для начала, вы никогда не сможете вернуться назад во времени и убить своих родителей. Это важно, поскольку наука основывается на логически последовательных идеях; такого временного парадокса было бы достаточно, чтобы отбросить идею о путешествии во времени. Эти временные парадоксы разделяются на несколько категорий: Дедушкин парадокс. Согласно этому парадоксу, вы изменяете прошлое таким образом, что существование настоящего становится невозможным. Например, отправившись в отдаленное прошлое, чтобы взглянуть на динозавров, вы можете случайно наступить на маленькое мохнатое существо, которое, возможно, было первым предком рода человеческого. Уничтожив своего предка, вы делаете собственное существование логически невозможным. Информационный парадокс. Согласно этому парадоксу, информация приходит из будущего, а это означает, что у нее нет начала. Например, представим, что какой-то ученый создал машину времени и отправляется в прошлое, чтобы поведать секрет путешествия во времени самому себе в юные годы. У этого секрета не будет начала, поскольку та машина времени, которую создаст молодой ученый, не будет изобретена им самим; секрет ее конструкции будет передан ему его старшим воплощением. Парадокс Билкера. Предположим, человек знает, каким будет его будущее, и совершает какой-то поступок, что делает существование такого будущего невозможным. Например, вы создаете машину времени, которая может унести вас в будущее, и обнаруживаете, что вам суждено жениться на женщине по имени Джейн. Однако в пику судьбе вы решаете жениться на женщине по имени Хелен, таким образом делая невозможным существование такого будущего. Сексуальный парадокс. Согласно этому парадоксу, вы являетесь своим собственным отцом, что невозможно биологически. Герой истории, написанной британским философом Джонатаном Гаррисоном, не только является собственным отцом, но и съедает самое себя. В классическом произведении Роберта Хайнлайна «Все вы зомби» герой одновременно и собственный отец, и мать, и дочь, и сын — то есть в нем воплощено все фамильное древо. (За подробностями обратитесь к примечаниям. Раскрыть тайну сексуального парадокса в действительности довольно сложно, поскольку это требует знаний как в области теории путешествий во времени, так и в механике ДНК.) В «Конце вечности» Айзек Азимов рисует в своем воображении «временную полицию», которая отвечает за предотвращение подобных парадоксов. В фильме «Терминатор» сюжет основан на информационном парадоксе — ученые изучают микрочип, взятый у робота из далекого будущего, затем они создают целую расу роботов, которые наделены сознанием, и те завоевывают весь мир. Иными словами, сама конструкция этих роботов не была создана каким-либо изобретателем; она просто взята из обломков одного из роботов далекого будущего. В фильме «Назад в будущее» Майкл Дж. Фокс пытается избежать «дедушкиного парадокса», когда возвращается назад во времени и встречается со своей матерью-подростком, которая тут же влюбляется в него. Но если она отвергнет ухаживания отца Фокса, то само существование Майкла будет поставлено под угрозу. Сценаристы охотно нарушают законы физики, создавая голливудские блокбастеры. Но в кругу физиков к таким парадоксам относятся очень серьезно. Любое решение подобных парадоксов должно быть совместимо с теорией относительности и квантовой теорией. Например, для совмещения с теорией относительности река времени должна быть бесконечной. Вы не можете запрудить реку времени. В общей теории относительности время представлено как гладкая протяженная поверхность, которую нельзя разорвать и на которой не может образоваться рябь. Топология ее может измениться, но просто так остановиться река не может. Это означает, что если вы убьете своих родителей до момента собственного рождения, то вы не исчезнете. Такой вариант развития событий противоречил бы законам физики. В настоящее время физики делятся на две группы, поддерживая два возможных решения этих временных парадоксов. Русский космолог Игорь Новиков считает, что мы вынуждены действовать таким образом, словно парадоксы неизбежны. Его подход называется «школой непротиворечивости». Если река времени мягко поворачивает вспять и снова замыкается на самой себе, создавая водоворот, то, согласно предположениям Новикова, если мы решим вернуться назад во времени, что было бы чревато созданием временного парадокса, то некая «невидимая рука» должна вмешаться и предотвратить прыжок в прошлое. Но в подходе Новикова существуют проблемы со свободной волей. Если мы вернемся назад во времени и встретим своих собственных родителей, то можно подумать, что в своих действиях мы руководствуемся собственной волей; Новиков считает, что еще не открытый закон физики запрещает любое действие, которое изменило бы будущее (например, такое действие, как убийство собственных родителей или предотвращение факта собственного рождения). Он отмечает: «Мы не можем отправить путешественника во времени в сады Эдема, чтобы попросить Еву не рвать яблоко с дерева». Что же это за загадочная сила, не позволяющая нам изменить прошлое и создать временной парадокс? «Такое давление на нашу волю необычно и загадочно, но все же оно имеет свои параллели, — пишет он. — Например, я могу изъявить волю прогуляться по потолку без всякого специального снаряжения. Закон гравитации не позволит мне этого сделать; я упаду на пол, если попытаюсь это сделать, а потому моя свобода воли ограничена». Но временные парадоксы могут происходить и тогда, когда неодушевленное вещество (вовсе не обладающее свободной волей) забрасывается в прошлое. Предположим, что перед битвой Александра Великого с царем персов Дарием III в 330 году до н. э. вы отправляете в прошлое пулеметы с инструкцией на древнеперсидском по их использованию. Мы бы потенциально изменили всю последующую европейскую историю (и, возможно, обнаружили бы, что вместо одного из европейских языков разговариваем на каком-то диалекте персидского). По сути, даже мельчайшее вмешательство в прошлое может стать причиной самых неожиданных парадоксов в настоящем. Например, в теории хаоса используется метафора «эффект бабочки». В критические моменты формирования климата Земли достаточно малейшего трепета крыльев бабочки, чтобы пустить по воде рябь, способную нарушить баланс сил и вызвать грозу страшной силы. Даже мельчайшие неодушевленные объекты, будучи отправлены в прошлое, неизбежно изменят прошлое самым непредсказуемым образом, что станет причиной временного парадокса. Вторым способом разрешения временного парадокса является вариант, при котором река времени мягко разветвляется на две реки, или рукава, образуя две различные Вселенные. Иными словами, если бы вы отправились в прошлое и застрелили своих родителей до момента собственного рождения, вы бы убили людей, которые генетически не отличаются от ваших родителей в альтернативной вселенной, в той, где вы никогда не родитесь. Но ваши родители в вашей родной Вселенной останутся живы. Вторая гипотеза называется «теорией многих миров»: суть ее в том, что все возможные многочисленные миры могут существовать одновременно. Это исключает бесконечное количество расхождений, обнаруженное ХокингомЛ, поскольку излучение не будет раз за разом проходить сквозь портал, как в пространстве Мизнера. Если оно и проникнет сквозь портал, то только один раз. Каждый раз, проходя сквозь портал, оно будет входить в новую вселенную. И этот парадокс восходит, возможно, к глобальному вопросу квантовой теории: как может быть кот и живым, и мертвым в одно и то же время? Для ответа на этот вопрос физикам пришлось принять во внимание два шокирующих решения: либо Существует Космический Разум, следящий за всеми нами, либо существует бесконечное количество квантовых вселенных. ГЛАВА 6 Параллельные квантовыевселенные
В сверхпопулярном эксцентричном научно-фантастическом романе Дугласа Адамса «Автостопом по галактике» герой находит оригинальный способ путешествия к звездам. Вместо использования червоточин, гипердорог или порталов в другие измерения для путешествия в иные галактики, он решает овладеть принципом неопределенности, чтобы молниеносно преодолевать широты межгалактического пространства. Если бы мы могли каким-то образом подчинить себе вероятность определенных невероятных событий, то стало бы возможным все что угодно, в том числе путешествия со скоростью, превосходящей световую, и даже путешествия во времени. Достичь далеких звезд за секунды маловероятно, но при условии, что вы можете управлять квантовыми вероятностями по своему усмотрению, даже невозможное может стать делом привычным. Квантовая теория основана на том, что существует вероятность, что все возможные события могут произойти вне зависимости от того, насколько они фантастичны или глупы. Это, в свою очередь, лежит в основе инфляционной теории — в момент Большого Взрыва произошел квантовый переход в новое состояние, находясь в котором Вселенная внезапно невероятно расширилась. Видимо, вся наша Вселенная могла зародиться в результате маловероятного квантового скачка. Хотя Адаме писал в шутку, мы, физики, понимаем, что если бы можно было каким-то образом управлять этими вероятностями, то стали бы доступны трюки, неотличимые от волшебства. Но в настоящее время изменение вероятностей происхождения событий находится далеко за пределами возможностей нашей технологии. Иногда я даю аспирантам нашего университета задания попроще, например вычислить вероятность того, что они внезапно дематериализуются и снова возникнут с другой стороны кирпичной стены. Согласно квантовой теории, существует малая, но исчисляемая вероятность того, что такое может произойти. Или, коли на то пошло, вероятность того, что мы дематериализуемся у себя в гостиной и попадем на Марс. Согласно квантовой теории, в принципе можно внезапно рематериализоваться на красной планете. Конечно же, эта вероятность настолько мала, что нам пришлось бы ждать дольше жизни Вселенной. В результате в нашей повседневной жизни мы отбрасываем вероятность таких событий. Но на субатомном уровне такие вероятности жизненно необходимы для функционирования электроники, компьютеров и лазеров. По сути, электроны регулярно дематериализуются и рематериа-лизуются на другой стороне стенки в запчастях ваших компьютеров и компакт-дисков. В принципе, вся современная цивилизация потерпела бы крушение, если бы электроны не могли находиться в двух местах одновременно. (Молекулы, из которых состоят наши тела, тоже распались бы, не будь этого причудливого принципа. Представьте себе столкновение двух солнечных систем в космосе, происходящее согласно законам гравитации Ньютона. Столкнувшиеся солнечные системы распались бы и превратились в кучу хаотически разбросанных планет и астероидов. Подобным образом, если бы атомы действовали в соответствии с законами Ньютона, они бы распадались всякий раз, врезаясь в другой атом. Два атома объединяются в молекулу именно на основе способности электронов одновременно находиться в таком огромном количестве мест, что они образуют «электронное облако», которое удерживает атомы вместе. Таким образом, молекулы устойчивы, а Вселенная не разваливается потому, что электроны могут находиться во многих местах одновременно.) Но если электроны могут существовать в параллельных состояниях, паря на грани существования и небытия, то почему не может то же самое происходить и со Вселенной? В конце концов, в какой-то момент Вселенная была меньше, чем электрон. Признав возможность применения квантового принципа ко Вселенной, мы вынуждены принять во внимание существование параллельных вселенных. Именно эта возможность рассматривается в волнующем научно-фантастическом романе Филиппа Дика «Человек в высоком замке». В книге существует другая вселенная, отделенная от нашей одним-единственным кардинальным событием. В той вселенной в 1933 году история изменяется, когда пуля наемного убийцы убивает президента Рузвельта в первый год после его избрания. Его обязанности берет на себя вице-президент Гарнер, который проводит политику изоляционизма, в военном отношении ослабляющую Соединенные Штаты. Не подготовившись к атаке на Перл-Харбор и так и не оправившись после потери всего флота, Соединенные Штаты в 1947 году вынуждены подчиниться немцам и японцам. В конце концов США разделили на три части: германский рейх контролировал восточное побережье, японцы — западное побережье, между которыми находилась тревожная граница — штаты Скалистых Гор. В этой параллельной вселенной загадочный человек пишет книгу под названием «Саранча садится тучей», основанную на цитате из Библии, запрещенной нацистами. В книге говорится о другой вселенной, где Рузвельта не убивают, а Британия и Соединенные Штаты побеждают нацистов. Миссия героини заключается в том, чтобы выяснить, есть ли правда другая вселенная, где царят свобода и демократия, а не тирания и расизм. Сумеречная зонаМир «Человека в высоком замке» и наш разделены крошечным несчастным случаем, одной-единственной пулей, вылетевшей из ружья убийцы-наемника. Однако возможно также, что параллельный мир может отделять от нашего ничтожное возможное событие: одно-единственное квантовое событие, воздействие космического луча. В одном из эпизодов сериала «Сумеречная зона» человек просыпается и обнаруживает, что жена не узнает его. Она с криком выгоняет его, угрожая тем, что вызовет полицию. Бродя по городу, человек выясняет, что и закадычные друзья также не узнают его, будто бы он никогда и не существовал. В конце концов он заходит в гости к своим родителям; это посещение потрясает его до глубины души. Родители заявляют, что они видят его впервые и вообще у них никогда не было сына. Оставшись без семьи, друзей и дома, герой бесцельно бродит по городу и в конце концов, как бездомный, засыпает на скамье в парке. Проснувшись на следующий день, он обнаруживает, что снова лежит в удобной постели рядом со своей женой. Однако, когда жена поворачивается к нему лицом, он с ужасом видит, что это вовсе не его жена, а совершенно незнакомая женщина, которой он никогда прежде не видел. Возможны ли такие абсурдные ситуации? Может быть. Если бы главный герой «Сумеречной зоны» задал несколько откровенных вопросов своей матери, то, возможно, узнал бы, что она перенесла выкидыш, а потому у нее действительно никогда не было сына. Иногда один-единственный космический луч, одна-единственная частица из открытого космоса может проникнуть глубоко в ДНК эмбриона и стать причиной мутации, которая в конце концов вызовет выкидыш. В таком случае одно-единственное квантовое событие может разделить два мира — тот, где вы живете и являетесь нормальным полезным гражданином, и еще один, абсолютно идентичный первому, где вы так и не были рождены. Перемещение между этими мирами находится в соответствии с законами физики. Но оно чрезвычайно маловероятно; вероятность того, что это случится, астрономически мала. Однако, как вы видите, квантовая теория дает нам картину намного более странной вселенной, чем та, которую подарил нам Эйнштейн. В теории относительности сцена жизни, на которой мы играем свои роли, может быть сделана из резины, и актеры передвигаются между декорациями по кривой. Как и в мире Ньютона, актеры в мире Эйнштейна повторяют строчки своих написанных заранее ролей. Но в «квантовой» пьесе актеры внезапно выбрасывают свои сценарии и начинают играть по своей собственной воле. Марионетки обрывают свои нитки. Устанавливается царство свободной воли. Актеры могут исчезать и снова появляться на сцене. Что еще более странно, они могут обнаружить, что появляются в двух местах одновременно. Произнося свои реплики, актер никогда не может быть уверен, что партнер внезапно не исчезнет и не появится в другом месте. Исполинский ум: Джон УилерЗа исключением разве что Эйнштейна и Бора, никто не вел более горячей борьбы с нелепостями и успешными моментами квантовой теории, чем Джон Уилер. Является ли физическая реальность всего лишь иллюзией? Существуют ли параллельные квантовые вселенные? В прошлом, не вдаваясь в подробности этих упрямых квантовых парадоксов, Уилер применял эти вероятности для конструирования атомной и водородной бомб, а также был пионером в изучении черных дыр. Джон Уилер был последним из гигантов, или, как когда-то назвал их его студент Ричард Фейнман, «исполинских умов», который и до сих пор борется с безумными следствиями квантовой теории. Именно Уилер предложил термин «черная дыра» в 1967 году в Нью-Йорке на конференции в Институте космических исследований им. Годдарда, NASA, после открытия первых пульсаров. Уилер родился в 1911 году в Джексонвилле (штат Флорида). Его отец был библиотекарем, но инженерия были в крови у членов семьи. Три его дяди были горными инженерами и в своей работе часто использовали взрывчатые вещества. Сама идея использования динамита глубоко захватила Джона, он обожал наблюдать за взрывами. (Однажды он неосторожно экспериментировал с куском динамита и тот случайно взорвался прямо у него в руке, оторвав один палец и фалангу другого. По случайному совпадению, когда Эйнштейн учился в школе, с ним произошел подобный случай: из-за его неосторожности взрыв произошел прямо у него в руке, и потребовалось наложить несколько швов.) В детстве Уилер был развит не по годам, он овладел основами математики и глотал все книги, какие ему только удавалось найти, по новой теории, о которой не переставая говорили его друзья, — квантовой механике. Прямо на его глазах новая теория переживала свое становление в Европе, ее разработкой занимались Нильс Бор, Вернер Гейзенберг и Эрвин Шрёдингер, внезапно раскрышпий секреты атома. Всего лишь несколько лет назад последователи философа Эрнста Маха поднимали на смех саму идею существования атомов, утверждая, что никогда еще атомы не удавалось наблюдать в лабораторных условиях и что вообще они наверняка были всего лишь выдумкой. Чего нельзя увидеть, то и существовать наверняка не может, утверждали они. Великий немецкий физик Людвиг Болыгман, заложивший основы термодинамики, покончил жизнь самоубийством в 1906 году отчасти из-за постоянных насмешек, с которыми ему приходилось иметь дело, проводя в жизнь концепцию атомов. Затем всего за пару лет, с 1925 по 1927 годы, было раскрыто множество секретов атомов. Современная история не знала случаев, чтобы прорывы такого масштаба были совершены за столь краткий промежуток времени (за исключением работы Эйнштейна в 1905 году). Уилер хотел принять участие в этом перевороте. Но он понимал, что Соединенные Штаты оставались за бортом достижений в области физики: в пределах страны не было ни единого физика мирового масштаба. Подобно Дж. Роберту Оппенгеймеру до него, Уилер уехал из Соединенных Штатов и отправился в Копенгаген, чтобы учиться у самого Маэстро — Нильса Бора. Эксперименты по изучению электронов показали, что электроны действуют и как частицы, и как волны. Секрет этой странной двойственности был в конце концов раскрыт квантовыми физиками: совершая свой танец вокруг атома, электрон виделся частицей, но эту частицу сопровождала загадочная волна. В 1925 году австрийский физик Эрвин Шрёдингер предложил уравнение (знаменитое уравнение Шрёдингера), которое в точности описывало движение волны, сопровождающей электрон. Эта волна, обозначаемая греческой буквой с ошеломительной точностью прогнозировала поведение атомов, что стало первой искрой, от которой вспыхнул пожар революции в физике. Внезапно, основываясь на самом элементарном знании, стало возможно вглядеться в атом и вычислить, сколько электронов танцуют на своих орбитах, совершая переходы и соединяя атомы в молекулы. Квантовый физик Поль Дирак хвастливо пообещал, что физики скоро сведут всю химию к простой инженерии. Он заявил: «Основополагающие физические законы, составляющие математическую базу большей части физики и всей химической науки, уже известны. Единственная трудность состоит в том, что применение этих законов приводит к получению слишком сложных и не поддающихся решению уравнений». Как ни была внушительна эта \|/-функция, до сих пор оставалось загадкой, что же именно она представляла. В конце концов в 1928 году Макс Борн выдвинул идею о том, что эта волновая функция представляла вероятность обнаружения электрона в любой заданной точке. Иными словами, вы никогда не могли быть точно уверены, где находится электрон; максимум того, что вы могли сделать, — это вычислить его волновую функцию, которая давала вероятность его нахождения именно «там». Итак, если атомная физика могла быть сведена к волнам вероятности нахождения электрона «там» или «тут» и если электрон, по-видимому, мог находиться в двух местах одновременно, то как же нам в конце концов определить, где он действительно находится? Бор и Гейзенберг в конце концов сформулировали полный набор рецептов в кулинарной книге физики, которые сработали в атомных экспериментах с потрясающей точностью. Волновая функция дает информацию только о вероятности того, что электрон находится «тут» или «там». Если для какой-то точки волновая функция велика, то это означает высокую вероятность того, что электрон находится именно там. (Если она мала, то маловероятно, что электрон находится там.) Например, если бы мы могли «видеть» волновую функцию человека, то она выглядела бы очень похожей на этого человека. Однако волновая функция также плавно распространяется и на космос, а это значит, что существует малая вероятность того, что человек окажется на Луне. (По сути, волновая функция человека распространяется по всей Вселенной.) Это также означает, что волновая функция дерева может сообщить вам информацию о вероятности того, стоит ли оно или падает, но она не может определенно ответить вам на вопрос, в каком же состоянии оно действительно находится. Но здравый смысл говорит нам, что объекты находятся в каком-то определенном состоянии. Когда вы смотрите на дерево, оно определенно находится перед вами — либо стоит, либо падает, но не делает и того, и другого одновременно. Чтобы разрешить несовпадения между волнами вероятности и представлением о существовании, диктуемым нашим здравым смыслом, Бор и Гейзенберг предположили, что после измерения, совершенного далеким наблюдателем, волновая функция волшебным образом «коллапсирует» и электрон впадает в определенное состояние — то есть, посмотрев на дерево, мы видим, что оно действительно стоит. Иными словами, процесс наблюдения определяет конечное состояние электрона. Наблюдение жизненно необходимо для существования. После того как мы взглянем на электрон, его волновая функция коллапсирует; таким образом, он теперь находится в определенном состоянии и больше нет нужды в волновых функциях. Итак, постулаты копенгагенской школы Бора можно суммировать приблизительно в следующем виде: 1. Вся энергия встречается в виде отдельных пучков энергии, называемых квантами. (Например, квантом света является фотон. Кванты слабого взаимодействия называются W- и Z-бозонами, квантом сильного взаимодействия является глю-он, а квант гравитации называется гравитоном, который нам еще предстоит увидеть в лабораториях.) 2. Вещество представлено точечными частицами, но вероятность обнаружения этой частицы определяется волной. Сама волна, в свою очередь, подчиняется определенному волновому уравнению (такому, как волновое уравнение Шрёдингера). 3. Перед наблюдением объект существует во всех возможных состояниях одновременно. Чтобы определить, в каком состоянии находится объект, нам необходимо провести наблюдение, в результате которого волновая функция «коллапсирует» и объект входит в определенное состояние. Сам акт наблюдения уничтожает волновую функцию, и объект приобретает реальную определенность. Волновая функция служит своей цели: она дает нам точную вероятность обнаружения данного объекта в конкретном состоянии. Детерминизм или неопределенность?Квантовая теория является самой успешной физической теорией всех времен. Совершенной формулировкой квантовой теории является Стандартная модель, в которой представлены плоды десятилетий экспериментов с ускорителями частиц. Некоторые части этой теории были проверены с точностью до миллиардных долей. Если включить сюда массу нейтрино, то Стандартная модель соответствует всем экспериментам с субатомными частицами без исключения. Но независимо от того, насколько успешна квантовая теория, экспериментально она основана на постулатах, вызвавших целую бурю философских и теологических споров на протяжении последних 80 лет. В частности, второй постулат вызвал гнев церкви, поскольку в нем содержится вопрос о том, кто решает наши судьбы. На протяжении веков философов, теологов и ученых волновало будущее, а также вопрос, возможно ли каким-либо образом узнать об ожидающих нас судьбах. В шекспировском «Макбете» Банко, отчаявшись приподнять завесу, скрывающую будущее, произносит памятные строки: Когда ваш взор, в посев времен проникнув, Шекспир написал эти слова в 1606 году. 80 лет спустя еще один англичанин, Исаак Ньютон, имел дерзость заявить, что ему известен ответ на этот древний вопрос. И Ньютон, и Эйнштейн верили в концепцию, называемую детерминизмом, которая утверждает, что все грядущие события могут быть определены в принципе. С точки зрения Ньютона, Вселенная представляла собой гигантские часы, которые Бог завел в начале времен. С тех пор они тикают, подчиняясь трем законам механики самым предсказуемым образом. Французский математик Пьер Симон де Лаплас, который был ученым советником Наполеона, писал, что, используя законы Ньютона, можно предсказать будущее с той же точностью, с которой мы рассматриваем наше прошлое. Он написал, что если бы существо могло знать положение и скорость всех частиц во Вселенной, то «для такого интеллекта ничто не было бы неопределенным и будущее, как и наше прошлое, предстало бы перед нашими глазами». Когда Лаплас подарил Наполеону экземпляр своего шедевра, «Небесной механики», император заметил: «Вы написали эту огромную работу о небесах и ни разу не упомянули Бога». Лаплас отвечал: «Сир, у меня не было нужды в этой гипотезе». Для Ньютона и Эйнштейна понятие свободной воли, того, что мы хозяева собственной судьбы, было лишь иллюзией. Это банальное понятие реальности, где конкретные объекты, до которых мы можем дотронуться, реальны и существуют в определенных состояниях, Эйнштейн назвал «объективной реальностью». Он в высшей степени ясно изложил свою позицию в нижеследующем отрывке: Я детерминист, вынужденный действовать таким образом, будто свободная воля существует, поскольку если я хочу жить в цивилизованном обществе, то мне необходимо действовать соответственно. Я знаю, что с философской точки зрения на убийце не лежит ответственность за его преступления, но я бы не стал распивать с ним чай. Мою карьеру определили различные силы, над которыми я не властен, в первую очередь те загадочные железы, в которых природа готовит самую сущность жизни. Генри Форд может назвать это своим Внутренним Голосом, Сократ определил это как своего демона: каждый человек по-своему объясняет тот факт, что человеческая воля не свободна… Все определено… силами, над которыми мы не властны… в равной степени для насекомого и для звезды. Человеческие существа, овощи или космическая пыль — все мы танцуем под загадочное время, модулируемое где-то невидимым исполнителем. Теологи также боролись с этим вопросом. Большинство мировых религий верит в какую-то форму предопределенности, идею о том, что Бог не только всемогущ и вездесущ, но также всезнающ (ему известно все, даже будущее). В некоторых религиях это означает, что Богу известно, отправимся мы в ад или в рай, еще до нашего рождения. По сути, где-то на небесах существует «книга судеб», где перечислены все наши имена, даты рождения, наши провалы и триумфы, радости и поражения, даже даты смерти и будем ли мы жить в раю или будем осуждены на вечные муки. (Этот тонкий теологический вопрос предопределенности частично способствовал расколу католической церкви в 1517 году, когда Мартин Лютер приколол 95 тезисов на дверях церкви в Виттен-берге. В этом документе он критиковал практику продажи церковью индульгенций — в сущности, взяток, которые мостили дорогу в рай богатым. Казалось, Лютер говорил, что, возможно, Богу известно наше будущее наперед и наши судьбы предопределены, но Бога нельзя убедить поменять свое решение, сделав щедрое пожертвование на нужды церкви.) Но для физиков, принимающих концепцию неопределенности, наиболее противоречивым постулатом является третий, причина головной боли целых поколений физиков и философов. «Наблюдение» — это неопределенный слабовыраженный концепт. Более того, он полагается на тот факт, что в действительности существуют два типа физики: одна для причудливого субатомного мира, где электроны, видимо, могут находиться в двух местах одновременно, и вторая — для макроскопического мира, в котором мы живем и который, видимо, подчиняется законам Ньютона, основанным на здравом смысле. По Бору, существует невидимая «стена», отделяющая мир атомов от обыденного знакомого макроскопического мира. В то время как в мире атомов действуют причудливые правила квантовой теории, мы живем с другой стороны стены, в мире четко определенных планет и звезд, где волны уже коллапсировали. Уилеру, которому преподавали квантовую механику сами ее создатели, нравилось суммировать взгляды представителей этих двух школ. Он приводит пример трех судей на бейсбольном матче, которые обсуждают тончайшие правила игры. Вынося решение, трое судей говорят: Первый: Я называю их так, как вижу. Второй: Я называю их тем, чем они являются. Третий: Они — ничто до тех пор, пока я не назову их. Для Уилера второй судья — это Эйнштейн, который верил в существование абсолютной реальности за пределами человеческого опыта. Эйнштейн называет это «объективной реальностью», то есть идеей, согласно которой объекты могут существовать в различных состояниях без вмешательства человека. Третий судья — это Бор, который считал, что реальность существует только после того, как имело место наблюдение. Деревья в лесуФизики иногда относятся к философам с некоторым пренебрежением, цитируя римлянина Цицерона, который когда-то сказал: «Не существует ничего абсурдного настолько, чтобы философы этого не произнесли». Математик Станислав Улам, который с пессимизмом относился к тому, что глупейшим концептам присваивались возвышенные имена, однажды сказал: «Безумие — это способность проводить четкие грани между различными видами вздора». Сам Эйнштейн однажды сказал по поводу философии: «Разве не похоже, что вся философия будто написана на меду? При созерцании она смотрится чудесно, но взглянув снова, вы видите, что все исчезло. Остается только густая масса». Физики также любят рассказывать апокрифическую историю о некоем ректоре университета, который пришел в ярость, увидев финансовую смету для физического, математического и философского факультетов. Он сказал: «Почему это физикам все время нужно столько дорогостоящего оборудования? Вот смотрите, для математического факультета нужны деньги только на бумагу, карандаши и корзины для бумаг, а что касается факультета философии, так там дело обстоит еще лучше. Им даже не нужны корзины для бумаг». Однако может случиться так, что смеяться последними будут все же философы. Квантовая теория не завершена и покоится на шатком философском основании. Эти квантовые расхождения требуют пересмотра работ таких философов, как епископ Беркли, который в XVIII веке заявил, что объекты существуют только потому, что есть люди, которые на них смотрят; такое философское течение называется солипсизмом или идеализмом. Если в лесу падает дерево, но нет никого, кто бы это увидел, то в действительности оно не падает, заявляют приверженцы такого подхода. Теперь мы имеем дело с квантовой реинтерпретацией деревьев, падающих в лесу. До того как совершается акт наблюдения, вы не знаете, упало дерево или нет. В сущности, дерево существует во всех возможных состояниях одновременно: оно может быть сожжено, свалено, распилено на дрова и опилки и так далее. Когда происходит наблюдение, дерево внезапно попадает в определенное состояние, и мы видим, что оно, к примеру, упало. Сравнивая философские трудности теории относительности и квантовой теории, Фейнман однажды заметил: «Было время, когда в газетах писали, что всего лишь двенадцать человек понимают теорию относительности. Я не верю, что такое время было… С другой стороны, думаю, не ошибусь, если скажу, что никто не понимает квантовую механику». Он пишет, что квантовая механика «описывает природу как нелепицу с точки зрения здравого смысла. И это полностью согласуется с экспериментальной базой. Так что, я надеюсь, вы можете принимать природу такой, какая она есть, — нелепой». Это вызвало чувство неловкости у многих физиков-практиков, которые чувствуют себя так, будто строят целые миры на зыбучих песках. Стивен Вайнберг пишет: «Я признаю, что есть некоторый дискомфорт в том, что всю жизнь я работаю с теоретической основой, которая никому до конца не понятна». В традиционной науке наблюдатель пытается оставаться, глядя на мир, настолько беспристрастным, насколько это возможно. (Как сказал один остряк, «Вы всегда можете вычислить ученого в стрип-клубе, поскольку он один смотрит не на подиум, а на публику».) Но сейчас мы впервые видим, что невозможно разделить наблюдателя и предмет его наблюдения. Как однажды заметил Макс Планк, «Наука не может окончательно разрешить загадку Природы. Причина заключена в том, что в конечном счете мы сами часть той загадки, которую пытаемся разрешить». Проблема котаЭрвин Шрёдингер, который, собственно, и ввел волновое уравнение, считал, что все это зашло слишком далеко. Он признался Бору, что] сожалеет о том, что вообще ввел понятие волны, раз за ним в физику проник концепт вероятности. Чтобы уничтожить идею вероятностей, он предложил следующий эксперимент. Представьте, что в ящике сидит кот. Внутри также находится бутылка с ядовитым газом, соединенная с молотом, который, в свою очередь, соединен со счетчиком Гейгера, помещенным рядом с куском урана. Никто не станет оспаривать тот факт, что радиоактивный распад атома урана — чисто квантовое событие, которое не может быть предсказано наперед. Пусть существует 50-процентная вероятность того, что распад начнется в следующую секунду. Но если начнется распад атома урана, то запустится счетчик Гейгера, который освободит молот, который разобьет бутылку, что станет причиной смерти кота. До того как вы откроете коробку, нельзя сказать, жив кот или мертв. В сущности, для того, чтобы описать кота, физики добавляют волновую функцию к мертвому коту и живому коту — то есть мы помещаем кота в жуткое состояние, где он на 50 % жив и на 50 % мертв одновременно. Теперь откроем коробку. Как только мы взглянем внутрь, совершится акт наблюдения, произойдет коллапс волновой функции и мы увидим, что кот, к примеру, жив. Шрёдингеру все это казалось глупостью. Как может быть кот жив и мертв одновременно только потому, что мы на него не смотрим? Он начинает внезапно существовать, как только мы взглянем на него? Эйнштейну тоже не нравилась такая интерпретация. Когда к нему домой приходили гости, он говорил: посмотрите на луну. Неужели она внезапно начинает существовать, когда на нее взглянет мышь? Эйнштейн считал, что ответ на этот вопрос может быть только отрицательный. Но в каком-то смысле ответ мог быть и утвердительным. История эта достигла апогея в историческом столкновении Эйнштейна и Бора на Сольвеевском конгрессе в 1930 году. Позднее Уилер заметит, что это был величайший известный ему спор в истории мысли. Он скажет, что за тридцать лет он никогда не слышал спора двух более великих людей по более глубокому вопросу, который имел бы более серьезные последствия для понимания Вселенной. Эйнштейн, неизменно отважный, дерзкий и в высшей степени красноречивый, предложил ряд «мысленных экспериментов», направленных на разрушение квантовой теории. Бор, беспрерывно бормотавший, после каждой атаки понемногу сдавал свои позиции. Физик Поль Эренфест заметил: «Замечательно, что я был свидетелем диалогов между Бором и Эйнштейном, будто шахматист, сталкивающийся все с новыми и новыми ситуациями. Как некий вечный двигатель, намеренный прорвать завесу неопределенности, Бор все время выискивал в облаке философии средства опровергнуть примеры один за другим. Эйнштейн был каждое утро свеж, будто чертик, выскакивающий из коробочки. О, это было прекрасно. Но я практически безоговорочно за Бора и против Эйнштейна. Сегодня он ведет себя по отношению к Бору точно так же, как чемпионы абсолютной одновременности вели себя по отношению к нему самому». Наконец Эйнштейн предложил эксперимент, который, по его мнению, должен был нанести завершающий удар по квантовой теории. Представьте, что в коробочке содержатся фотоны в виде газа. Если в коробке есть затвор-диафрагма, то оттуда может вылететь один фотон. Раз можно точно измерить скорость затвора, а также энергию фотона, то таким образом можно определить состояние фотона с бесконечной точностью, что противоречит принципу неопределенности. Эренфест писал: «Для Бора это оказалось тяжким ударом. На тот момент он не видел решения. Он был очень расстроен весь вечер, ходил от одного к другому, пытаясь убедить всех, что это не может быть правдой, потому что если Эйнштейн прав, то это ознаменовало бы конец физики как таковой. Но он никак не мог придумать опровержение. Я никогда не забуду зрелище, которое являли собой два оппонента, покидая университетский клуб. Эйнштейн, величественная фигура, спокойно шагал с легкой иронической улыбкой, а Бор семенил рядом с ним, чрезвычайно расстроенный». Когда несколько позже Эренфест встретил Бора, тот был неразговорчив; он только снова и снова повторял одно слово: «Эйнштейн… Эйнштейн… Эйнштейн». На следующий день, после напряженной бессонной ночи, Бор смог найти крошечный изъян в аргументах Эйнштейна. После испускания фотона коробка становилась чуть легче, поскольку вещество и энергия были эквивалентны. Это означало, что коробка чуть полни» малась под действием силы гравитации, поскольку, согласно теории гравитации самого Эйнштейна, энергия также обладала весом. Если вычислить неопределенность в весе и неопределенность в скорости затвора, то обнаруживалось, что коробка в точности повиновалась принципу неопределенности. По сути, Бор воспользовался теорией гравитации Эйнштейна, чтобы аргументы Эйнштейна же опроверг-, нуть! Бор победил, Эйнштейн потерпел поражение. Говорят, что, когда позднее Эйнштейн пожаловался, что «Бог не играет в црстн с миром», Бор ему ответил: «Не нам указывать Богу, что Ему делать». В конечном счете Эйнштейн признал, что Бор успешно опроверг его аргументы. Эйнштейн написал: «Я убежден, что в этой теории, несомненно, содержится зерно истины». (Однако Эйнштейн с пренебрежением относился к физикам, которые были не в состоянии оценить тонкие парадоксы, присущие квантовой теории. Однажды он написал: «Конечно, сегодня каждый плут считает, что знает ответ, но он обманывает сам себя».) После этого спора, а также других споров с квантовыми физиками Эйнштейн в конце концов сдался, но он избрал другой подход. Он признал, что квантовая теория верна, но лишь в определенной области, только в качестве приближенности к истине. Он хотел, чтобы квантовая теория оказалась поглощена более общей и сильной теорией — теорией поля, подобно тому как теория относительности обобщала (но не уничтожала) теорию Ньютона. (Однако этот спор между Эйнштейном и Шрёдингером с одной стороны и Бором и Гейзенбергом с другой нельзя так просто сбрасывать со счетов, поскольку все эти «мысленные эксперименты» теперь осуществимы в лабораториях. Хотя ученые не могут добиться того, чтобы кот был одновременно жив и мертв, они могут управлять отдельными атомами при помощи нанотехнологий. Недавно эти сложнейшие эксперименты были проведены с наночастицей С60, известной как бакибол (Buckyball), содержащей 60 атомов углерода, а потому воздвигнутая Бором «стена», разделяющая большие объекты и квантовые, стремительно разрушается. Физики-экспериментаторы сейчас размышляют над тем, что потребовалось бы для того, чтобы показать, что вирус, состоящий из тысяч атомов, может находиться в двух местах одновременно.) БомбаСамым неудачным образом все рассуждения по поводу этих занимательных парадоксов были прерваны выдвижением Гитлера в канцлеры в 1933 году и лихорадочной гонкой по созданию первой атомной бомбы. В течение многих лет было известно (из знаменитого уравнения Эйнштейна Е = тс2), что атом является закрытым хранилищем огромных количеств энергии. Но большинство физиков несерьезно относились к мысли об использовании этой энергии. Даже Эрнст Резерфорд, человек, открывший ядро атома, сказал: «Энергия, освобождаемая при разбивании ядра атома, очень незначительна. Любой, кто рассчитывает найти источник энергии в трансформации атомов, несет вздор». В 1939 году Бор предпринял судьбоносную поездку в Соединенные Штаты, приземлившись в Нью-Йорке для встречи со своим учеником Джоном Уилером. Бор вез зловещие новости: Отто Хан и Лиз Майтнер доказали, что атом урана можно разбить надвое; в этом процессе, называемом расщеплением атома, освобождалась энергия. Бор и Уилер начали разрабатывать квантовую динамику ядерного деления. Поскольку все в квантовой теории основано на вероятности и случайности, они вычислили вероятность того, что нейтрон расщепит ядро урана, освободив тем самым два или более нейтронов, которые, в свою очередь, расщепят еще большее количество ядер атомов урана, в результате чего освободится еще больше нейтронов, и так далее, что запустит цепную реакцию, способную разрушить целый город. (В квантовой механике никогда не знаешь, расщепит ли отдельный конкретный нейтрон атом урана, но можно с невероятной точностью вычислить вероятность того, что миллиарды атомов урана расщепятся в бомбе. В этом и состоит сила квантовой механики.) Их квантовые расчеты показали, что существование атомной бомбы вполне возможно. Два месяца спустя Бор, Юджин Вигнер, Лео Сцилард и Уилер встретились в старом кабинете Эйнштейна в Принстоне, чтобы обсудить перспективы создания атомной бомбы. Бор считал, что для создания бомбы понадобятся ресурсы всей на» ции. (Несколько лет спустя Сцилард убедит Эйнштейна написать судьбоносное письмо Президенту Франклину Рузвельту, где настоятельно рекомендовалось сконструировать атомную бомбу) В том же году нацисты, узнав о том, что огромное количество энергии, испускаемое атомом урана, может дать им непобедимое оружие, велели ученику Бора Гейзенбергу создать атомную бомбу для Гитлера. Неожиданно все разговоры о квантовых вероятностях распада стали в высшей степени серьезными: на карту была поставлена судьба всего человечества. На смену спорам о вероятности обнаружения живых котов пришли споры о вероятности расщепления урана. В 1941 году, когда нацисты держали под контролем большую часть Европы, Гейзенберг тайно навестил своего старого преподавателя Бора в Копенгагене. До сих пор завеса тайны покрывает то, в каком ключе проходила их беседа; об этом написаны отмеченные наградами пьесы, а историки до сих пор спорят о содержании встречи. Предлагал ли Гейзенберг саботировать создание германской атомной бомбы? Или, наоборот, он пытался завербовать Бора для работы по созданию атомной бомбы для нацистов? В 2002 году, шесть десятилетий спустя, завеса тайны над намерениями Гейзенберга была частично приподнята, когда родные Бора опубликовали письмо Бора, написанное Гейзенбергу уже в 50-е годы, но так и не отправленное. В письме Бор вспоминал, что на той встрече Гейзенберг назвал победу нацистов неизбежной. Поскольку остановить непробиваемую машину нацизма нельзя, то было бы только логично, если бы Бор работал на нацистов. Бор был потрясен и шокирован до глубины души. Дрожа от негодования, он отказался отдать свою работу над квантовой теорией в руки нацистов. Поскольку Дания находилась под контролем нацистов, Бор спланировал тайный побег на самолете, во время которого он чуть не задохнулся из-за нехватки кислорода. А тем временем в Колумбийском университете Энрико Ферми доказал, что ядерная цепная реакция осуществима. Придя к этому выводу, он окинул взглядом Нью-Йорк и осознал, что одна-един-ственная бомба может полностью уничтожить знаменитый город. Когда Уилер увидел, как высоко поднялись ставки, он добровольно оставил Принстон и присоединился к Ферми в лаборатории под университетским стадионом Стэгт-Филд в Чикаго, где они вместе создали первый ядерный реактор, тем самым ознаменовав официальное начало ядерной эпохи. На протяжении последовавших десяти лет Уилеру выпало стать свидетелем самых важных событий в ходе атомной войны. Во время войны он помогал контролировать строительство исполинского ядерного центра в Хэнфорде (штат Вашингтон), где вырабатывался сырой плутоний, необходимый для создания бомб, которые затем уничтожили Нагасаки. Еще через несколько лет он работал над созданием водородной бомбы и в 1952 году стал свидетелем первого ее взрыва, а также разрушений, вызванных сбросом кусочка Солнца на небольшой островок в Тихом океане. Однако, более десяти лет пробыв на первых страницах истории, в конце концов Уилер все же вернулся к своей первой любви — загадкам квантовой теории. Суммирование по траекториямОдним из многих учеников Уилера в послевоенные годы был Ричард Фейнман, который нашел, возможно, простейший и в то же время самый глубокий способ суммировать сложности квантовой теории. (Одним из следствий стало присуждение Фейнману Нобелевской премии в 1965 году.) Представим, что вы хотите пройти через комнату. По Ньютону, вы просто-напросто выберете кратчайший путь от точки А к точке Б, называемый классическим. Но по Фейнману, прежде всего вы должны учесть все возможные пути, соединяющие точки А и Б. Это означает, что вы должны принять во внимание пути, которые приведут вас на Марс, Юпитер, к ближайшей звезде, даже те пути, которые ведут назад во времени, к моменту Большого Взрыва. Не имеет значения, насколько сумасшедшими и причудливыми будут эти пути, — вы все равно должны их учитывать. Затем Фейнман приписал каждому пути определенную величину, а также привел свод точных правил, руководствуясь которыми можно было бы эту величину определить. Самым чудесным образом, сложив эти величины всех возможных путей, вы находите вероятность перехода из точки А в точку Б, которая дается обычной квантовой механикой. Это было поистине замечательно. Фейнман обнаружил, что сумма этих величин, приписываемых причудливым и противоречащим законам Ньютона путям, обычно уравновешивалась и давала небольшое число. Такова была природа квантовых флуктуации — они представляли пути, сумма которых была очень мала. Но Фейнман также обнаружил, что избранный на основе здравого смысла ньютоновский путь не уравновешивался, а обладал максимальной итоговой величиной — это был путь с наибольшей вероятностью. Таким образом, наше представление о физической вселенной, основанное на здравом смысле, является просто-напросто наиболее вероятным состоянием из бесконечного количества возможных. Но мы сосуществуем со всеми возможными состояниями, некоторые из них перенесли бы нас в эпоху динозавров, к ближайшей сверхновой или на окраину Вселенной. (Эти причудливые пути создают мельчайшие отклонения от ньютонианского пути, избранного на основе здравого смысла, но, к счастью, обладают очень малой вероятностью.) Иными словами, как бы странно это ни выглядело, каждый раз, как вы идете через комнату, ваше тело заблаговременно «обнюхивает» все возможные пути, даже те, что ведут к далеким квазарам и Большому Взрыву, а затем все их складывает. Используя мощный математический аппарат, называемый функциональным интегрированием, Фейнман показал, что ньютоновский путь — всего лишь наиболее вероятный, но не единственный. Совершив блестящий математический подвиг, Фейнман смог доказать, что эта картина, какой бы ошеломляющей она ни казалась, полностью эквивалентна обычной квантовой механике. Сила фейнмановского «суммирования по траекториям» состоит в том, что сегодня, когда мы формулируем теории ТВО, теорию инфляции и даже струнную теорию, мы пользуемся подходом Фейнмана, основанным на интегралах по траекториям. Этот метод преподается сейчас во всех университетах мира и на сегодняшний день является самым эффективным и удобным способом формулировки квантовой теории. (Я сам каждый день в своих исследованиях пользуюсь подходом Фейнмана, основанным на обобщении интегралов по траекториям. Каждое уравнение, которое я пишу, выводится на основе суммирования по траекториям. Когда в бытность студентом я впервые узнал о подходе Фейнмана, он изменил все мое ментальное представление о вселенной. Умом я понимал абстрактную математику квантовой теории и общей теории относительности, но изменила мое мировоззрение именно та идея, что, просто проходя по комнате, я каким-то образом исследую пути, которые могут привести меня на Марс или к далеким звездам. Внезапно у меня появилась странная новая мысленная картина — самого себя, живущего в этом квантовом мире. Я начал понимать, что квантовая теория намного более заумна, чем сложнейшие следствия теории относительности.) Когда Фейнман разработал эту причудливую формулировку, Уилер, который тогда был в Принстонском университете, бросился в Институт передовых исследований к Эйнштейну, чтобы попытаться убедить его в элегантности и мощи этой новой картинки. Уилер взволнованно объяснил Эйнштейну новую теорию Фейнмана об обобщении интегралов по траекториям. Он не осознавал полностью, насколько дико эти слова прозвучали для Эйнштейна. Впоследствии Эйнштейн качал головой и повторял, что он все же не верит в то, что Бог играет в кости с миром. Эйнштейн признался Уилеру, что мог и ошибаться, но настаивал на том, что он вполне заработал себе право ошибаться. Друг ВигнераБольшинство физиков пожимают плечами и разводят руками, сталкиваясь с заумными парадоксами квантовой механики. Для большинства практикующих ученых квантовая механика — это набор кулинарных правил, результатом применения которых являются правильные вероятности, определяемые со сверхъестественной точностью. Джон Полкингхорн, физик, ставший священником, сказал: «Средний квантовый механик философичен не в большей мере, чем обычный механик». Однако некоторые из глубочайшихфизиков-мыслителей боролись с этими вопросами. Например, существует несколько способов разрешения шрёдингеровской проблемы кота. Первый был предложен Нобелевским лауреатом Юджином Вигнером и другими — сознание определяет существование. Вигнер написал, что «невозможно было полностью последовательно сформулировать законы квантовой механики без учета сознания [наблюдателя]… само изучение внешнего мира вело к заключению, что содержание сознания является высшей реальностью». Или, как когда-то написал поэт Джон Ките, «Ничто не реально до тех пор, пока не испытано». Но если я совершаю наблюдение, то что должно определить, в каком состоянии нахожусь я? Это означает, что кто-то еще должен наблюдать за мной, заставляя мою волновую функцию коллапсиров-вать. Иногда этого «кого-то» называют «другом Вигнера». Но это также означает, что кто-то должен наблюдать и за другом Вигнера, и за другом друга Вигнера, и так далее. Существует ли космический Разум, определяющий, наблюдая за всей Вселенной, полную последовательность «друзей»? Андрей Линде, один из создателей инфляционной теории, — , представитель тех физиков, которые упорно верят в центральную роль сознания: Я как человеческое существо не вижу ни единого довода, на основании которого я мог бы заявить, что Вселенная находится здесь в отсутствие наблюдателей. Мы вместе — мы и Вселенная. Когда говорят, что Вселенная существует без всякихнаблюдателей, я не вижу в этом никакого смысла. Я не могу представить связную теорию всего, в которой игнорируется сознание. Записывающее устройство не может играть роль наблюдателя, поскольку кто прочтет то, что записано на этом устройстве? Чтобы мы увидели, что что-либо происходит, и сказали друг другу, что что-либо происходит, нужна Вселенная, нужно записывающее устройство, нужны мы… В отсутствие наблюдателей Вселенная мертва… Согласно философии Линде, окаменелости динозавров не существуют до тех пор, пока на них не взглянешь. Но если на них взглянуть, то они «впрыгивают» в существование, как будто они существовали миллионы лет назад. (Физики, придерживающиеся этой точки зрения, достаточно внимательны, чтобы указывать на то, что эта картина экспериментально соответствует тому миру, в котором окаменело-стям динозавров и вправду миллионы лет.) (Некоторые люди, не одобряющие введение фактора сознания в физику, заявляют, что камера может совершать наблюдение электрона, а потому волновые функции могут коллапсировать и без участия сознательных существ. Но тогда кто скажет, что камера существует? Нужна еще одна камера, чтобы «наблюдать» за первой камерой и заставить коллапсировать ее волновую функцию. Затем необходима вторая камера, чтобы наблюдать за первой, третья, чтобы наблюдать за второй, и так до бесконечности. Такое введение камер не отвечает на вопрос о том, каким образом коллапсирует волновая функция.) ДекогеренцияСпособом практического разрешения этих тернистых философских вопросов, завоевывающим все большую популярность среди физиков, является декогеренция. Впервые это понятие было сформулировано немецким физиком Дитером Не в 1970 году. Он заметил, что в реальном мире нельзя отделить кота (все того же) от окружающей среды. Кот находится в постоянном контакте с воздухом, коробкой и даже космическими лучами, которые пронизывают эксперимент. Вне зависимости от того, насколько малы эти взаимодействия, они оказывают радикальное влияние на волновую функцию: если волновая функция нарушена хотя бы в незначительной степени, то она распадается на две волновые функции мертвого кота и живого кота, которые более не взаимодействуют. Це показал, что столкновения с одной-единственной молекулой воздуха достаточно, чтобы волновая функция коллапсировала, вызвав немедленное разделение волновых функций живого кота и мертвого, которые больше не взаимодействуют друг с другом. Иными словами, еще до того, как вы откроете коробку, кот уже вступил в контакт с молекулами воздуха и отсюда уже жив или мертв. Це принадлежит ключевое наблюдение, он заметил то, что было упущено: чтобы кот был одновременно и мертв, и жив, его волновая функция должна вибрировать с практически полной синхронизацией, это состояние называется когеренцией. Но экспериментально это практически невозможно. Создать когерентные объекты, вибрирующие в унисон, в лабораторных условиях чрезвычайно сложно. (В действительности сложно получить больше горсточки когерентно вибрирующих атомов из-за взаимодействия с внешним миром.) В реальном мире объекты взаимодействуют с окружающей средой, и малейшее взаимодействие с внешним миром может нарушить две образевавшиеся волновые функции и они начнут «декогерировать», то: есть рас синхронизируются и разделятся. Це показал, что, как только две волновые функции перестают вибрировать в фазе друг с другом, они более не взаимодействуют между собой. Многие мирыПоначалу понятие декогеренции кажется весьма удовлетворительным: теперь волновая функция коллапсирует не через сознание, а через беспорядочное взаимодействие с внешним миром. Но это все же не решает фундаментального вопроса, беспокоившего еще Эйнштейна: как природа «выбирает», в какое состояние коллапси-ровать? Когда молекула воздуха ударяет кота, кто или что определяет финальное состояние кота? По этому вопросу теория декогеренции просто утверждает, что две волновые функции разделяются и более не взаимодействуют между собой, но она не отвечает на первоначальный вопрос: мертв кот или жив? Иными словами, декогеренция делает присутствие сознания ненужным в квантовой механике, но она не решает вопрос, беспокоивший Эйнштейна: каким образом природа «выбирает» финальное состояние кота? В ответ на этот вопрос теория декогеренции просто хранит молчание. Однако существует естественное расширение декогеренции, которое разрешает данный вопрос; сегодня оно приобретает все более широкое признание среди физиков. Этот подход был предложен еще одним учеником Уилера, Хью Эвереттом III, который оговорил возможность того, что кот может быть одновременно и жив, и мертв в двух различных вселенных. Когда в 1957 году Эверетт закончил свою диссертацию, ее едва заметили. Однако с течением времени интерес к теории «многих миров» начал расти. Сегодня эта теория вызвала прилив обновленного интереса к парадоксам квантовой теории. Согласно этой совершенно новой интерпретации, кот одновременно и жив, и мертв по той причине, что Вселенная распалась на две. В одной вселенной кот мертв; в другой он жив. В сущности, в каждый момент времени вселенная расщепляется надвое, становясь звеном в бесконечной череде расщепляющихся вселенных. Согласно этому сценарию, все вселенные возможны, каждая из них так же реальна, как и любая другая. Люди, живущие в каждой вселенной, могут яростно утверждать, что именно их вселенная реальна, а все остальные лишь воображаемые или ненастоящие. Эти параллельные вселенные — не эфемерно существующие призрачные миры; в каждой вселенной мы видим столь же реальные и объективные твердые предметы и столь же реальные и объективные конкретные события, как и в любой другой. Преимуществом этой интерпретации является тот факт, что мы можем опустить условие номер три — коллапс волновой функции. Волновые функции никогда не коллапсируют, они продолжают развиваться, вечно распадаясь на новые и новые волновые функции в бесконечном древе распада, каждая ветвь которого представляет целую вселенную. Большим преимуществом теории многих миров является то, что она проще, чем Копенгагенская интерпретация: здесь не нужен коллапс волновой функции. Но цена, которую мы платим за это, та, что теперь у нас есть вселенные, все время распадающиеся на миллионы ветвей. (Некоторым сложно понять, каким образом вести учет всех этих множащихся вселенных. Однако волновое уравнение Шрёдингера решает это автоматически. Отслеживая развитие волнового уравнения, мы сразу находим все многочисленные ветви волны.) Если эта интерпретация верна, то в этот самый момент ваше тело сосуществует с волновыми функциями динозавров, сцепившихся в смертельной схватке. Вместе с вами в комнате сосуществует волновая функция того мира, в котором немцы выиграли Вторую мировую войну, в котором бродят инопланетные пришельцы, в котором вы никогда так и не родились. Среди вселенных, существующих в вашей гостиной, находятся и миры «Человека в высоком замке» и «Сумеречной зоны». Загвоздка в том, что мы не можем с ними больше взаимодействовать, поскольку они от нас декогерировали. Как сказал Алан Гут, «существует вселенная, где Элвис все еще жив». Физик Франц Вильчек написал: «Нас преследует сознание того, что бесконечное количество чуть-чуть отличающихся от нас копий нас самих живет своими параллельными жизнями, а также того, что в каждый момент еще больше двойников начинают свое существование, занимая место в одном из наших возможных вариантов будущего». Он замечает, что история греческой цивилизации, а отсюда и всего западного мира, могла быть иной, если бы Елена Троянская была не такой пленительной красавицей, а имела уродливую бородавку на носу. «Что же, бородавки могут возникнуть как результат мутаций в отдельных клетках, часто вызванных пребыванием под лучами солнца, несущими ультрафиолет». Он продолжает: «Вывод; существует много, много миров, в которых у Елены Троянской была бородавка на кончике носа». Мне вспоминается отрывок из классического научно-фантастического произведения Олафа Стэплдона «Создатель звезд»: «Каждый раз, когда существо встречалось с несколькими возможными путями действия, оно избирало их все, таким образом создавая много… самостоятельных историй космоса. Ибо в каждом процессе эволюционного развития в космическом пространстве существовало много созданий, и каждое из них постоянно сталкивалось с выбором из многих возможных путей, и комбинации всех этих путей были бесчисленны, представляя собой бесконечность отдельных вселенных, отслаивающихся в каждый момент каждого отрезка времени». Голова идет кругом, когда мы понимаем, что, согласно этой интер-: претации квантовой механики, все возможные миры сосуществуют вместе с нами. Хотя для того, чтобы достичь иных миров, может понадобиться портал-червоточина, эти квантовые реальности существуют в той самой комнате, где мы живем. Они сосуществуют с нами, куда бы мы ни пошли. Ключевой вопрос вот в чем: если это правда, то почему мы не видим эти иные вселенные, наполняющие нашу гостиную? А вот здесь вступает в дело декогеренция: наша волновая функция декогерировала с этими иными мирами (то есть эти волны больше не находятся в фазе друг с другом). У нас больше нет контакта с ними. Это означает, что даже малейшее взаимодействие с окружающей средой исключит взаимодействие различных волновых функций друг с другом. (В главе 11 я привожу возможное исключение из этого правила, с помощью которого разумным существам может удаться путешествие между квантовыми реальностями.) Не кажется ли это слишком странным, чтобы быть возможным? Нобелевский лауреат Стивен Вайнберг проводит параллель между этой теорией многих вселенных с радио. Вокруг вас сотни различных радиоволн, передаваемых далекими станциями. В любой заданный момент ваш офис, машина или гостиная заполняется этими радиоволнами. Однако если вы включите приемник, то сможете слушать радиоволны только на одной частоте в данный момент; остальные частоты декогерировали и больше не находятся в фазе друг с другом. Каждая станция обладает различной энергией, различной частотой. В результате ваш приемник в данный момент времени может принимать вещание только на одной частоте. Подобным образом в нашей вселенной и мы «настроены» на частоту, которая соответствует физической реальности. Но есть бесконечное количество параллельных реальностей, сосуществующих в одной комнате вместе с нами, хотя мы не можем «настроиться на них». Эти миры очень похожи друг на друга, но в каждом из них атомы обладают различной энергией. А поскольку каждый мир состоит из триллионов и триллионов атомов, это означает, что различие в энергии может быть довольно велико. Поскольку частота этих волн пропорциональна их энергии (по закону Планка), то это означает, что волны каждого мира вибрируют с различной частотой и больше не могут взаимодействовать. Фактически волны этих различных миров не взаимодействуют друг с другом и не влияют друг на друга. Что удивительно, принимая эту странную точку зрения, ученые могут прийти ктем же результатам, что и с помощью Копенгагенского подхода, без всякой нужды в коллапсе волновой функции. Иными словами, эксперименты, проведенные как в соответствии с Копенгагенской интерпретацией, так и в соответствии с интерпретацией теории многих миров, принесут в точности совпадающие результаты. Коллапс волновой функции Бора в математическом отношении эквивалентен действию окружающей среды. Иными словами, кот Шрёдингера может быть мертв или жив одновременно, если мы каким-либо образом изолируем кота от возможного воздействия каждого атома или космического луча. Конечно, на практике это неосуществимо. Как только кот вступит в контакт с космическим лучом, волновая функция живого кота и волновая функция мертвого кота декогерируются и будет казаться, что волновая функция коллап-сировала. Вещество из информацииВ обстановке возродившегося интереса к проблеме измерения в квантовой теории Уилер стал большим авторитетом в области квантовой физики. Он стал появляться на многочисленных конференциях, организованных в его честь. Сторонники движения Нью Эйдж (Новая Эра), которых вдохновляла идея фактора сознания в физике, даже провозгласили Уилера своим гуру. (Однако он не всегда был рад таким ассоциациям. Однажды он сильно расстроился, обнаружив, что находится в списке приглашенных вместе с тремя парапсихологами. Он не замедлил высказать свое мнение по этому поводу, и в его речи прозвучала фраза «Нет дыма без дыма».) После 70 лет массовых размышлений над парадоксами квантовой теории Уилер первым признал, что он не знает ответов на все вопросы. Он продолжает подвергать сомнению собственные предположения. Когда его спросили о проблеме измерения в квантовой механике, он ответил: «Меня просто сводит с ума этот вопрос. Я признаю, что иногда я на сто процентов серьезно воспринимаю идею о том, что мир — это плод воображения, но в другие моменты мне кажется, что мир существует вне всякой зависимости от нас. Однако я от всей души готов подписаться под словами Лейбница:; "Этот мир может быть иллюзией, а существование — не более чем сном, но этот сон или иллюзия для меня достаточно реальны при условии, что мы не будем введены ими в заблуждение, правильно используя разум"». Сегодня теория многих миров, или теория декогеренции, завоевывает все большую популярность среди физиков. Но Уилер обеспокоен тем, что для нее требуется «слишком много лишнего багажа». Он играет с еще одним объяснением проблемы кота Шрёдингера. Он называет свою теорию «Вещество из информации» («It from Bit»). Это нетрадиционная теория, которая основывается на предположении о том, что информация находится у истоков всего бытия. Когда мы смотрим на Луну, галактику или атом, их сущностью, согласно Уилеру, является заключенная в них информация. Но эта информация начала свое существование, когда вселенная обратила свой взор на саму себя. Уилер рисует круговую диаграмму, иллюстрирующую теорию вселенной. Существование вселенной началось в тот момент, когда она стала объектом наблюдения. Это означает, что «оно» (вещество вселенной) возникло в тот момент, когда информация («бит») вселенной была замечена. Он называет эту теорию моделью «вселенной-участницы». Идея заключается в том, что вселенная приспосабливается к нам таким же образом, как и мы приспосабливаемся к ней; в том, что само наше присутствие обусловливает возможность существования вселенной. (Пока не достигнут консенсус по поводу проблемы измерения в квантовой механике, в отношении теории «Вещество из информации» большинство физиков занимает позицию «поживем — увидим».) Квантовые компьютеры и телепортацияТакие философские дискуссии могут показаться безнадежной софистикой, без малейшей возможности практического применения в нашем мире. Только вместо того, чтобы спорить о том, сколько ангелов может танцевать на кончике иглы, квантовые физики, кажется, обсуждают то, в скольких местах одновременно может находиться электрон. Однако это не праздные измышления ученых в башне из слоновой кости. Когда-нибудь эти идеи могут найти самое что ни на есть практическое применение — стать двигателем мировой экономики. Когда-нибудь богатство всех наций может оказаться зависимым от тонкостей проблемы кота Шрёдингера. К тому времени, возможно, наши компьютеры уже будут производить расчеты в параллельных вселенных. Сегодня почти вся компьютерная инфраструктура базируется на силиконовых транзисторах. Закон Мура, который гласит, что компьютерная мощность удваивается каждые полтора года, на данный момент верен потому, что мы можем всаживать в силиконовые чипы все меньшие и меньшие транзисторы при помощи ультрафиолетовых лучей. Хотя закон Мура продолжает потрясать технологический пейзаж, его действие не может длиться вечно. В самом современном чипе Пентиум используется слой в 20 атомов. В течение 15–20 лет ученые смогут задействовать слои, возможно, в 5 атомов. На таких неимоверно малых расстояниях нам придется уйти от Ньютона и руководствоваться принципами квантовой механики, где вступает в силу принцип неопределенности Гейзенберга. В результате мы больше не будем знать, где находится электрон. Это означает, что будут происходить короткие замыкания в тот момент, когда электроны будут выскакивать из непроводников и полупроводников, вместо того чтобы оставаться внутри них. Когда-нибудь возможности электроники, основанной на кремнии, исчерпаются. И это возвестит приход квантовой эры. Силиконовая долина может прийти в упадок. Когда-нибудь нам, возможно, придется считать на самих атомах, что приведет к полному изменению архитектуры компьютера. Сегодня компьютеры основаны на двоичной системе исчисления — любое число представляется нулями и единицами. У атомов же спин может быть направлен вверх, вниз или в стороны одновременно. На смену компьютерным битам (нулям и единицам) могут прийти «кубиты» (любое число между единицей и нулем), что сделает вычисления с помощью квантовых компьютеров намного более продуктивными, чем при помощи обычных компьютеров. Для примера, квантовый компьютер мог бы потрясти самое основание международной безопасности. Сегодня большие банки, транснациональные корпорации и индустриальные страны кодируют свои секретные данные при помощи сложных компьютерных алгоритмов. Многие секретные коды построены на разложении на множители огромных чисел. Современному компьютеру понадобились бы века для того, чтобы разложить на множители, скажем, стозначное число. Но для квантового компьютера такие вычисления не представляют никакой сложности, а потому при помощи квантового компьютера можно с легкостью взломать любые секретные коды в мире. Чтобы представить себе, каким образом функционирует квантовый компьютер, давайте скажем, что мы выстроим в ряд несколько атомов, спины которых однонаправлены в магнитном поле. Затем мы просвечиваем ихлазером таким образом, что многие из спинов перевернутся в момент, когда лазерный луч отразится от атомов. Измерив отраженный свет лазера, мы записываем сложную математическую операцию — рассеивание света атомами. Если мы рассчитаем этот процесс, используя квантовую теорию, вслед за Фейнманом мы должны сложить все возможные положения атомов, вращающихся во всех возможных направлениях. Даже простой квантовый подсчет, для которого потребовались бы доли секунды, на обычном компьютере выполнить практически невозможно, вне зависимости от того, сколько времени для этого будет отведено. В принципе, как подчеркнул Дэвид Дойч из Оксфорда, это означает, что, когда мы начнем пользоваться квантовыми компьютерами, нам придется складывать все возможные параллельные вселенные. Хотя мы не можем вступить в прямой контакт с этими другими вселенными, атомный компьютер мог бы их вычислить при помощи положений спинов в параллельных вселенных. (Хотя мы не когерентны с другими вселенными в нашей гостиной, атомы квантового компьютера по своей конструкции когерентно вибрируют в унисон.) Хотя потенциал квантовых компьютеров поистине ошеломляет, на практике масштабы возникающих проблем столь же велики. В настоящий момент мировой рекорд по числу атомов, использующихся в квантовом компьютере, равен семи. В лучшем случае на этом квантовом компьютере мы можем умножить три на пять и получить пятнадцать, что вряд ли произведет большое впечатление. Чтобы квантовый компьютер стал сравним по мощности со стандартным современным лэптопом, необходимы сотни, а возможно, и миллионы атомов, вибрирующих когерентно. Поскольку столкновение даже с одной-единственной молекулой воздуха может стать причиной того, что атомы компьютера декогерируют, необходимы чрезвычайно стерильные условия для изоляции атомов от воздействия окружающей среды. (Чтобы сконструировать квантовый компьютер, по скорости превосходящий современные компьютеры, понадобятся тысячи, а то и миллионы атомов, а потому от реальных квантовых компьютеров нас отделяют, по меньшей мере, десятилетия.) Квантовая телепортацияВ конечном итоге может быть найдено практическое применение, на первый взгляд, бессмысленном} обсуждению физиками параллельных квантовых вселенных: квантовая телепортация. «Транспортер», использовавшийся для перевозки людей и оборудования в «Стар Треке» и других научно-фантастических программах, кажется чудесным средством, позволяющим преодолеть огромные расстояния. Но как ни маняще звучит эта идея телепортации, физиков она приводит в замешательство, поскольку, кажется, противоречит принципу неопределенности. Проводя измерение атома, вы нарушаете его состояние, а потому точная копия создана быть не может. Но ученые обнаружили брешь в этом аргументе в 1993 году с помощью так называемой квантовой сцепленности. Она основана на старом эксперименте, предложенном в 1935 году Эйнштейном и его коллегами Борисом Подольским и Натаном Розеном (так называемый парадокс Эйнштейна — Подольского — Розена, или ЭПР-парадокс) для того, чтобы продемонстрировать, насколько в действительности безумна квантовая теория. Допустим, произошел взрыв и два электрона разлетаются в противоположных направлениях с околосветовой скоростью. Поскольку электрон может крутиться как волчок, допустим, что их спины связаны — то есть если ось спина одного электрона направлена вверх, то ось спина второго направлена вниз (таким образом, что общий спин равен нулю). Однако до того, как мы совершаем измерение, мы еще не знаем, в каком направлении вертится каждый электрон. Теперь подождем несколько лет. К этому времени два электрона будут находиться на расстоянии многих световых лет друг от друга. Если теперь мы измерим спин одного электрона и обнаружим, что его ось направлена вверх, мы тут же поймем, что ось спина второго направлена вниз (и наоборот). В сущности, тот факт, что один электрон вращается вверх, заставляет второй электрон вращаться вниз. Это означает, что теперь мы узнаем нечто об электроне, находящемся на расстоянии многих световых лет, мгновенно. (Полное впечатление, что информация путешествовала со скоростью, превышающей скорость света, а это явное нарушение специальной теории относительности Эйнштейна.) При помощи тщательно построенного доказательства Эйнштейну удалось показать, что, совершая последовательные измерения одной пары электронов, можно нарушить принцип неопределенности. Что более важно, он показал, что квантовая механика еще более причудлива, чем кто-либо мог до этого себе представить. Вплоть до того самого момента физики считали, что Вселенная была локальной, что возмущения в одной части Вселенной распространялись от источника лишь локально. Эйнштейн показал, что квантовая механика по своей сути нелокальна — возмущения из одного источника могут мгновенно влиять на далекие уголки Вселенной. Эйнштейн назвал это «призрачным действием на расстоянии», которое посчитал абсурдным. Таким образом, Эйнштейн уверял, что квантовая теория неверна. (Критики квантовой механики считали, что парадокс Эйнштейна — Подольского — Розена разрешим при таком допущении: если бы наши инструменты были достаточно чувствительны, то они действительно смогли бы определить, в каком направлении вращаются электроны. Значит, кажущаяся неопределенность в спине и положении электрона — просто фикция, результат того, что наши инструменты слишком грубы. Они ввели концепцию скрытых переменных, — то есть должна существовать скрытая субквантовая теория, в которой неопределенности не существует вообще, и в основе этой теории лежат новые, так называемые скрытые переменные.) Ставки неимоверно возросли в 1964 году, когда физик Джон Белл подверг ЭПР-парадокс и скрытые переменные суровому испытанию. Он показал, что при проведении эксперимента ЭПР должно существовать численное соответствие между спинами двух электронов, зависящее от того, какая теория использовалась. Если теория скрытых переменных была верна, то спины должны были иметь одно соотношение. Если была правильна квантовая механика, то соотношение спинов должно было быть иным. Иными словами, судьба всей квантовой механики (основы всей современной атомной физики) зависела бы от одного-единственного эксперимента. Но эксперименты окончательно доказали, что Эйнштейн ошибался. В начале 1980-х годов Алан Эспект и его коллеги во Франции поставили эксперимент ЭПР. В эксперименте использовались два детектора, расположенные на расстоянии 13 метров, которые измеряли спины фотонов, испускаемых атомами кальция. В 1997 году эксперимент ЭПР был поставлен с детекторами, расположенными на расстоянии в 11 километров. В обоих случаях победила квантовая теория. Определенная форма знания действительно перемещается быстрее света. (Хотя Эйнштейн ошибался насчет эксперимента ЭПР, он был прав в вопросе более существенного масштаба — о сообщении, проходящем быстрее света. Хоть эксперимент ЭПР и позволяет узнать что-либо о другой стороне галактики, он не позволяет таким способом посылать сообщения. К примеру, вы не можете таким образом отсылать азбуку Морзе. В сущности, «передатчик ЭПР» отсылап бы только беспорядочные сигналы, поскольку измеряемые спины будут другими каждый раз, как вы их измеряете. Эксперимент ЭПР позволяет вам получить информацию о другой стороне галактики, но он не позволяет вам передавать полезную, не беспорядочную информацию.) Белл для описания этого эффекта приводил пример математика по имени Бертельсман. У того была необычная привычка каждый день надевать на одну ногу синий носок, а на другую — зеленый, в случайном порядке. Если вы замечаете, что на левой ноге у него синий носок, то вы сразу же, быстрее света, получаете информацию о том, что другой его носок — зеленый. Но это знание отнюдь не позволяет вам таким же образом сообщать информацию. Обнаружение информации отличается от ее пересылки. Эксперимент ЭПР не означает, что мы можем сообщать информацию путем телепатии, путешествий быстрее света или путешествий во времени. Но он все же означает, что для нас невозможно полностью отрешиться от единства вселенной. Эксперимент заставляет нас принять другую картину нашей Вселенной. Существует космическое «сцепление» (entanglement) между каждым атомом нашего тела и атомами, которые находятся на расстоянии световых лет от нас. Поскольку все вещество произошло из одного источника — Большого Взрыва, — то в каком-то смысле все атомы нашего тела связаны с атомами на другом конце Вселенной при помощи космической квантовой паутины. Сцепленные частицы чем-то похожи на близнецов, все еще связанных между собой пуповиной (волновой функцией), которая может быть длиной во много световых лет. Происходящее с одним близнецом автоматически воздействует и на другого, а отсюда знание об одной частице может незамедлительно предоставить информацию о ее двойнике. Сцепленные частицы ведут себя так, как если бы они представляли собой единый объект, хотя они и могут быть разделены неимоверными расстояниями. (Если выразиться точнее, то можно сказать, что, поскольку волновые функции частиц в Большом Взрыве были когда-то связаны и когерентны, то эти волновые функции все еще могут быть частично соединены миллиарды лет спустя, после Большого Взрыва таким образом, что возмущения в одной части волновой функции могут воздействовать на другую часть той же волновой функции.) В 1993 году ученые предложили использовать концепцию ЭПР-сцепленности для создания устройства, с помощью которого можно совершать квантовую телепортацию. В 1997 и 1998 годах ученые из Калифорнийского технологического института, Университета Аарус в Дании и Университета Уэльса совершили первую экспериментальную демонстрацию квантовой телепортации. В ходе эксперимента отдельный фотон был телепортирован через стол. Сэмюэл Браунштайн, принимавший участие в организации эксперимента, сравнил сцепленные пары слюбовниками, «которые знают друг друга настолько хорошо, что могут ответить за свою вторую половину, даже если их разделяют огромные расстояния». (Для экспериментов в области квантовой телепортации необходимы три объекта — А, В и С. Пусть В и С — сцепленные близнецы. Хоть они и могут находиться на огромном расстоянии друг от друга, они все же остаются сцепленными. Пусть теперь В вступит в контакт с А, который собственно является объектом телепортации. В «сканирует» А, и информация, содержащаяся в А, переносится в В. Затем эта информация автоматически передается близнецу С. Таким образом, С превращается в точную копию А.) В области исследований квантовой телепортации наблюдается большой прогресс. В 2003 году ученым Женевского университета в Швейцарии удалось телепортировать фотоны на расстояние в 2 км через оптоволоконный кабель. Фотоны света (при длине волны 1,3 мм) в одной лаборатории были телепортированы в другие фотоны с другой длиной волны (1,55 мм) в другую лабораторию, связанную с первой оптоволоконным кабелем. Николас Гизин, физик, принимавший участие в этом проекте, сказал: «Возможно, объекты больших размеров, такие, как молекула, и будут телепортированы до моей смерти, но по-настоящему большие объекты не поддаются телепортации при использовании обозримых технологий». Еще один важный прорыв был совершен в 2004 году, когда ученые из Национального института стандартов и технологий (NIST) телепортировали не просто квант света, а целый атом. Их основным достижением стало то, что они успешно запутали 3 атома бериллия и смогли перенести характеристики одного атома в другой. Область практического применения квантовой телепортации потенциально невероятно велика. Однако необходимо отметить, что существует несколько проблем практического характера, препятствующих ее применению. Во-первых, объект-оригинал уничтожается в ходе телепортации, а потому нельзя создать много точных копий телепортируемого объекта. Возможно создание только одной копии. Во-вторых, телепортировать объект быстрее света нельзя. Теория относительности действует даже для квантовой телепортации. (Чтобы телепортировать объект А в объект С, для их соединения все же необходим объект-посредник В, а его скорость меньше скорости света.) В-третьих, возможно, наиболее важным ограничением для квантовой телепортации выступает тот же фактор, который служит препятствием для создания квантовых компьютеров: рассматриваемые объекты должны быть когерентны. Любое соприкосновение с окружающей средой прервет процесс телепортации. Но вполне вероятно, что в течение XXI века удастся телепортировать первый вирус. При телепортации человеческого существа мы можем столкнуться с другими проблемами. Браунштайн замечает: «На данный момент ключевым является исключительно количество вовлеченной информации. Даже если мы будем использовать самые лучшие каналы связи, какие только можем себе представить, для передачи всей этой информации нам понадобится время, сравнимое с возрастом нашей Вселенной». Волновая функция ВселеннойНо, возможно, полное осознание квантовой теории произойдет, если мы применим квантовую механику не к отдельному фотону, а к целой Вселенной. Стивен Хокинг даже пошутил, что каждый раз, как он слышит о проблеме кота, он тянется за ружьем. Он предложил свое решение проблемы — существование волновой функции Вселенной. Если вся Вселенная является частью волновой функции, то отпадает надобность в существовании наблюдателя (который должен находиться за пределами Вселенной). В квантовой теории каждая частица связана с волной. Эта волна, в свою очередь, дает информацию о вероятности обнаружения частицы в любой точке. Однако, когда Вселенная была еще очень молода, она была меньше субатомной частицы. Тогда, возможно у самой Вселенной тоже есть волновая функция. Поскольку электрон может существовать во многих состояниях одновременно и поскольку Вселенная была по размерам меньше электрона, то, возможно, Вселенная также существовала одновременно во многих состояниях, что и описывала сверхволновая функция. Это вариация теории многих миров: не нужно вводить космического наблюдателя, который может мгновенно охватить взглядом всю Вселенную. Но волновая функция Хокинга значительно отличается от волновой функции Шрёдингера. В волновой функции Шрёдингера в каждой точке пространства-времени существует волновая функция. Вместо \(/-функции Шрёдингера, которая описывает все возможные состояния электрона, Хокинг вводит такую у-функ-цию, которая представляет все возможные состояния Вселенной. В обычной квантовой механике электрон существует в обычном пространстве. Однако в волновой функции Вселенной эта волновая функция существует в «сверхпространстве», пространстве всех возможных вселенных, введенном Уилером. Эта главная волновая функция (родительница всех волновых функций) подчиняется не уравнению Шрёдингера (которое работает только для одиночных электронов), а уравнению Уилера — де Витта, которое применимо для всех возможных вселенных. В начале 1990-х годов Хокинг написал, что он смог частично разрешить волновую функцию Вселенной и показать, что наиболее вероятной вселенной была та, где космологическая константа стремилась к нулю. Эта работа вызвала некоторые споры, поскольку она опиралась на суммирование всех возможных вселенных. Хокинг представил эту сумму, включив в нее червоточины-порталы, соединяющие нашу Вселенную со всеми возможными вселенными. (Представьте себе бесконечный океан мыльных пузырей, парящих в воздухе и соединенных тонкими нитями или порталами-червоточинами, а потом сложите их все вместе.) В конечном счете возникли сомнения по поводу претенциозного метода Хокинга. Было замечено, что сумма всех возможных вселенных математически недостоверна, во всяком случае до тех пор, пока у нас нет «теории всего», которой мы могли бы руководствоваться. Критики считают, что до тех пор, пока не создана теория всего, нельзя полагаться ни на какие вычисления, касающиеся машин времени, червоточин-порталов, момента Большого Взрыва и волновых функций Вселенной. Однако сегодня множество физиков верит в то, что мы наконец нашли теорию всего, хотя она еще не обрела своей конечной формы: это теория суперструн, или М-теория. Даст ли она нам возможность «узреть замысел Господень», как считал Эйнштейн? ГЛАВА 7 М-теория: мать всех струн
Классический роман Герберта Уэллса «Человек-невидимка», написанный в 1897 году, начинается со странной истории. В холодный зимний день из тьмы выступает причудливо одетый незнакомец. Его лица не видно; на нем очки с темно-синими стеклами, а лицо полностью закрыто белой повязкой. Поначалу обитатели деревни испытывали жалость к новоприбывшему, думая, что он пострадал в результате ужасного несчастного случая. Но затем в деревне начали происходить странные вещи. В один прекрасный день хозяйка гостиницы, в которой остановился незнакомец, зашла в его пустую комнату и закричала при виде одежды, которая двигалась по комнате сама по себе. Шляпы кружились по комнате, постельное белье подпрыгивало в воздухе, стулья двигались, а «мебель сошла с ума», в ужасе вспоминала хозяйка. Вскоре уже вся деревня полнится слухами об этих необычных явлениях. В конце концов собирается группа сельских жителей и встречается с таинственным незнакомцем лицом к лицу. К их великому изумлению, он начинает медленно разворачивать свою повязку. Толпа в ужасе. Когда человек снимает повязку, оказывается, что у него нет лица. В сущности, он невидим. Люди кричат и визжат, воцаряется хаос. Обитатели деревни пытаются поймать человека-невидимку, который с легкостью отражает их нападение. Совершив ряд незначительных преступлений, человек-невидимка разыскивает своего старого знакомого, чтобы поведать ему свою удивительную историю. Его настоящее имя — мистер Гриффин из Университетского Колледжа. Он начал изучать медицину и случайно обнаружил совершенно новый способ изменить свойства преломления и отражения плоти. Его секрет — четвертое измерение. Он восклицает, обращаясь к доктору Кемпу: «Я нашел основной принцип… формулу, геометрическое выражение, в котором задействованы все четыре измерения». К сожалению, вместо того, чтобы обратить свое великое открытие на пользу человечеству, все свои мысли мистер Гриффин обратил к грабежу и личной выгоде. Он предлагает своему другу стать его сообщником, заявляя, что вместе они смогут разграбить мир. Но друг повергнут в ужас; он раскрывает местонахождение Гриффина полиции. За этим следует финальная охота на человека, в ходе которой человек-невидимка получает смертельные раны. Как и все научно-фантастические романы, история Герберта Уэллса не лишена научного зерна. Любой, кто сможет пробраться в четвертое пространственное измерение (или то, что сегодня называют пятым измерением, поскольку время является четвертым), действительно способен стать невидимым и даже обрести силы, обычно приписываемые призракам и божествам. Представьте на секунду, что двумерная поверхность стола может быть населена расой мифических существ, как в романе 1884 года Эдвина Эббота «Плоская страна» («Флатляндия»). Они занимаются своими делами и даже не подозревают о том, что их окружает целая Вселенная, третье измерение. Но если бы ученый Плоской страны мог поставить эксперимент, который позволил бы ему зависнуть в нескольких сантиметрах над поверхностью стола, то он бы стал невидимым, поскольку свет проходил бы под ним, как если бы он не существовал вовсе. Паря над Плоской страной, он мог бы наблюдать, как внизу под ним разворачиваются события на крышке стола. В парении в гиперпространстве есть решительные преимущества, поскольку любой, кто взирал бы на наш мир из гиперпространства, обрел бы божественную силу. Не только свет проходил бы под ним, делая его невидимым. Он также мог бы перескакивать через предметы. Иными словами, он мог бы исчезать по собственному желанию и проходить сквозь стены. Выскочив в третье измерение, он мог бы просто раствориться, исчезнуть из двумерной Вселенной. А если бы он прыгнул обратно на крышку стола, то рематериализовался бы ниоткуда. В его силах было бы убежать из любой темницы. Тюрьма в Плоской стране была бы кругом, нарисованным вокруг заключенного, так что было бы несложно просто выпрыгнуть в третье измерение и выйти на свободу. Скрыть что-либо от такого гиперсущества было бы невозможно. Золото, спрятанное в тайнике, из точки наблюдения в третьем измерении найти было бы легче легкого, поскольку сам тайник был бы всего лишь открытым прямоугольником. Было бы детской забавой проникнуть внутрь прямоугольника и забрать золото, даже не вламываясь в тайник. Стало бы возможным совершать хирургические операции, в ходе которых не было бы нужды даже разрезать кожу. Так Герберт Уэллс хотел донести до читателя идею о том, что в четырехмерном мире мы — обитатели Плоской страны. Мы не знаем о том факте, что над нами раскрываются более высокие планы бытия. Мы верим, что наш мир состоит из всего, что мы видим; нам и невдомек, что прямо у нас перед носом могут существовать целые вселенные. Хотя другая вселенная могла бы парить в четвертом измерении всего лишь в нескольких сантиметрах над нами, она была бы невидимой. Поскольку гиперсущество обладало бы сверхчеловеческими способностями, обычно приписываемыми призракам и духам, в другом научно-фантастическом произведении Герберт Уэллс задался вопросом о том, могут ли сверхъестественные существа обитать в дополнительных измерениях. Он поднял ключевой вопрос о том, что на сегодняшний день является предметом активных исследований и размышлений: могут ли существовать в этих дополнительных измерениях новые законы физики? В его романе 1895 года под названием «Чудесное посещение» викарий ненароком попадает из ружья в ангела, случайно пролетающего через наше измерение. По какой-то космической причине наше измерение и параллельная вселенная на время столкнулись, что позволило ангелу свалиться в наш мир. В этом рассказе Уэллс пишет: «Бок о бок может существовать неограниченное количество трехмерных Вселенных». Викарий задает вопросы раненому ангелу. Большим потрясением становятся для него слова пришельца о том, что наши законы природы в мире ангела не действуют. Например, в другой вселенной нет плоскостей, а есть скорее цилиндры — настолько искривлено пространство. (За целых двадцать лет до того, как Эйнштейн создал общую теорию относительности, Уэллс забавлялся мыслями о вселенных, существующих на искривленных поверхностях.) Как говорит викарий: «Их геометрия отличается от нашей, поскольку их пространство имеет кривизну, так что все их плоскости представляют собой цилиндры; их закон тяготения не согласуется с законом обратных квадратов, а основных цветов у них не три, а двадцать четыре». Прошло более века с тех пор, как Уэллс написал эту историю, и сегодня физики понимают, что в параллельных вселенных и вправду могут существовать новые законы физики с разным набором субатомных частиц, атомов и химических взаимодействий. (Как мы увидим в главе 9, сейчас проходит несколько экспериментов, цель которых — уловить присутствие параллельных вселенных, которые, возможно, парят прямо над нашей Вселенной.) Концепция гиперпространства интриговала художников, музыкантов, мистиков, теологов и философов; особенно сильно это проявилось в начале XX века. По словам искусствоведа Линды Далримпл, интерес Пабло Пикассо к четвертому измерению повлиял на создание кубизма. (Глаза нарисованных им женщин смотрят прямо на нас, несмотря на то что носы женщин направлены в стороны, что позволяет нам видеть этих женщин полностью. Подобным образом гиперсущество, взирающее на нас сверху, увидит нас во всей полноте: спереди, сзади и с боков одновременно.) На своей известной картине «Christus Hypercubus» Сальвадор Дали изобразил Иисуса Христа распятым на фоне развернутого четырехмерного гиперкуба, или тессеракта. На картине «Постоянство памяти» Дали попытался передать идею времени как четвертого измерения с помощью изображения мягких, растаявших часов. На картине Марселя Дюшана «Обнаженная, спускающаяся по лестнице (№ 2)» мы видим обнаженную фигуру в замедленном движении, спускающуюся по лестнице. На этом полотне представлена еще одна попытка поймать четвертое измерение — время — с помощью двумерной плоскости. М-теорияСегодня загадки и верования, окружающие четвертое измерение, воскресли по причине совершенно иного характера — развития теории струн и ее последнего воплощения — М-теории. Исторически сложилось так, что физики упорно не принимали концепцию гиперпространства; они смеялись, говоря, что дополнительные измерения — это специализация мистиков и шарлатанов. Ученые, всерьез предполагавшие существование невидимых миров, подвергались насмешкам. С приходом М-теории все изменилось. Высшие измерения призывают к революции в физике, поскольку физики вынуждены бороться с величайшей проблемой, стоящей сегодня перед их наукой, — пропастью, разделяющей теорию относительности и квантовую механику. Что замечательно, обе эти теории вобрали в себя все фундаментальные физические знания о Вселенной. В настоящее время только М-теория способна объединить эти две великие, на вид противоречивые теории Вселенной в связное целое; только М-теория способна создать «теорию всего». Из всех предложенных в прошедшем веке теорий единственным кандидатом, способным «узреть Божий замысел», как сказал Эйнштейн, является М-теория. Только в десяти — и одиннадцатимерном гиперпространстве у нас «достаточно места», чтобы объединить все природные взаимодействия в единую изящную теорию. Такая удивительная теория сможет ответить на извечные вопросы: «Что произошло еще до начала? Можно ли обратить время вспять? Могут ли порталы в другие измерения перенести нас через Вселенную?» (Хотя критики совершенно справедливо указывают на то, что проверка этой теории находится; за пределами наших экспериментальных возможностей, в настоящее время планируется ряд экспериментов, которые могут изменить эту ситуацию, — о них мы поговорим в главе 9.) В течение последних пятидесяти лет все попытки создания действительно единого описания Вселенной заканчивались позорным провалом. На концептуальном уровне это понять несложно. Общая теория относительности и квантовая теория диаметрально противоположны друг другу практически во всех отношениях. Общая: теория относительности — это теория очень большого: черных дыр, Больших Взрывов, квазаров и расширяющейся Вселенной. Она основана на математике гладких поверхностей, таких, как простыни и батуты. Квантовая теория в точности противоположна — она описывает мир всего крошечного: атомов, протонов с нейтронами и кварков. В основе ее лежит теория отдельных пучков энергии, называемых квантами. В отличие от теории относительности, квантовая теория утверждает, что вычислить можно только вероятность событий, так что мы никогда точно не узнаем, где находится электрон. В этих двух теориях все различно — математические подходы, допущения, физические принципы и области применения. Не удивитель-, но, что все попытки объединения их заканчивались провалом. Физики-гиганты — Эрвин Шрёдингер, Вернер Гейзенберг, Вольфганг Паули и Артур Эддингтон — вслед за Эйнштейном тоже пробовали свои силы в создании единой теории поля, и все они потерпели неудачу. В 1928 году Эйнштейн ненамеренно вызвал массовое волнение в прессе, выдвинув раннюю версию своей единой теории поля. «Нью-Йорк тайме» даже опубликовала отрывки из его работы, в том числе и уравнения. Более сотни репортеров роилось вокруг дома Эйнштейна. Эддингтон из Англии писал Эйнштейну: «Вас, возможно, позабавит известие о том, что в витрине одного из наших самых больших универмагов в Лондоне (Селфриджиз) вывесили Вашу работу (шесть склеенных в ряд страниц), так что прохожие могут прочесть ее от начала до конца. Возле нее собираются толпы народа». В 1946 году Шрёдингер тоже заразился этой идеей и создал, как он полагал, эту уже мифическую единую теорию поля. Он спешно совершил довольно необычный для своего (но не для нашего) времени поступок — созвал пресс-конференцию. Даже премьер-министр Ирландии Имон де Валера присутствовал на этой конференции. Когда Шрёдингера спросили, насколько он уверен в том, что ухватил наконец суть единой теории поля, он ответил: «Я считаю, что прав. Я буду выглядеть ужасно глупо, если это не так». (Об этой пресс-конференции стало известно «Нью-Йорк тайме», и она отправила рукопись Эйнштейну и другим ученым, чтобы те прокомментировали ее. К несчастью, Эйнштейн увидел, что Шрёдингер заново открыл старую теорию, которую он предложил многие годы назад и сам же ее отбросил. Ответ Эйнштейна был очень вежлив, но все же Шрёдингер был унижен.) В195 8 году Джереми Бернштейн посетиллекцию в Колумбийском университете, где Вольфганг Паули представлял свою версию единой теории поля, которую он разработалвместе с Вернером Гейзенбергом. Нильса Бора, также присутствовавшего на этой лекции, она не очень-то впечатлила. В конце концов Бор поднялся и сказал: «Мы на галерке убеждены, что ваша теория безумна. Но что нас разделяет, так это вопрос о том, достаточно ли безумна ваша теория». Паули тут же понял, что Бор имел в виду: теория Гейзенберга-Паули была слишком традиционной, слишком заурядной, чтобы стать единой теорией поля. Чтобы «узреть замысел Божий», понадобилось бы привлечение радикально новых математических подходов и идей, Многие физики уверены, что за всем стоит простая, изящная и убедительная теория, которая, тем не менее, достаточно безумна и абсурдна, чтобы быть правдой. Джон Уилер из Принстона отмечает тот факт, что в ХГХ веке перспектива объяснить невероятное разнообразие жизненных форм на Земле представлялась безнадежной. Но затем Чарльз Дарвин предложил теорию естественного отбора, и одна-единственная теория предоставила всю архитектуру для объяснения происхождения и разнообразия жизни на Земле. Лауреат Нобелевской премии Стивен Вайнберг приводит еще одну аналогию. После Колумба карты, составленные в результате отважных путешествий первых европейских исследователей, явно указывали на существование «Северного полюса», но непосредственного доказательства его существования не было. Поскольку на всех картах Земли был огромный пробел как раз в том месте, где, по-видимому, находился Северный полюс, ранние исследователи просто предположили его существование, несмотря на то что ни один из них не бывал на нем. Подобным образом физики нашего времени обнаруживают массу доказательств, указывающих на то, что теория всего должна существовать, хотя в данный момент ученые еще не пришли к консенсусу о том, какова же эта конечная теория. История струнной теорииТеория, которая совершенно явно «достаточно безумна», чтобы быть истинной теорией поля, — это струнная теория, или М-теория. История струнной теории, возможно, самая причудливая из всех, что значатся в анналах физики. Она была открыта совершенно случайно, применена к решению не той проблемы, предана забвению и внезапно возродилась в качестве теории всего. И в конечном счете, поскольку небольшие поправки невозможны без уничтожения всей теории, ей предстоит стать либо «теорией всего», либо «теорией ничего». Причиной столь странной истории струнной теории является ее развитие вспять. Обычно в такой теории, как теория относительности, начинают с основных физических принципов. Затем эти принципы сводятся к набору основных классических уравнений. В последнюю очередь вычисляют квантовые флуктуации для этих уравнений. Развитие струнной теории происходило в обратном направлении, начавшись со случайного открытия ее квантовой теории. И по сей день физики ломают голову над тем, какие физические принципы могут приводить в действие всю эту теорию. Рождение струнной теории восходит к 1968 году, когда в ядерной лаборатории Европейской организации ядерных исследований (CERN) в Женеве два молодых физика Габриэле Венециано и Махико Сузуки листали книгу по математике и наткнулись на бета-функцию Эйлера, малоизвестную математическую формулу, открытую в XVIII веке Леонардом Эйлером, которая, казалось, странным образом описывала субатомный мир. Венециано и Сузуки были ошеломлены, увидев, что эта абстрактная математическая формула, по всей видимости, описывала столкновение двух я-мезонных частиц при невероятно высоких энергиях. Модель Венециано вскоре произвела сенсацию в физике; буквально в сотнях работ исследователи пытались обобщить ее для описания ядерных взаимодействий. Иными словами, струнная теория была открыта совершенно слу-тайно. Эдвард Виттен из Института передовых исследований (которого многие считают творческим мотором многих ошеломительных переворотов в этой теории) сказал: «По справедливости говоря, у физиков XX века не должно было бы быть привилегии изучать эту теорию. По справедливости говоря, струнная теория не должна была быть изобретена». Я ясно помню переполох, вызванный струнной теорией. Я в то время был еще аспирантом-физиком в Калифорнийском университете в Беркли. Помню, как физики качали головами и утверждали, что физика не должна была идти таким путем. В прошлом физика обычно основывалась на скрупулезных наблюдениях за природой, формулировании какой-либо частной гипотезы, внимательной проверки соответствия теории экспериментальным данным, а затем скучного повторения процесса, и так раз за разом. Струнная же теория основана на получении ответа методом простой догадки. Прежде считалось, что такие захватывающие прорывы невозможны. Поскольку субатомные частицы нельзя разглядеть даже при помощи наших мощнейших инструментов, физики прибегли к жестокому, йо эффективному методу их анализа — сталкивании их при огромных энергиях. Миллиарды долларов были пущены на сооружение огромных «ускорителей частиц» диаметром во много километров. В них создаются пучки субатомных частиц, сталкивающихся друг с другом. Затем физики тщательно анализировали, что осталось после столкновения. Целью этого трудоемкого и напряженного процесса является создание ряда чисел, называемого матрицей рассеяния, или S-матрицей. Этот набор чисел имеет ключевое значение, поскольку в нем закодирована вся информация субатомной физики, — то есть ели знать S-матрицу, то можно вывести из нее все свойства элементарных частиц. Одной из задач физики элементарных частиц является прогнозирование математической структуры S-матрицы для сильных взаимодействий — цель настолько трудно достижимая, что некоторые физики считали, что она лежит за пределами известной физики. Тут уже можно представить сенсацию, которую произвели Венециано и Судзуки, просто-напросто догадавшиеся об S-матрице, просматривая математическую книжку. Модель Венециано была совершенно нестандартной. Обычно, когда кто-либо предлагает новую теорию (такую, как, допустим, кварки), физики вертят эту теорию, изменяя простые параметры (массы частиц или, скажем, силы взаимодействия). Но модель Венециано была настолько хорошо пригнана, что даже малейшее нарушение ее основной симметрии разрушало всю формулу. Эту модель можно сравнить с изделием из хрусталя тонкой работы: при любой попытке изменить его форму он разобьется вдребезги. Из сотен работ, которые банально изменяли параметры модели, тем самым разрушая ее красоту, ни одна не продержалась до сегодняшнего дня. Сохранилась память лишь о работах, авторы которых задавались вопросом о том, почему вообще работает эта теория. Иными словами, они пытались обнаружить ее симметрии. В конце концов физики поняли, что эта теория вообще не содержит настраиваемых параметров. Как ни замечательна была модель Венециано, все же и в ней крылись кое-какие проблемы. Во-первых, физики поняли, что это было всего лишь первое приближение к окончательной S-матрице, а не полная картина. Бундзи Сакита, Мигель Вирасоро и Кейджи Киккава (в те времена в Университете Висконсина) поняли, что S-матрицу нужно рассматривать как бесконечный ряд элементов и что модель Венециано была всего лишь первым и самым важным элементом в этом ряду. (Грубо говоря, каждый элемент в ряду представлял собой определенное количество вариантов столкновения частиц друг с другом. Они выработали несколько правил, при помощи которых можно было построить высшие элементы в их приближении. В своей диссертации я твердо решил завершить эту программу и создать все возможные поправки к модели Венециано. Вместе с коллегой Л. П. Ю я вычислил бесконечный набор поправочных элементов к этой модели.) В конце концов Иоитиро Намбу из Чикагского университета и Тэцуо Гото из Японского университета определили ключевую характеристику, которая приводила модель в действие. Этой характеристикой оказалась вибрирующая струна. (В этом направлении также работали Леонард Зюскинд и Хольгер Нильсен.) Когда струна сталкивалась с другой струной, создавалась S-матрица, описанная в модели Венециано. В таком представлении каждая частица есть не рто иное, как вибрация, или нота, взятая на струне. (Я подробнее обращусь к этому понятию позднее.) Развитие теории проходило очень стремительно. В 1979 году Джон Шварц, Андре Неве и Пьер Рамон обобщили струнную модель Таким образом, что она включала в себя новый параметр — спин, — hrro делало струнную модель подходящей кандидатурой и для взаимодействий частиц. (Как мы увидим далее, все субатомные частицы вертятся подобно волчку. Спин для каждой субатомной частицы: может быть представлен как целым числом (0,1,2), так и полуцелым (1/2, 3/2). Что примечательно, струна Неве-Шварца-Рамона давала именно этот набор спинов.) И все же я был не удовлетворен. Двойная резонансная модель, как тогда ее называли, представляла собой скопление странных формул и практических методов. В течение последних 150 лет вся физика основывалась на «полях», которые были впервые введены британским физиком Майклом Фарадеем. Представьте себе линии Магнитного поля, создаваемого магнитом. Эти линии пронизывают пространство подобно паутине. В любой точке пространства можно измерить напряженность и направления силовых магнитных линий. Подобным образом и поле является математическим объектом, который приобретает различные значения в каждой точке пространства. Таким образом, поле определяет магнитное, электрическое или ядерное взаимодействие в любой точке Вселенной. Поэтому фундаментальное описание электричества, магнетизма, ядерной силы и гравитации основано на полях. Почему струны должны быть Чем-то другим? От «полевой теории струн» требовалось, чтобы она дала возможность подвести итог всему содержанию теории в одном-единственном уравнении. В 1974 году я решил заняться этим вопросом. Вместе с коллегой Кейджи Киккавой из Университета Осаки нам удалось вывести самую суть полевой теории струн. Мы смогли суммировать всю информацию, содержащуюся в струнной теории, в уравнении длиной менее четырех сантиметров Теперь, когда полевая теория струн была сформулирована, необходимо было убедить физическое сообщество в ее силе и красоте. Я принял участие в конференции по теоретической физике в Аспенском центре в Колорадо тем же летом и провел семинар с небольшой группой ведущих физиков. Я порядком нервничал: среди слушателей были два нобелевских лауреата, Марри Гелл-Манн и Ричард Фейнман, которые славились тем, что любили задавать едкие и остроумные вопросы, заставляя оратора нервничать. (Однажды во время лекции, которую проводил Стивен Вайнберг, он начертил на доске угол, отмеченный буквой W, который был назван углом Вайнберга в его честь. Фейнман задал вопрос о том, что означала буква W Вайнберг еще только начал отвечать, как Фейнман крикнул: «Неверно!», что вызвало смех в зале. Что же, может быть, Фейнман и развлек слушателей, но последним смеялся все же Вайнберг. Угол на доске представлял важную часть теории Вайнберга, объединившей электромагнитное и слабое взаимодействие и в конечном итоге принесшей ему Нобелевскую премию.) В ходе своей лекции я подчеркнул тот факт, что струнная теория поля представила бы наиболее простой и всесторонний подход к струнной теории, в значительной степени представлявшей собой разношерстное скопление разрозненных формул. При помощи струнной теории поля всю теорию можно было суммировать в одном-единственном, не очень длинном уравнении: все свойства модели Венециано, все элементы бесконечной аппроксимации возмущения, все свойства колеблющихся струн — все можно было вывести из уравнения, которое поместилось бы в китайском печенье с предсказаниями. Я обратил внимание на симметрии струнной теории, которые придавали ей прелесть и силу. Когда струны движутся в пространстве-времени, они описывают двумерные поверхности, похожие на полоски. Эта теория остается неизменной вне зависимости от координат, которыми мы можем пользоваться для описания этого двумерного пространства. Я никогда не забуду, как после лекции ко мне подошел Фейнман и сказал: «Я не во всем могу согласиться с вами по поводу струнной теории, но лекция, прочитанная вами, — одна из самых красивых, которые я когда-либо слышал». Десять измеренийСразу после появления струнной теории ее начали активно разрабатывать, снимая с нее покров тайны. Клод Лавлейс из Университета Рутгерс обнаружил в модели Венециано крошечный математический изъян, исправить который можно было только в том случае, если Предположить, что пространство-время обладает 26 измерениями. Подобным образом и суперструнная модель Неве, Шварца и Рамона Могла существовать только в десяти измерениях. Физиков это шокировало. Такого наука не видела за всю свою историю. Нигде больше мы не встретим теории, которая определяет количество измерений сама для себя. Например, теории Ньютона и Эйнштейна могут быть сформулированы для любого числа измерений. Знаменитый закон тяготения, построенный на обратных квадратах, можно обобщить в законе обратных кубов для четырех измерений. Что же касается струнной теории, то она могла существовать только в особых измерениях. Спрактическойточкизренияэтобылокатастрофой. Общепринято было считать, что наш мир существует в трех пространственных измерениях (длина, высота и ширина) и одном временном. Принять теорию, основанную на десяти измерениях, значило признать, что она граничит с фантастикой. Струнные теоретики превратились в объект насмешек. (Джон Шварц вспоминает, как он ехал в лифте с Ричардом Фейнманом, который в шутку сказал: «Ну что, Джон, и в скольких измерениях вы живете сегодня?») Как струнные физики ни пытались спасти модель от краха, она все же довольно быстро скончалась. Только самые упорные продолжили работу над струнной теорией в тот период, и они были весьма немногочисленны. Двоими из тех, кто продолжил работу над струнной теорией в те унылые годы, были Джон Шварц из Калифорнийского технологического института и Джоэл Шерк из Высшей технической школы в Париже. До того времени предполагалось, что струнная модель создана для описания только сильных ядерных взаимодействий. Но была одна проблема: модель предсказывала существование частицы, которая не встречалась в сильных взаимодействиях, — любопытной частицы с нулевой массой, обладающей двумя квантовыми единицами спина. Ни одна из попыток избавиться от этой надоедливой частицы не увенчалась успехом. Каждый раз, когда ученые пытались исключить эту нежелательную частицу со спином 2, вся модель разрушалась и теряла свои волшебные свойства. Казалось, в этой нежелательной частице каким-то образом содержался секрет всей модели. Затем Шерк и Шварц выдвинули дерзкое предположение. Возможно, изъян на самом деле был благословением. Если они интерпретировали эту назойливую частицу со спином в 2 как гравитон (квант гравитации из теории Эйнштейна), то тогда оказывалось, что струнная теория включала в себя теорию гравитации Эйнштейна! (Иными словами, общая теория относительности Эйнштейна просто выглядит как самая низкая вибрация или нота суперструны.) По иронии судьбы, в то время как в других квантовых теориях физики усиленно пытаются не допускать никакого упоминания о гравитации, струнная теория просто-напросто требует ее присутствия. (В сущности, это одна из привлекательных сторон струнной теории — она должна включать гравитацию, иначе теория окажется противоречивой.) После этого отважного рывка ученые поняли, что струнная теория была неверно применена к неверной проблеме. Струнной теории предстояло стать не просто теорией сильных ядерных взаимодействий — ей было предначертано стать теорией всего. Как отметил Виттен, привлекательной стороной струнной теории является то, что она требует присутствия гравитации. В то время как в стандартные теории поля десятилетиями не удавалось включить гравитацию, в струнной теории она неотъемлемый элемент. Однако на конструктивную идею Шерка и Шварца в то время никто не обратил внимания. Для того чтобы струнная теория описывала как гравитацию, так и субатомный мир, требовалось, чтобы струны были длиной всего лишь в 10 зз см (длина Планка). Иными словами, они были в миллиард миллиардов раз меньше протона. Для большинства физиков это было чересчур. Однако к середине 1980-х годов все другие попытки создания единой теории поля потерпели неудачу. Те теории, которые наивно пытались присоединить гравитацию к Стандартной модели, утопали в болоте бесконечностей (вскоре я поясню эту проблему). Каждый раз, когда ученые пытались искусственным образом соединить гравитацию с другими квантовыми силами, это приводило к появлению математических противоречий, которые убивали всю теорию. (Эйнштейн считал, что у Бога, возможно, не было выбора при создании Вселенной. Одной из причин тому может быть факт, что лишь одна-единственная теория свободна от всех этих математических противоречий.) Существовало два вида математических противоречий. Первый — это проблема бесконечностей. Обычно квантовые флуктуации чрезвычайно малы. Квантовые эффекты, как правило, оказывают самое незначительное воздействие на законы движения Ньютона. Именно поэтому мы можем не обращать на них внимания в нашем макроскопическом мире — ведь они слишком малы, чтобы быть замеченными. Однако когда мы превращаем гравитацию в квантовую теорию, эти квантовые флуктуации становятся, в сущности, бесконечными, а это полный абсурд. Второе математическое противоречие относится к «аномалиям», небольшим отклонениям в квантовой теории, которые возникают при добавлении в теорию квантовых флуктуации. Эти аномалии нарушают первоначальную симметрию теории и лишают ее тем самым первоначальной силы. Представьте, к примеру, конструктора ракеты: он должен создать гладкий обтекаемый летательный аппарат, который сможет пройти сквозь атмосферу. Чтобы уменьшить трение воздуха и лобовое сопротивление, ракета должна быть строго симметричной (в этом случае цилиндрически симметричной, то есть не изменять форму, если вращать ее вокруг оси). Такая симметрия называется 0(2). Но существуют две потенциальные проблемы. Во-первых, поскольку ракета движется с огромной скоростью, в ее крыльях может начаться вибрация. Как правило, при полетах на дозвуковых скоростях такие вибрации очень незначительны. Однако при полетах на сверхзвуковых скоростях эти отклонения могут возрасти и в конечном итоге привести к тому, что крыло оторвется. Подобные противоречия неотступно преследуют любую квантовую теорию гравитации.[6] Обычно они настолько малы, что их можно не принимать в расчет, но в квантовой теории гравитации они все расстраивают. Второй проблемой является то, что в корпусе ракеты могут остаться крошечные трещины. Эти изъяны нарушают изначально задуманную симметрию ракеты 0(2). Как бы ни были малы эти трещины, они могут расшириться и в конце концов стать причиной разрушения всего корпуса. Подобным образом такие «трещины» убивают, симметрии теории гравитации. Существует два способа решения проблемы. Первый заключается в том, чтобы найти решение с помощью «пластыря». Этот подход можно сравнить с заклеиванием трещин и укреплением крыльев при помощи палок в надежде, что ракета не взорвется и ее не разорвет на части в атмосфере. Исторически физики предпочитали именно этот подход в своих попытках соединения квантовой теории с гравитацией. Они пытались замести эти две проблемы под половик. Второй способ состоит в том, чтобы начать все сначала, с новой формой и новыми экзотическими материалами, которые могут выдержать нагрузки межзвездных полетов. В течение нескольких десятилетий физики пытались «заштопать» квантовую теорию гравитации, но в результате сталкивались с безнадежно огромным количеством новых противоречий и аномалий. Постепенно они поняли, что выход заключается в том, чтобы отбросить возможное решение проблемы при помощи «пластыря» и принять принципиально новую теорию. Струнная теория выходит в светВ 1984 году отношение к струнной теории совершенно изменилось. Джон Шварц из Калтеха и Майк Грин, тогда работавший в Колледже Королевы Марии в Лондоне, показали, что она лишена всех противоречий, которые заставили ученых отбросить так много теорий. Физикам было уже известно, что струнная теория свободна от математических противоречий. Но Шварц и Грин показали, что она также свободна от аномалий. В результате струнная теория стала ведущим (и на сегодняшний день единственным) претендентом на роль теории всего. Совершенно неожиданно теория, которую считали полностью мертвой, возродилась. Из «теории ничего» струнная теория превратилась в теорию всего. Множество физиков бросились читать работы по струнной теории. Из исследовательских лабораторий всего мира поползла лавина работ, посвященных струнной теории. Старые работы, которые раньше пылились в библиотеках, внезапно стали самыми животрепещущими новинками в физике. Теория о параллельных вселенных, которая до того считалась слишком абсурдной, чтобы содержать в себе истину, теперь стала в физическом мире признаваться достаточно безумной, чтобы быть истинной. Этому предмету теперь посвящаются сотни конференций и буквально десятки тысяч работ. (Временами события выходили из-под контроля, потому что некоторые физики подхватили «нобелевскую лихорадку». На обножке журнала «Дискавер» (Discover) в августе 1991 года красовался сенсационный заголовок: «Новая теория всего: физик берется за решение последней космической загадки». В статье приводились слова одного физика, который гнался за славой. «Мне нечего скромничать. Если это сработает, то за это положена Нобелевская премия», — хвастал он. В ответ на возражение о том, что струнная теория находится только в стадии становления, он выпалил: «Самые Важные фигуры в струнной теории говорят, что понадобится четыре сотни лет на то, чтобы доказать существование струн, но я бы предложил им заткнуться».) Золотая лихорадка была в самом разгаре. В скором времени возникла ответная реакция на этот триумфальный выход в свет струнной теории. Один физик из Гарварда с пренебрежением говорил, что струнная теория вовсе не является физической теорией, а есть на самом деле не что иное, как одно из направлений чистой математики, или философии, или даже религии. Нобелевский лауреат Шелдрн Глэшоу из Гарварда возглавлял обвинение, сравнивая повсеместное распространение струнной теории со «звездными войнами» (на создание которых затрачиваются огромные средства, но проверить которые невозможно). Глэшоу выразил свое удовольствие по поводу того, что так много молодых физиков занимаются струнной теорией, поскольку, сказал он, таким образом они ему не докучают. Глэшоу попросили прокомментировать заявление Виттена о том, что струнная теория может занять доминирующее положение в физике на ближайшие полвека подобно тому, как квантовая механика лидировала на протяжении последних пятидесяти лет. Тот ответил, что струнная теория будет занимать такое же лидирующее положение, как и теория Калуцы — Клейна (которую он считает полным бредом) на протяжении последних пятидесяти лет, что совсем не соответствует действительности. Он старался не пускать в Гарвард ученых, работающих над струнной теорией. Но поскольку следующее поколение физиков переметнулось на сторону струнной теории, даже одинокий голос Нобелевского лауреата был вскоре заглушён. (С тех пор Гарвард пригласил на работу нескольких ученых, работающих в области струнной теории.) Космическая музыкаЭйнштейн однажды сказал, что если теория не представляет такой физической картины, которая понятна даже ребенку, то она, скорее всего, бесполезна. К счастью, за струнной теорией стоит четкая физическая картина — картина, основанная на музыке. Согласно струнной теории, если бы у нас был сверхмощный микроскоп и мы могли вглядеться в сердце электрона, то мы бы увидели вовсе не точечную частицу, а вибрирующую струну. (Струна чрезвычайно маленькая — около длины Планка, которая составляет Ю"33 см, — в миллиарды миллиардов раз меньше протона, а потому все субатомные частицы выглядят как точки.) Если бы мы задели эту струну, то характер вибрации изменился бы — электрон мог бы превратиться в нейтрино. Заденьте струну снова — и он, возможно, превратится в кварк. В сущности, если задеть струну достаточно сильно, то она могла бы превратиться в любую из известных субатомных частиц. Таким образом, струнная теория может легко объяснить, почему существует так много субатомных частиц. Они представляют собой не что иное, как «ноты», которые можно сыграть на суперструне. Для аналогии, на скрипичной струне ноты ля, си или до-диез не являются основными. Просто, играя на струне различным способом, мы можем получить все ноты музыкальной гаммы. Например, си-бемоль является не более основной, чем соль. Все они представляют собой лишь ноты, которые можно сыграть на скрипичной струне. Подобным образом, ни кварки, ни электроны не являются основными частицами — основой является сама струна. В сущности, все субчастицы Вселенной можно рассматривать в качестве различных вибраций струны. «Гармонией» струны являются законы физики. Струны могут взаимодействовать путем расщепления и воссоединения, создавая таким образом взаимодействия, которые мы наблюдаем в атомах между электронами и протонами. В общем, с помощью струнной теории мы можем воспроизвести все законы атомной и ядерной физики. «Мелодии», которые могут быть сыграны на струнах, соотносятся с законами химии. Всю Вселенную теперь можно рассматривать как необъятную струнную симфонию. Струнная теория не только дает объяснение частиц квантовой теории как музыкальных нот Вселенной, она также объясняет теорию относительности Эйнштейна: самая низкая вибрация струны, частица со спином «двойка» и нулевой массой, может интерпретироваться как гравитон — частица или квант гравитации. Если мы подсчитаем взаимодействия этих гравитонов, то в точности получим старую добрую теорию гравитации Эйнштейна в квантовом виде, Двигаясь, расщепляясь и изменяя форму, струна налагает огромные ограничения на пространство-время. При анализе этих ограничений мы опять-таки приходим к старой доброй общей теории относительности Эйнштейна. Таким образом, струнная теория четко объясняет теорию Эйнштейна без ненужных дополнительных усилий. Эдвард Виттен сказал, что если бы Эйнштейн не открыл теорию относительности, то его теория была бы открыта как побочный продукт струнной теории. В каком-то смысле, общая теория относительности является к ней бесплатным приложением. Прелесть струнной теории состоит в том, что ее можно уподобить музыке. Музыка дает нам метафору, с помощью которой можно понять природу Вселенной как на субатомном, так и на космическом уровне. Как когда-то написал великий скрипач Иегуди Менухин, «Музыка создает порядок из хаоса; ибо ритм придает единодушие разобщенности; мелодия придает связность разрозненности; а гармония придает совместимость несовместимому». Эйнштейн писал, что его поиски единой теории поля в конечном счете позволят ему «узреть замысел Божий». Если струнная теория верна, то мы увидим, что замысел Бога — это космическая музыка, резонирующая во всех десяти измерениях гиперпространства. Готфрид Лейбниц однажды сказал: «Музыка — это скрытые арифметические упражнения души, которая не ведает о том, что занимается вычислениями». Исторически связь между музыкой и наукой установилась в V веке до н. э., когда греки-пифагорейцы открыли законы гармонии и свели их к математике. Они обнаружили, что высота тона задетой струны лиры соотносится с ее длиной. Если длину струны лиры увеличивали вдвое, то тон становился на октаву ниже. Если длину струны уменьшали до двух третей, то тон менялся на квинту. Исходя из этих данных, законы музыкальной гармонии могли быть сведены к точным отношениям между числами. Неудивительно, что девизом пифагорейцев была следующая фраза: «Всё есть числа». Изначально они были так довольны полученным результатом, что попытались применить выведенные законы гармонии ко всей Вселенной. Однако все их усилия были напрасны, поскольку такая задача отличалась чрезвычайной сложностью. И все же, работая со струнной теорией, физики в каком-то смысле возвращаются к мечте пифагорейцев. Комментируя эту историческую связь, Джейми Джеймс однажды сказал: «Музыка и наука [когда-то] были настолько тесно связаны, что любого, кто предположил бы существование какого-либо коренного различия между ними, посчитали бы невеждой, [однако сегодня] любой, предположивший, что у них есть нечто общее, рискует показаться мещанином одной стороне и дилетантом — второй; и, что самое неприятное, обе группы сочтут его человеком, популяризирующим их идеи». Проблемы в гиперпространствеНо если дополнительные измерения и вправду существуют в природе, а не только в чистейшей математике, то ученым, занимающимся струнной теорией, придется заняться той же проблемой, что неотступно преследовала Теодора Калуцу и Феликса Клейна в 1921 году, когда они сформулировали первую теорию дополнительных измерений: где же находятся эти измерения? Калуца, впрошломмалоизвестньгйматематик, написал Эйнштейну письмо, в котором предлагал переписать уравнения Эйнштейна применительно к пяти измерениям (одно измерение времени и четыре измерения пространства). С математической точки зрения это никакой проблемы не представляло, поскольку уравнения Эйнштейна могли быть легко переписаны для любого количества измерений. Но в письме содержалось поразительное замечание: если выделить четырехмерные части, содержащиеся в уравнениях, записанных для пяти измерений, то мы автоматически, будто по волшебству, получим теорию света Максвелла! Иными словами, если мы всего лишь добавим пятое измерение, то из уравнений Эйнштейна для гравитации получается теория электромагнитного взаимодействия Максвелла. Хотя мы не можем видеть само пятое измерение, на его поверхности образуется рябь, которая соответствует световым волнам! Это был приятный результат, поскольку на протяжении последних 150 лет целым поколениям физиков и инженеров приходилось заучивать сложные уравнения Максвелла. Сегодня эти сложные уравнения без всяких усилий выводятся как простейшие вибрации, которые можно обнаружить в пятом измерении. Представьте себе рыб, плавающих в мелком пруду прямо под листьями кувшинок. Они считают, что их «вселенная» двумерна. Наш трехмерный мир может находиться за пределами их знания. Но существует способ, с помощью которого они могут уловить присутствие третьего измерения. Если идет дождь, то они отчетливо видят тень волн ряби, расходящихся по поверхности пруда. Подобным образом и мы не можем видеть пятого измерения, но рябь в пятом измерении предстает перед нами как свет. (Теория Калуцы была прекрасным и глубоким открытием, касающимся симметрии. Позднее было замечено, что если мы добавим еще больше измерений к прежней теории Эйнштейна и заставим их вибрировать, то тогда эти вибрации дополнительных измерений будут представлять W- и Z-бозоны и глюоны, обнаруженные в сильном и слабом ядерном взаимодействии! Если путь, предложенный Калуцой, был верным, то Вселенная была явно намного проще, чем изначально предполагали ученые. Просто, вибрируя все «выше», измерения представляли многие взаимодействия, правящие миром.) Хотя Эйнштейна потряс этот результат, он был слишком хорош, чтобы быть правдой. Спустя годы были обнаружены проблемы, которые сделали идею Калуцы бесполезной. Во-первых, его теория была усеяна противоречиями и аномалиями, что весьма типично для теорий квантовой гравитации. Во-вторых, тревожил гораздо более важный физический вопрос: почему же мы не видим пятого измерения? Когда мы пускаем стрелы в небо, мы не видим, чтобы они исчезали в другом измерении. Возьмем дым, который медленно проникает во все области пространства. Поскольку никогда не было замечено, чтобы дым исчезал в высшем измерении, физики поняли, что дополнительные измерения, если они вообще существуют, должны быть меньше атома. За последнее столетие идеей о дополнительных измерениях развлекались мистики и математики; что же касается фи- зиков, то они с пренебрежением относились к этой идее, поскольку никто и никогда не видел, чтобы предметы пропадали в пятом измерении. Для спасения теории физикам пришлось предположить, что эти дополнительные измерения настолько малы, что их нельзя наблюдать в природе. Поскольку наш мир четырехмерен, это предполагало, что пятое измерение должно быть свернуто в крошечный шарик размером меньше атома — слишком маленький, чтобы его можно было наблюдать в ходе эксперимента. Струнной теории приходится сталкиваться с той же проблемой. Мы должны свернуть все эти нежелательные дополнительные измерения в крошечный шарик (этот процесс называется компактифи-кацией). Согласно струнной теории, изначально Вселенная была десятимерной, а все взаимодействия в ней были объединены струной. Однако десятимерное гиперпространство было неустойчивым, и шесть из десяти измерений начали сворачиваться в крошечный шарик, а остальные четыре расширились в Большом Взрыве. Причиной, по которой мы не видим эти другие измерения, является то, что они намного меньше атома, а потому ничто не может в них проникнуть. (Например, садовый шланг и соломинка издалека кажутся одномерными объектами, основной характеристикой которых является их длина. Но если рассмотреть их поближе, то мы обнаружим, что они, в сущности, являются двумерными поверхностями или цилиндрами, но второе измерение свернулось таким образом, что мы его не видим.) Почему струны?Хотя все предыдущие попытки построить единую теорию поля с треском провалились, струнная теория до сих пор выдержала все испытания. В сущности, ей нет равных. Существуют две причины, по которым струнная теория преуспела там, где все остальные теории потерпели поражение. Во-первых, будучи основанной на протяженном предмете (струне), струнная теория избегает многих отклонений, связанных с точечными частицами. Как заметил Ньютон, гравитационное взаимодействие, окружающее точечную частицу, при приближении к ней становится бесконечным. (В знаменитом законе обратных квадратов Ньютона гравитационное взаимодействие увеличивается пропорционально зависимости 1/г2, так что оно стремится к бесконечности, когда мы приближаемся к точечной частице; то есть когда г стремится к нулю, гравитационное взаимодействие возрастает и стремится к 1/0, что представляет собой бесконечность.) Даже в квантовой теории эта сила остается бесконечной, если мы приблизимся к квантовой точечной частице. За многие десятилетия Фейнман и другие ученые создали ряд хитрых правил, с помощью которых эти и многие другие противоречия можно было замести под ковер. Но для того, чтобы исключить все бесконечности в квантовой теории гравитации, недостаточно даже мешка ухищрений, собранного Фейнманом. Проблема в том, что точечные частицы бесконечно малы, а это означает, что их силы и энергии потенциально бесконечны. Но при внимательном рассмотрении струнной теории мы увидим, что есть два способа, при помощи которых мы можем избавиться от этих противоречий. Первый способ исходит из топологии струн, а второй из-за своей симметрии называется суперсимметрией. Топология струнной теории носит совершенно другой характер, чем топология точечных частиц, а отсюда различны и возникающие противоречия. (Грубо говоря, поскольку струна обладает конечной длиной, это означает, что силы не стремятся к бесконечности при приближении к струне. Рядом со струной силы возрастают пропорционально зависимости 1 /L2, где L — это длина струны, соизмеримая с длинной Планка, порядка 10"33 см. Эта длина L позволяет отсечь все противоречия.) Поскольку струна не является точечной частицей, обладая определенным размером, можно показать, что противоречия «размазаны» вдоль всей струны, и отсюда все физические величины становятся конечными. Хотя интуитивно кажется совершенно очевидным, что все противоречия струнной теории «размазаны» и потому конечны, точное математическое выражение этого факта довольно сложно и представлено «эллиптической модулярной функцией», одной из самых странных функций математики. Ее история настолько захватывающа, что ей даже довелось играть ключевую роль в одном из голливудских фильмов. «Умница Уилл Хантинг» — это история о неотесанном пареньке из рабочей семьи с окраин Кембриджа (его играл Мэтт Дэймон), который демонстрировал потрясающие способности к математике. В сущности, фильм «Умница Уилл Хантинг» основан на жизни Сринивазы Рамануджана, величайшего математического гения двадцатого столетия. Он вырос в бедности и изоляции от основных научных достижений возле Мадраса в Индии на рубеже ХГХ и XX веков. Поскольку юноша жил в условиях оторванности от научного мира, ему пришлось до многого доходить самому, основываясь на европейской математике ХГХ века. Его карьера была подобна взрыву сверхновой, мимолетно осветившей небеса его математической гениальностью. Его смерть была трагична: он умер от туберкулеза в 1920 году в возрасте 37 лет. Подобно Мэтту Дэймону из фильма «Умница Уилл Хантинг», Рамануджан грезил математическими уравнениями, в данном случае эллиптической модулярной функцией: написанная для двадцати четырех измерений, она обладает причудливыми, но красивыми математическими свойствами. Математики и по сей день пытаются расшифровать «утерянные записи Рамануджана», обнаруженные после его смерти. Оглядываясь на работу Рамануджана, мы видим, что ее можно обобщить и свести к восьми измерениям, которые напрямую применимы к струнной теории. Физики добавляют еще два измерения для построения физической теории. (Например, создание поляризованных солнцезащитных очков основано на том факте, что свет обладает двумя физическими поляризациями: он может вибрировать влево-вправо или вверх-вниз. Но математическая формулировка света в уравнениях Максвелла представлена четырьмя компонентами. Две из этих четырех вибраций, в сущности, лишние.) Если мы добавим еще два измерения к функциям Рамануджана, то «волшебными числами» математики становятся 10 и 26, которые являются «волшебными числами» и в струнной теории. Таким образом выходит, что в каком-то смысле Рамануджан занимался струнной теорией еще до Первой мировой войны! Сказочные свойства этих эллиптических модулярных функций объясняют, почему теория должна существовать в десяти измерениях. Только в таком количестве измерений будто по волшебству исчезает большая часть противоречий, наводняющих все остальные теории. Но сама по себе топология струн не обладает достаточной «властью», чтобы исключить все эти противоречия. Остальные противоречия струнной теории устраняются при помощи второй ее характеристики — суперсимметрии. СуперсимметрияВ струне заключены некоторые величайшие симметрии, известные науке. Обсуждая инфляционное расширение Вселенной и Стандартную модель в главе 4, мы видели, что симметрия предоставляет нам прекрасный способ организации субатомных частиц в приятные и изящные модели. Три типа кварков могут быть организованы согласно симметрии SU(3), которая позволяет кваркам меняться между собой местами. В теории ТВО считается, что пять типов кварков и лептонов могли бы быть организованы согласно симметрии SU(5). В струнной теории благодаря этим симметриям уходят оставшиеся противоречия и аномалии. Поскольку симметрии представляют собой одно из наиболее прекрасных и мощных средств, имеющихся в нашем распоряжении, то вполне можно было бы ожидать, что теория Вселенной должна обладать наиболее изящной и мощной симметрией, какая только известна науке. Логичной была бы симметрия, которая позволила бы менять местами не только кварки, но и все частицы, которые можно встретить в природе. Это значит, что все уравнения должны оставаться неизменными, если мы изменим положение всех частиц относительно друг друга. Такой подход в точности описывает симметрия суперструны, называемая суперсимметрией.[7] Это единственный вид симметрии, который позволяет менять местами все известные физикам субатомные частицы. Такая симметрия является идеальным претендентом на место симметрии, которая организует все частицы Вселенной в единое, изящное целое. Если рассматривать все взаимодействия и частицы Вселенной, то мы увидим, что, в зависимости от спина, все они делятся на две категории — «фермионы» и «бозоны». Они ведут себя как волчки, которые могут вращаться с различными скоростями. К примеру, спин фотона, частицы, являющейся носителем электромагнитного взаимодействия, равен единице. Гравитон, частица гравитации, имеет спин, равный двум. Все частицы, обладающие спином, выражающимся целым числом, называют бозонами. Подобным образом, частицы вещества описываются при помощи субатомных частиц, спин которых выражается полуцелыми значениями — 1/2, 3/2, 5/2 и так далее. (Частицы с полуцелыми значениями спина называют фермионами. К ним относятся электрон, нейтрино и кварки.) Таким образом, супер симметрия изящно выражает дуализм, возникающий между бозонами и фермионами, между взаимодействиями и веществом. В теории, основанной на суперсимметрии, у каждой частицы есть напарник: каждый фермион находится в паре с бозоном. Хотя мы никогда не наблюдали этих суперсимметричных партнеров в природе, физики окрестили партнера электрона «сэлектроном», который обладает спином, равным нулю. (Физики добавляют «с» для описания суперпартнера какой-либо частицы.) Слабые взаимодействия включают в себя частицы, называемые лептонами: их суперпартнеров называют слептонами. Подобным образом и у кварка может быть партнер с нулевым спином, который называется скварком. В целом, партнеры всех известных частиц (кварков, лептонов, гравитонов, фотонов и так далее) называются счастицами, или суперчастицами. Эти счастицы нам еще только предстоит обнаружить при помощи ускорителей частиц (возможно, наше оборудование еще не достаточно мощное, чтобы мы могли получить эти частицы). Но поскольку все субатомные частицы являются либо фермионами, либо бозонами, то в теории суперсимметрии содержится потенциал объединения всех известных субатомных частиц одной простой симметрией. Теперь у нас есть достаточно обширная симметрия, которая включит в себя целую Вселенную. Представьте себе снежинку. Пусть каждый из шести ее кончиков представляет субатомную частицу, при этом бозоны расположены через один и за каждым бозоном следует фермион. Красота этой «суперснежинки» состоит в том, что при вращении она остается неизменной. Таким образом, эта суперснежинка объединяет все частицы и их счастицы. Поэтому, если мы попытаемся построить гипотетическую единую теорию поля, в которой есть лишь шесть частиц, то вполне естественно, что лучшим претендентом на эту роль явится супер снежинка. Суперсимметрия помогает устранить все оставшиеся бесконечности, которые для других теорий оказывались роковыми. Ранее мы уже упоминали о том, что большая часть отклонений устраняется благодаря топологии струны — то есть, поскольку струна обладает конечной длиной, силы не стремятся к бесконечности при приближении к самой струне. При рассмотрении оставшихся отклонений мы видим, что они делятся на два типа, исходя из взаимодействий бозонов и фермионов. Однако два типа действий, производимых этими частицами, всегда имеют противоположный знак, а потому действие фермиона всегда компенсируется действием бозона! Иными словами, поскольку действия бозона и фермиона всегда имеют противоположный знак, то оставшиеся в теории противоречия взаимоустраня-юхся. Таким образом, суперсимметрия — это не просто витринное крашение. Это не только симметрия, которая дарит эстетическое удовольствие, — это неотъемлемый элемент для устранении отклонений в струнной теории. Вспомним аналогию конструирования гладкой ракеты, в которой вибрации могут возрасти настолько, что в конечном счете у нее оторвет крылья. Одним из решений этой проблемы является применение силы симметрии для корректировки конструкции крыльев — таким образом, чтобы вибрации, возникающие в одном крыле, компенсировали вибрации в другом. Когда одно крыло вибрирует по часовой стрелке, второе крыло должно вибрировать против часовой стрелки, что уравновешивает вибрацию первого крыла. Таким образом, симметрия ракеты — казалось бы, всего лишь искусственный художественный элемент — имеет ключевое значение в устранении и балансировке нагрузок на крылья ракеты. Подобным образом и суперсимметрия устраняет отклонения благодаря тому, что бозонная и фермионная части полностью компенсируют действие друг друга. (Суперсимметрия также решает ряд сложных технических проблем, фатальных для ТВО. Для устранения математических противоречий в ТВО необходима суперсимметрия.) Хотя суперсимметрия несет в себе очень мощную идею, в настоящее время не существует никаких экспериментальных доказательств ее истинности. Это может объясняться тем, что суперпартнеры известных нам электронов и протонов могут попросту обладать слишком большой массой, чтобы мы могли получить их на современных ускорителях частиц. Однако существует очень даже привлекательное доказательство существования суперсимметрии. Мы знаем, что три квантовых взаимодействия различны по силе. В сущности, при малых энергиях сильное взаимодействие в 30 раз сильнее слабого взаимодействия и в сотню раз сильнее электромагнетизма. Однако так было не всегда. Мы предполагаем, что в момент Большого Взрыва все три взаимодействия были равны по силе. Возвращаясь назад во времени, физики могут вычислить силы трех взаимодействий в начале времен. Анализируя Стандартную модель, физики обнаружили, что силы трех взаимодействий, видимо, стремились к равенству в момент Большого Взрыва. Но они не в точности равняются друг другу. Зато когда мы добавляем суперсимметрию, то все три взаимодействия в точности совпадают друг с другом по силе, а это именно то, что предполагается в единой теории поля. И хотя этот факт не является прямым доказательством в пользу суперсимметрии, он все же показывает, что суперсимметрия, по крайней мере, вписывается в рамки известной физики. Силы слабого, сильного и электромагнитного взаимодействия не являются эквивалентными по силе в современном нам мире. Однако при энергиях Большого Взрыва силы этих взаимодействий должны полностью совпадать. Это совпадение имеет место при применении теории суперсимметрии. Таким образом, суперсимметрия может оказаться ключевым элементом для любой единой теории поля. Вывод Стандартной моделиХотя в суперструнах в принципе не существует настраиваемых параметров, струнная теория может предложить решения, удивительно близкие к Стандартной модели с ее пестрым собранием причудливых субатомных частиц и девятнадцатью «гуляющими» параметрами (такими, как массы частиц и их силы взаимодействия). Кроме того, в Стандартной модели существуют три идентичные (и лишние) копии всех кварков и лептонов, что кажется совершенно бесполезным. Ксчастью, струнная теория может без напряжения вывести многие качественные характеристики Стандартной модели. В 1984 году Филип Канделас из Техасского университета, Гари Хоровиц и Эндрю Стромингер из Калифорнийского университета в Санта-Барбаре, а также Эдвард Виттен показали, что если свернуть шесть из десяти измерений струнной теории и при этом сохранить суперсимметрию в оставшихся четырех измерениях, то крошечный шестимерный мир можно описать при помощи того, что математики называют многообразием Калаби-Яу. Взяв несколько примеров из пространств Калаби-Яу, они показали, что симметрию струны можно свести к теории, которая удивительно близка к Стандартной модели. Таким образом, струнная теория дает нам простой ответ на то, почему в Стандартной модели существуют три излишних поколения. В струнной теории количество поколений или излишеств в кварковой модели связано с количеством «отверстий», которые мы обнаруживаем в многообразии Калаби-Яу. (Например, возьмем пончик, велосипедную камеру и кофейную чашку — все они являются поверхностями с одним отверстием. В оправе для очков два отверстия. В пространствах Калаби-Яу может существовать произвольное количество отверстий.) Таким образом, просто выбрав многообразие Калаби-Яу, в котором есть определенное количество отверстий, мы можем построить Стандартную модель с различными поколениями лишних кварков. (Поскольку мы никогда не видим пространства Калаби-Яу из-за того, что оно очень маленькое, мы также никогда не видим и того факта, что это пространство, подобно пончику, пронизано отверстиями.) В течение многих лет группы физиков пытались каталогизировать все возможные пространства Калаби-Яу, осознавая тот факт, что топология этого шестимерного пространства определяет кварки и лептоны нашей четырехмерной Вселенной. М-теорияВсеобщее увлечение струнной теорией, имевшее место в 1984 году, не могло продолжаться вечно. К середине 1990-х годов триумфальное шествие теории суперструн начало сбавлять темп. Легкие проблемы, которые решала эта теория, были уже все выбраны, и остались только сложные. Одной из таких проблем было открытие миллиардов решений струнных уравнений. При компактификации, или свертывании пространства-времени различным образом, струнные решения можно было записывать в любом измерении, а не только в четырех. Каждое из миллиардов струнных решений соответствовало математически непротиворечивой Вселенной. Физики внезапно начали тонуть в струнных решениях. Что примечательно, многие из этих решений выглядели очень похожими на нашу Вселенную. Выбрав подходящее пространство Калаби-Яу, можно было относительно несложно воспроизвести многие из существенных черт Стандартной модели с ее причудливым скоплением кварков и лептонов, даже с ее любопытным набором поколений. Однако чрезвычайно сложной задачей (неразрешенной и по сей день) было обнаружить первоначальную Стандартную модель с определенными значениями ее девятнадцати параметров и тремя излишними поколениями. (Ошеломляющее количество струнных решений, вообще-то, приветствовалось физиками, которые поддерживали идею Мультивселенной, поскольку каждое решение представляет полностью непротиворечивую параллельную вселенную. Однако удручал тот факт, что физики испытывали сложности в обнаружении именно нашей Вселенной в этих джунглях вселенных.) Одной из причин сложности этого предприятия является то, что в конечном счете суперсимметрию все же нужно разрушить, поскольку в нашем мире низких энергий мы этой симметрии не наблюдаем. К примеру, мы не видим в природе сэлектрона — суперпартнера электрона. Если оставить супер симметрию нетронутой, то масса каждой частицы должна быть эквивалентна массе ее суперчастицы. Физики считают, что суперсимметрия была нарушена, и результатом этого является то, что массы суперчастиц огромны и, таким образом, суперчастицы находятся вне пределов досягаемости современных ускорителей частиц. Но в настоящее время никто еще не предложил правдоподобного механизма для нарушения суперсимметрии. Дэвид Гросс из Института теоретической физики Кавли в Санта-Барбаре заметил, что существуют миллионы и миллионы решений струнной теории в трех пространственных измерениях, что несколько смущает, поскольку нет способа, с помощью которого мы можем выбирать среди них. Были и другие вопросы, в частности то, что существовало пять непротиворечивых струнных теорий. Было сложно представить, что Вселенная могла позволять существование пяти отдельных единых теорий поля. Эйнштейн считал, что у Бога не было выбора при создании Вселенной, так почему же Бог должен был создать целых пять вселенных? Первоначальная теория, основанная на формуле Венециано, описывает то, что называют суперструнной теорией типа I. В теории типа I фигурируют как открытые струны (с двумя концами), так и замкнутые струны (свернутые в окружность). Эту теорию очень активно разрабатывали в начале 1970-х годов. (Используя струнную теорию поля, Киккаве и мне удалось каталогизировать полный набор струнных взаимодействий типа I. Мы показали, что струны типа I требуют пять взаимодействий. Что касается замкнутых струн, то мы показали, что там необходим только один член взаимодействия.) Мы с Киккавой также показали, что возможно построение полностью непротиворечивых теорий только с замкнутыми струнами (то есть похожими на петлю). Сегодня такие теории называются струнными теориями типа II, где струны взаимодействуют путем расщепления на две струны меньшего размера (этот процесс напоминает митоз в клетках). Наиболее реалистичной струнной теорией считается теория гете-ротических струн, сформулированная группой ученых из Принстона (в том числе Дэвидом Гроссом, Эмилем Мартинеком, Райаном Ромом и Джеффри Харви). Теория гетеротических струн может содержать в себе группы симметрии, называемые Е(8)хЕ(8) или 0(32), которые достаточно велики, чтобы включить в себя теории'ТВО. Взаимодействие струн типа I может проходить в пяти различных вариантах. В ходе этих взаимодействий струны могут разрываться, соединяться и расщепляться. Для замкнутых струн характерно лишь последнее взаимодействие, которое напоминает процесс митоза в клетках. Теория гетеротических струн полностью основывается на замкнутых струнах. В 1980-е и 1990-е годы, говоря о теории суперструн, ученые подразумевали теорию гетеротических струн, поскольку она достаточно богата, чтобы позволить анализировать внутри нее Стандартную модель и теории ТВО. Например, группу симметрии Е(8)хЕ(8) можно разбить до симметрии Е(8), а затем — Е(б), которая, в свою очередь, достаточно велика, чтобы включать симметрию SU(3)xSUC)xU(l) «Стандартной модели. Загадка супергравитацииВдобавок к наличию пяти теорий суперструн существовал еще один насущный вопрос, позабытый в погоне за решением струнной теории. И97бгоду три физика — Питер ван Ныовенхойзен, Серджо Феррара и Дэниэл Фридман, в то время работавших в Государственном университете Нью-Йорка в Стоуни-Брук, обнаружили, что первоначальная теория гравитации Эйнштейна могла стать суперсимметричной, если ввести в нее всего лишь одно новое поле, суперпартнер первоначального гравитационного поля со спином 3/2 (названное гравитино, что означает «маленький гравитон»). Эта новая теория получила название теории супергравитации. В ее основе лежали точечные частицы, а не струны. В отличие от теории суперструн, где существовала бесконечная последовательность нот и резонансов, в теории супергравитации было всего лишь две частицы. В 1979 году Юджин Креммер, Джоэл Шерк и Бернар Джулия из французской Высшей технической школы показали, что самая общая теория супергравитации может 1быть записана в одиннадцати измерениях. (При попытках записать теорию супергравитации в двенадцати или тринадцати измерениях возникали математические противоречия.) В конце 1970-х — начале 1980-х годов считалось, что теория супер гравитации вполне могла бы оказаться мифической единой теорией поля. Теория супергравитации даже вдохновила Стивена Хокинга на слова о том, что виден невдалеке «конец теоретической физики» (в ходе его инаутурационной лекции при занятии в Кембриджском университете той самой кафедры математики, которую в свое время возглавлял сам Исаак Ньютон). Но супер гравитация вскоре столкнулась с теми же проблемами, какие погубили и предыдущие теории. Хотя в теории супергравитации было меньше противоречий, чем в обычной теории поля, но в ней не хватало завершенности и было полно потенциальных аномалий. Как и все остальные теории поля (за исключением струнной теории), она рассыпалась на глазах у ученых. Еще одной суперсимметричной теорией, которая может существовать в одиннадцати измерениях, является теория супермембран. Хотя струна обладает только одним измерением, определяющим ее длину, у супермембраны может быть два или более измерений, поскольку она представляет собой поверхность. Что примечательно, два типа мембран — двубранные и пятибранные — также оказываются непротиворечивыми в одиннадцати измерениях. Однако и в теории супермембран не обошлось без проблем. Супермембраны широко известны тем, что с ними очень сложно работать, а их квантовые теории действительно расходятся. В то время как скрипичные струны настолько просты, что еще греки-пифагорейцы смогли выработать законы гармонии, работать с мембранами настолько трудно, что даже сегодня ни у кого не возникло удовлетворительной теории музыки, основанной на них. Кроме того, было доказано, что эти мембраны неустойчивы и в конечном итоге распадаются на точечные частицы. Итак, к середине 1990-х годов у физиков было несколько загадок. Почему существовало пять струнных теорий в десяти измерениях? И почему в одиннадцати измерениях было две теории — супергравитации и супермембран? Более того, все они обладали суперсимметрией. Одиннадцатое измерениеВ 1994 году произошел еще один научный прорыв: он произвел эффект разорвавшейся бомбы и вновь изменил весь научный ландшафт. Эдвард Виттен и Пол Таунсенд из Кембриджского университета математически показали, что десятимерная струнная теория на самом деле была приближением к загадочной одиннадцатимерной теории высшего порядка и неизвестного происхождения. Виттен, к примеру, показал, что если мы возьмем мембранную теорию в одиннадцати измерениях и свернем одно измерение, то она превратится в десятимерную струнную теорию типа Па! Вскоре после этого было обнаружено, что все пять струнных теорий, по сути, приближения одной и той же загадочной одиннадцатимерной теории. Поскольку в одиннадцати измерениях могут существовать мембраны различных типов, Виттен назвал эту новую теорию М-теорией. Но она не только объединяла пять различных струнных теорий: в качестве бонуса она представила еще и объяснение загадки супергравитации. Если вы помните, теория супергравитации представляла собой одиннадцатимерную теорию, которая содержала в себе всего лишь две частицы с нулевой массой, изначальный гравитон Эйнштейна и его супер симметричный партнер (названный гравитино). Однако в М-теории существует бесконечное количество частиц с различными массами (соответствующими бесконечным вибрациям, которые могут стать рябью на некой одиннадцатимерной мембране). Но М-теория может объяснить существование супер гравитации, если мы предположим, что крошечная часть М-теории (только частицы, не имеющие масс) является старой теорией супергравитации. Иными словами, теория супер гравитации является лишь частным случаем М-теории. Аналогично, если мы возьмем эту загадочную одиннадцатимерную мембранную теорию и свернем одно измерение, то мембрана превратится в струну. Фактически, струнная теория типа II оказывается самым настоящим частным случаем одиннадцатимерной мембранной теории, где свернуто одно измерение! Например, если мы взглянем на сферу в одиннадцати измерениях, а затем одно измерение свернем, то сфера разрушится, а ее экватор превратится в замкнутую струну. Мы видим, что сферу можно рассматривать как ломтик мембраны, если свернуть одиннадцатое измерение до маленького круга. Десятимерная струна может получиться из одиннадцатимерной мембраны, если мы вырежем или свернем одно измерение. Когда мьг свернем одно измерение, экватор мембраны превратится в струну. Существует пять способов такого сворачивания, что порождает пять различных десятимерных теорий суперструн. Таким образом, мы обнаруживаем прекрасный и простой способ объединения всей десятимерной и одиннадцатимерной физики в одну-единственную теорию! Это стало концептуальным прорывом. Я все еще помню потрясение, вызванное этим сенсационным открытием. Я в то время собирался читать лекцию в Кембриджском университете. Пол Таунсенд очень любезно представил меня слушателям. Но до лекции он с большим воодушевлением объяснил мне этот новый научный результат — что в одиннадцатом измерении различные струнные теории могут быть объединены в одну-единственную мембранную теорию. В названии моей лекции фигурировало десятое измерение. До лекции Таунсенд сказал мне о том, что если эти последние научные изыскания окажутся удачными, то название моей лекции будет звучать старомодно. Я сказал про себя: «Ой-ой-ой». Либо он совершенно спятил, либо физическому сообществу предстоял переворот с ног на голову. Я не мог поверить в то, что слышал, а потому в свою защиту я обрушил на Таунсенда град вопросов. Я указал на тот факт, что одиннадцатимерные супермембраны, теория, которую он сам помогал формулировать, бесполезны, поскольку с ними трудно иметь дело в математическом отношении, и, что еще хуже, они нестабильны. Он признал существование этой проблемы, но выразил уверенность в том, что эти вопросы будут решены в будущем. Я также сказал, что одиннадцатимерная супергравитация не была окончательной теорией; она рассыпалась на глазах у ученых, как и все остальные теории, за исключением струнной. Таунсенд спокойно ответил, что это больше не представляет проблемы, поскольку супергравитация была всего лишь приближением к большей теории, все еще окутанной тайной, — М-теории, которая и есть окончательная. По сути, это была струнная теория, переформулированная в одиннадцатом измерении на основе мембран. Тогда я сказал, что супермембраны неприемлемы по той причине, что никто еще не смог объяснить, каким образом взаимодействуют мембраны, когда они сталкиваются и меняют форму (как сделал я для струнной теории в своей собственной диссертации несколько лет назад). Он признал, что это представляет проблему, но он был уверен, что и она решаема. Наконец я сказал, что М-теория не является теорией вообще, поскольку ее основные уравнения неизвестны. В отличие от струнной теории (которую можно было выразить на основе простых струнных уравнений поля, записанных мною несколько лет тому назад и содержащих в себе всю теорию), у мембран вообще не было теории поля. Он согласился и с этой точкой зрения. Но все же он был уверен, что уравнения для М-теории в конце концов будут выведены. У меня закружилась голова. Если Таунсенд был прав, то струнной теории вновь предстояло претерпеть радикальную трансформацию. Мембраны, когда-то отправленные в мусорную корзину истории физики, возрождались. Источником этой революции является то, что струнная теория продолжает развиваться вспять. Даже сегодня никому не известны простые физические принципы, лежащие в основе всей теории. Мне нравится представлять сложившееся положение как блуждание по пустыне, в ходе которого мы случайно находим маленький красивый камешек. Когда мы счищаем с него песок, мы обнаруживаем, что этот камешек в действительности — лишь вершина пирамиды, похороненной под тоннами песка. После десятилетий изнуряющих раскопок мы находим таинственные иероглифы, потайные комнаты и туннели. Когда-нибудь мы доберемся до первого этажа и попадем внутрь. Мир бранОдной из оригинальных черт М-теории является то, что она вводит не только струны, но и целый зверинец мембран различных измерений. В таком представлении точечные частицы называются «нуль-бранами», потому что они бесконечно малы и не имеют измерения. Тогда струна «однобранна», поскольку это одномерный объект, определяемый своей длиной. Мембрана «двубранна», подобно поверхности баскетбольного мяча, которая определяется длиной и шириной. (Баскетбольный мяч может двигаться в трех измерениях, но его поверхность лишь двумерна). Наша Вселенная может быть «трехбранной», трехмерным объектом, обладающим длиной, шириной и высотой. Существует несколько способов, при помощи которых мы можем взять мембрану и свести ее к струне. Вместо того чтобы сворачивать одиннадцатое измерение, мы также можем вырезать ломтик-экватор из одиннадцатимерной мембраны, создав таким образом замкнутую ленту. Если мы уберем толщину этой ленты, то она превратится в десятимерную струну. Петр Хорава и Эдвард Виттен показали, что таким образом мы приходим к гетеротической модели струн. В сущности, можно показать, что существует пять способов свести одиннадцатимерную М-теорию к десяти измерениям, получив в результате те самые пять теорий суперструн. М-теория дает нам быстрый интуитивный ответ на загадку, почему существует пять струнных теорий. Представьте, что вы стоите на вершине высокого холма и смотрите на равнины. С удачной точки обзора в третьем измерении отдельные части равнины предстают нам объединенными в единую связную картину. Подобным образом, с точки обзора в одиннадцатом измерении, глядя «вниз» на десятимерную равнину, мы видим безумное лоскутное одеяло, сшитое из пяти теорий суперструн — отдельных лоскутков одиннадцатого измерения. ДуальностьХотя Пол Таунсенд и не смог ответить на большую часть заданных мной вопросов, окончательно в правильности этой идеи меня убедила сила еще одной симметрии. М-теория не только обладает самым большим набором симметрии, известным физике, у нее есть и еще один козырь в рукаве: дуальность, которая дает М-теории сверхъестественную способность вместить пять теорий суперструн в одну теорию. Рассмотрим электричество и магнетизм, которые подчиняются уравнениям Максвелла. Было давно замечено, что если мы поменяем местами электрическое поле и магнитное, то уравнения останутся почти неизменными. Эта симметрия станет полной, если мы добавим монополи (единичные магнитные полюса) в уравнения Максвелла. Пересмотренные уравнения Максвелла останутся совершенно неизменными, если мы поменяем электрическое поле с магнитным и заменим электрический заряд е на обратный магнитный заряду. Это означает, что электричество (если электрический заряд мал) в точности эквивалентно магнетизму (если магнитный заряд велик). Эта эквивалентность называется дуальностью. В прошлом эту дуальность считали не более чем научной диковинкой, предметом салонных разговоров, поскольку вплоть до сегодняшнего дня никто не видел монополя. Однако физики посчитали примечательным тот факт, что в уравнениях Максвелла содержалась скрытая симметрия, которой природа, по всей видимости, не пользуется (во всяком случае, в нашем секторе Вселенной). Подобным образом и пять струнных теорий дуальны по отношению друг к другу. Рассмотрим струнную теорию типа I и гетеро-тическую струнную теорию SO(32). Обычно эти две теории даже не выглядят похожими. Теория типа I основана на разомкнутых и замкнутых струнах, которые могут взаимодействовать пятью различными способами, при этом результатом взаимодействия является расщепление и соединение струн. С другой стороны, струнная теория SO(32) имеет дело только с замкнутыми струнами, которые взаимодействуют только одним способом — подвергаются митозу (подобно клеткам). Струнная теория типа I определяется исключительно для десятимерного пространства, в то время как в струнной теории SO(32) имеется один набор вибраций, определенный в двадцатишестимерном пространстве. Сложно найти теории, которые были бы в большей степени не похожи друг на друга. Однако, как и в электромагнетизме, эти две теории обладают мощной дуальностью: если увеличить силу взаимодействий, то струны типа I будто по волшебству превращаются в гетеротические струны типа SO(32). (Этот результат настолько неожиданный, что, когда я впервые увидел его, я в изумлении покачал головой. В физике редко находятся две теории, которые кажутся совершенно разными во всех отношениях, в то время как доказывается, что они математически эквивалентны.) Лиза РэндаллВозможно, основным преимуществом М-теории над струнной теорией является то, что вместо того, чтобы быть довольно маленькими, эти дополнительные измерения на самом деле довольно велики и их даже можно наблюдать в лаборатории. Согласно струнной теории, шесть из десяти измерений должны быть свернуты в крошечный шарик, многообразие Калаби-Яу, которое слишком мало для того, чтобы его можно было наблюдать при помощи доступных нам сегодня инструментов. Эти шесть измерений были компактифицированы, благодаря чему попасть в дополнительные измерения не представляется возможным, что, конечно, разочарует тех, кто надеялся однажды взмыть в бесконечное гиперпространство, а не просто срезать маршрут через компактифицированное гипер пространство посредством порталов-червоточин. Однако отличительным свойством М-теории является то, что в ней фигурируют мембраны. Всю нашу Вселенную можно рассматривать в виде мембраны, парящей в намного большей вселенной. В результате этого не все дополнительные измерения необходимо сворачивать в шарик. По сути, некоторые из них могут быть огромны, бесконечны в своей протяженности. Физиком, попытавшимся разработать это новое представление о Вселенной, стала Лиза Рэндалл из-Гарварда. Несколько похожая на актрису Джоди Фостер, Рэндалл кажется не на своем месте в исключительно мужской профессии физика-теоретика, где царит жестокая конкуренция, а движущей силой является тестостерон. Она разрабатывает идею о том, что если наша Вселенная действительно представляет собой три-брану, парящую в пространстве, содержащем дополнительные измерения, то, возможно, это объясняет тот факт, что гравитация намного слабее трех остальных взаимодействий. Рэндалл выросла в нью-йоркском Куинсе; в школе она не выказывала особого интереса к физике, зато обожала математику. Я считаю, что, хотя все мы рождаемся учеными, не каждый способен продолжить роман с наукой в более взрослом возрасте. Одной из причин тому является каменная стена математики, встающая перед нами. Нравится нам это или нет, если мы хотим сделать научную карьеру, то в конце концов приходится выучить «язык природы» — математику. Без математики мы можем только пассивно наблюдать за танцем природы, не принимая в нем активного участия. Как когда-то выразился Эйнштейн: «Чистая математика является своеобразной поэзией логических идей». Разрешите и мне предложить аналогию. Можно любить французскую цивилизацию и литературу, но для того, чтобы понять французское мышление, необходимо выучить французский язык и спряжения французских глаголов. Таким же образом дело обстоит в науке с математикой. Когда-то Галилей написал: «[Вселенную] нельзя прочесть до тех пор, пока мы не выучим языка и не ознакомимся с символами, в которых она написана. Она написана на языке математики, а буквы этого языка — треугольники, круги и другие геометрические фигуры, без посредства которых понять одно-единственное слово не в человеческих силах». Математики часто гордятся тем, что из всех ученых они самые непрактичные. Чем более абстрактна и бесполезна математика, тем лучше. Причиной, по которой Рэндалл поменяла сферу научной деятельности, будучи студенткой в Гарварде в начале 1980-х годов, стало то, что ей понравилась возможность физики создавать «модели» Вселенной. Для примера, модель кварков основана на идее о том, что внутри протона находятся три его составляющие — кварка. На Рэндалл произвело большое впечатление то, что простые модели, основанные на физических картинах, могут адекватно объяснить многое во Вселенной. В 1990-е годы Рэндалл заинтересовалась М-теорией, возможностью того, что вся Вселенная представляет собой мембрану. Она сосредоточила свои усилия на, возможно, наиболее загадочной характеристике гравитации — на том, что сила ее астрономически мала. Ни Ньютон, ни Эйнштейн не обращались к этому фундаментальному, но загадочному вопросу. В то время как сила трех других взаимодействий (электромагнитного, слабого ядерного и сильного ядерного) вполне сравнима, гравитационное взаимодействие существенно им уступает. В частности, массы кварков намного меньше массы, ассоциируемой с квантовой гравитацией. «Расхождение не маленькое; две шкалы масс разделены шестнадцатью порядками величины! Только теории, способные объяснить этот огромный диапазон, могут претендовать на место впереди Стандартной модели», — говорит Рэндалл. Тот факт, что сила гравитации столь мала, объясняет, почему звезды так велики. Земля со всеми ее океанами, горами и континентами — это всего лишь крошечная пылинка по сравнению с огромными размерами Солнца. Но в связи с малостью силы гравитации требуется масса целой звезды для такого сжатия водорода, которое преодолевает электрическое отталкивающее взаимодействие протонов. Таким образом, звезды настолько массивны потому, что сила гравитационного взаимодействия так мала в сравнении с тремя остальными. Поскольку М-теория вызвала столько волнения в физике, несколько групп ученых попытались применить эту теорию к нашей Вселенной. Представьте, что Вселенная — это три-брана, парящая в пятимерном мире. В такой картине вибрации на поверхности три-браны соответствуют атомам, которые мы наблюдаем вокруг нас. Таким образом, эти вибрации никогда не покидают три-брану, а отсюда следует, что они не могут сместиться в пятое измерение. Даже с учетом того, что наша Вселенная парит в пятом измерении, наши атомы не могут ее покинуть, поскольку они представляют вибрации на поверхности три-браны. Это может стать ответом на вопрос, заданный Калуцой и Эйнштейном в 1921 году: где находится пятое измерение? Ответ таков: мы парим в пятом измерении, но не можем войти в него, потому что наши тела прикованы к поверхности три-браны. Однако в такой картине существует потенциальный изъян. Гравитация представляет собой искривление пространства. Можно было бы наивно ожидать, что гравитация может заполнить все пятимерное пространство, а не только три-брану; при таком варианте развития событий гравитация бы рассеивалась сразу по выходе из три-браны. Это и ослабляет гравитационное взаимодействие. Это хороший довод в поддержку теории, поскольку, как мы знаем, гравитационное взаимодействие является намного более слабым, чем три других. Но в такой картине сила гравитации слишком ослабляется: был бы нарушен закон обратных квадратов Ньютона, а он прекрасно работает для планет, звезд и галактик. (Представьте себе лампочку, освещающую комнату. Свет распространяется сферически. Сила его рассеивается в пределах сферы. Если мы увеличим радиус сферы вдвое, то свет будет распространяться в сфере с площадью, в 4 раза превосходящей первоначальную. В общем случае существования лампы в n-мерном пространстве яркость ее света убывает, рассеиваясь по сфере, площадь которой увеличивается пропорционально (п — 1) — й степени радиуса). Чтобы ответить на этот вопрос, группа физиков, в которую входили П. Аркани-Хамед, С. Димопулос и Г. Двали, выдвинула предположение о том, что пятое измерение, возможно, не бесконечно, а находится всего лишь в миллиметре от нашего, покачиваясь прямо над нашей Вселенной, совсем как в научно-фантастическом произведении Герберта Уэллса. (Если бы пятое измерение лежало дальше, чем в миллиметре от нас, то оно могло бы создать измеримые нарушения закона обратных квадратов Ньютона.) А если пятое измерение находится всего лишь на расстоянии одного миллиметра от нас, то такое предположение можно было бы проверить, найдя мельчайшие отклонения от закона тяготения Ньютона для чрезвычайно малых расстояний. Закон Ньютона прекрасно работает на астрономических расстояниях, но его никогда еще не проверяли на расстоянии миллиметров. Сейчас экспериментаторы рвутся проверить крошечные отклонения от закона обратных квадратов Ньютона. В настоящее время получение этого результата является предметом нескольких проводимых экспериментов, как мы увидим в главе 9. Рэндалл и ее коллега Раман Сундрум решили применить новый подход и пересмотреть возможность того, что пятое измерение находилось не на расстоянии миллиметра от нас, а было бесконечно. Для достижения своей цели им необходимо было объяснить, каким образом пятое измерение могло быть бесконечным, не нарушив при этом закона гравитации Ньютона. Здесь Рэндалл обнаружила возможный ответ на загадку. Она выяснила, что три-брана обладает собственным гравитационным притяжением, которое не давало гравитонам вырваться в пятое измерение. Гравитонам приходится липнуть к три-бране (подобно мухам, попавшимся на липучку) из-за действия гравитации, оказываемого три-браной. Таким образом, оценивая закон Ньютона, мы видим, что он приблизительно верен для нашей Вселенной. Действие гравитации рассеивается и ослабляется, выходя из три-браны и попадая в пятое измерение, но далеко оно не распространяется: закон обратных квадратов все еще приблизительно действует, поскольку гравитоны все же притягиваются к три-бране. (Лизе Рэндалл также принадлежит гипотеза о вероятности существования параллельной нам второй мембраны. Если вычислить едва различимое взаимодействие гравитации между двумя мембранами, то результат можно подогнать таким образом, что мы сможем числен «Первые предположения о том, что дополнительные измерения представляют альтернативные пути обращения к [проблеме иерархии], вызвали бурю волнения, — говорит Рэндалл. — Дополнительные пространственные измерения поначалу могут показаться дикой и безумной идеей, но существуют веские причины считать, что дополнительные измерения пространства действительно существуют». Если эти физики правы, то гравитационное взаимодействие столь же сильно, как и остальные, только оно ослабляется, поскольку часть его утекает в пространство дополнительных измерений. Одним из глубоких следствий этой теории является то, что энергия, при которой квантовые взаимодействия можно измерить, возможно, не равна энергии Планка (1019 млрд электронвольт), как считалось ранее. Возможно, необходимы всего лишь триллионы электронвольт, а в таком случае при помощи Большого адронного коллайдера (завершение конструирования которого планируется к 2007 году), возможно, удастся уловить квантовые гравитационные эффекты еще в этом десятилетии. Это также побудило физиков-экспериментаторов открыть активную охоту на экзотические частицы за пределами Стандартной модели субатомных частиц. Возможно, квантовые гравитационные взаимодействия находятся в пределах нашей досягаемости. Мембраны также предоставляют вполне вероятный, хоть и гипотетический ответ на загадку темного вещества. В романе Герберта Уэллса «Человек-невидимка» главный герой парил в четвертом измерении, а потому был невидим. Подобным образом, представим, что прямо над нашей Вселенной парит параллельный мир. Любая галактика в этой параллельной вселенной будет невидима для нас. Но поскольку гравитация вызвана искривлением гиперпространства, то гравитационное взаимодействие могло бы перемещаться между вселенными. Любая большая галактика в этой параллельной вселенной притягивалась бы через гиперпространство к галактике в нашей Вселенной. Таким образом, измерив свойства наших галактик, мы бы обнаружили, что их гравитационное притяжение гораздо больше, чем ожидалось согласно законам Ньютона, поскольку на заднем плане прячется другая галактика, парящая на соседней бране. Эта скрытая галактика за пределами нашей галактики была бы совершенно невидимой, паря в другом измерении, но она бы казалась рало, окружающим нашу галактику и содержащим в себе 90 % массы. Таким образом, существование темного вещества может объясняться присутствием параллельной вселенной. Сталкивающиеся вселенныеМожет быть, и несколько преждевременно применять М-теорию к серьезной космологии. Тем не менее физики попытались применить «физику бран» для нового поворота в стандартном инфляционном подходе ко Вселенной. Внимание привлекают три возможные космологии. Первая космология пытается ответить на вопрос: почему мы живем в четырех пространственно-временных измерениях? В принципе, М-теория может быть сформулирована во всех измерениях вплоть до одиннадцатого, а потому кажется загадочным, что выделяются именно эти четыре измерения. Роберт Бранденбергер и Кумрун Вафа выдвинули гипотезу о том, что причиной этого является геометрия струн. Согласно предложенному ими сценарию, Вселенная зародилась в идеально симметричном состоянии, при этом все дополнительные измерения были свернуты, измеряясь в масштабах длины Планка, От расширения Вселенную сдерживали петли струн, плотно обмотанные вокруг различных измерений. Представьте себе спираль, которая не может расшириться, потому что она плотно обмотана струнами. Если струны каким-либо образом порвутся, то спираль освободится и расширится. В этих крошечных измерениях Вселенная не может расшириться из-за обмотки струн и антиструн (грубо говоря, антиструны намотаны в противоположном направлении относительно струн). Если струна и антиструна сталкиваются, то они могут аннигилировать и исчезнуть, что похоже на развязывание узла. В очень больших измерениях настолько «просторно», что струны и антиструны редко сталкиваются и никогда не распутываются. Однако Бранденбергер и Вафа показали, что в трех или менее пространственных измерениях наиболее вероятен вариант событий, при котором струны и антиструны столкнутся. При таких столкновениях струны распутываются и измерения вырываются вовне, что и дает нам Большой Взрыв. Привлекательной чертой такой картины является то, что топология струн дает нам примерное объяснение, почему мы видим вокруг себя четыре привычных измерения. Вселенные с дополнительными измерениями возможны, но вероятность увидеть эти вселенные ниже, поскольку они все еще плотно обмотаны струнами и антиструнами. Но в М-теории существуют также и другие возможности. Если вселенные могут откалываться или отпочковываться одна от другой, что рождает новые вселенные, то, быть может, возможно и обратное: вселенные могут сталкиваться. При этом в момент столкновения образуются искры, дающие начало новым вселенным. Согласно такому сценарию, возможно, что Большой Взрыв произошел при столкновении двух параллельных вселенных-бран, а не при отпочковании от другой вселенной. Эта вторая теория была предложена физиками Полом Щтайн-хардтом из Принстона, Бертом Оврутом из Пенсильвании и Нилом Туроком из Кембриджского университета, которые создали «экпиротическую» (что по-гречески означает «столкновение») Вселенную и включили в нее оригинальные черты картины, предлагаемой М-теорией. В такой Вселенной некоторые дополнительные измерения могли быть большими и даже бесконечными по размеру. Они начинаются с двух плоских однородных и параллельных три-бран, которые представляют состояние низкой энергии. Изначально они зародились как пустые холодные вселенные, но гравитационное взаимодействие постепенно подтягивает их ближе и ближе друг к другу. В конце концов они сталкиваются, и невероятная кинетическая энергия столкновения конвертируется в вещество и излучение, наполняющие нашу Вселенную. Некоторые называют эту теорию не теорией Большого Взрыва, а теорией «Большого Хлопка (или Схлопывания)», поскольку сценарий предполагает столкновение («схлопывание») двухбран. Сила взрыва разбрасывает вселенные в стороны. Отделяясь друг от друга, эти две мембраны стремительно остывают и дают нам ту самую Вселенную, что мы видим сегодня. Остывание и расширение продолжаются триллионы лет, до тех пор, пока температура вселенных не достигнет температуры абсолютного нуля, а их плотность не составит один электрон на квадриллион кубических световых лет космоса. В сущности, Вселенная становится пустой и инертной. Но сила гравитации продолжает свое действие — она привлекает две мембраны друг к другу до тех пор, пока, спустя еще триллионы лет, они не столкнутся вновь, и этот цикл повторяется снова й снова. Этот новый сценарий может добавить новые преимущества инфляции (плоскость, однородность). Он разрешает вопрос о том, почему Вселенная такая плоская — потому что с самого начала обе браньг были плоскими. Такая модель также объясняет проблему горизонта, то есть факт, что Вселенная видится такой однородной, куда бы мы ни взглянули. Это происходит потому, что мембране требуется много времени, чтобы медленно прийти в состояние равновесия. Таким образом, в то время как инфляция объясняет проблему горизонта тем, что Вселенная внезапно расширяется, этот сценарий решает проблему горизонта от противного — при помощи предположения о том, что в своем медленном движении Вселенная стремится к равновесию. (Это также означает, что в гиперпространстве возможно существование других мембран, которые в будущем могут столкнуться с нашей, создавая тем самым еще один Большой Хлопок. Учитывая тот факт, что наша Вселенная ускоряется, еще одно столкновение, в сущности, весьма вероятно. Штайнхардт добавляет: «Возможно, ускорение расширения Вселенной является предвестником такого столкновения. Это не самая приятная мысль».) Любой сценарий, который резко расходится с общепринятой инфляционной теорией, неизбежно приводит к жарким дебатам. В течение недели после помещения данной работав Сети АндрейЛинде, его жена Рената Каллош (которая занимается теорией струн) и Лев Кофман из Университета Торонто написали критический отзыв по поводу этого сценария. Линде раскритиковал эту модель потому, что нечто столь катастрофичное, как столкновение двух вселенных, могло бы создать сингулярность, где температуры и плотности стремятся к бесконечности. «Подобным образом можно бросить стул в черную дыру, которая испарит частицы стула, а затем сказать, что в ней каким-то образом сохраняется форма стула», — выразил свой протест Линде. Штайнхардт ответил: «То, что выглядит как сингулярность в четырех измерениях, может вовсе не являться ею в пяти измерениях… Когда браньг сталкиваются, пятое измерение временно исчезает, но сами браны не исчезают. Поэтому плотность и температура не возрастают до бесконечности, а время не нарушает свойход. Хотя общая теория относительности здесь просто бесится, струнная теория ведет себя нормально. И то, что когда-то выглядело катастрофой для этой модели, теперь кажется поправимым». На стороне Штайнхардта мощь М-теории, которая, как известно, исключает сингулярности. В сущности, именно поэтому физикам-теоретикам для начала необходима квантовая теория гравитации, чтобы исключить все бесконечности. Однако Линде указывает на концептуально слабое место этой картины, а именно заявление о том, что в самом начале браны существовали в плоском однородном состоянии. «Если начинать с совершенства, то возможно объяснить то, что вы видите… но вы до сих пор не ответили на вопрос: почему вселенная должна родиться совершенной?» — возражает Линде. Штайнхардт отвечает: «Плоское плюс плоское дает в сумме плоское». Иными словами, необходимо допустить, что мембраны родились в состоянии самой низкой энергии — будучи плоскими. И наконец, существует еще одна возможная теория космологии, задействующая струнную теорию. Это теория событий, происшедших до Большого Взрыва, которая принадлежит Габриэлю Венециано, тому самому физику, который помог заложить основы этой теории в 1968 году. Согласно его теории, Вселенная зародилась как черная дыра. Если мы хотим знать, на что похожа черная дыра изнутри, то нам всего лишь надо оглянуться назад. Согласно этой теории, в действительности Вселенная бесконечно стара. Зародилась она в далеком прошлом и была почти пустой и холодной. Гравитационное взаимодействие начало подтягивать комки вещества друг к другу по всей Вселенной. Постепенно эти скопления стали настолько плотными, что превратились в черные дыры. Вокруг каждой черной дыры начал формироваться горизонт событий, прочно отделяя все, лежащее за горизонтом событий, от того, что находилось в его пределах. Внутри каждого такого горизонта событий вещество продолжало сжиматься под действием силы гравитации до тех пор, пока в конце концов черная дыра не достигла размеров длины Планка. В этот момент вступает струнная теория. Длина Планка является минимальным расстоянием, допустимым в струнной теории. Затем в черной дыре начинается обратный процесс: происходит огромный взрыв, который и является Большим Взрывом. Поскольку этот процесс может неоднократно происходить во всей Вселенной, это означает, что могут существовать и другие далекие черные дыры/ вселенные. (Мысль о том, что наша Вселенная может быть черной дырой, не настолько притянута за уши, как это может показаться. Интуитивно мы понимаем, что черная дыра должна быть чрезвычайно плотной и обладать невероятным разрушающим гравитационным полем, но так случается не всегда. Размер горизонта событий черной дыры пропорционален ее массе. Чем более массивна черная дыра, тем больше ее горизонт событий. Но больший горизонт событий означает, что вещество распределено в большем объеме. В результате в действительности плотность уменьшается по мере того, как возрастает масса. В сущности, если бы черная дыра обладала массой нашей Вселенной, то ее размер примерно соответствовал бы размеру нашей Вселенной, а плотность ее была бы заметно ниже, чем в нашей Вселенной.) Однако некоторых астрофизиков не впечатляет применение струнной теории и М-теории к космологии. Джоэл Примак из Калифорнийского университета в Санта-Крусе дает более суровую оценку событий: «Я думаю, что глупо всерьез заниматься всем этим. Идеи, предлагаемые в этих работах, в принципе не подлежат проверке». Только время покажет, прав ли Примак, но поскольку темпы развития струнной теории увеличиваются, вскоре мы можем найти решение этой проблемы, а прийти оно может с наших космических спутников. Как мы увидим в главе 9, к 2020 году планируется отправка в открытый космос нового поколения детекторов гравитационных волн, таких, как LISA (космическая лазерная антенна-интерферометр). Именно эти детекторы дадут нам возможность отбросить или подтвердить некоторые из этих теорий. Если права, к примеру, инфляционная теория, то LISA должна уловить сильнейшие гравитационные волны, образовавшиеся в ходе первоначального процесса расширения. Однако экпиротическая Вселенная прогнозирует медленное столкновение вселенных и, следовательно, гораздо более мягкие волны. LISA должна экспериментально опровергнуть одну из этих теорий. Иными словами, в гравитационных волнах, образовавшихся при изначальном Большом Взрыве, закодированы данные, необходимые для определения того, какой сценарий является верным. LISA может впервые представить основательные экспериментальные результаты, касающиеся теории инфляции, струнной теории и М-теории. Черные мини-дырыПоскольку струнная теория в действительности является теорией всей Вселенной, то для ее проверки необходимо создать Вселенную в лаборатории (см. главу 9). Обычно мы ожидаем, что квантовые эффекты гравитации проявятся при энергии Планка, что в квадриллион раз мощнее, чем самый мощный ускоритель частиц, имеющийся в нашем распоряжении, — и, следовательно, проверка струнной теории прямым путем невозможна. Но если и вправду есть параллельная вселенная, которая существует на расстоянии меньше миллиметра от нашей, то энергия, при которой происходит слияние и проявляются квантовые эффекты, может быть довольно низкой, в пределах досягаемости следующего поколения ускорителей частиц, таких, как Большой адронный коллайдер. Это предположение, в свою очередь, вызвало лавину интереса в физике черных дыр. При этом наиболее интересными оказались «черные мини-дыры». Черные мини-дыры, которые ведут себя подобно субатомным частицам, являются «лабораторией», в которой можно проверить некоторые из прогнозов струнной теории. Физиков очень возбуждает возможность создания таких дыр при помощи Большого адронного коллайдера. (Черные мини-дыры очень малы, их размеры сравнимы с размерами электрона, и можно не опасаться того, что они поглотят Землю. Космические лучи, бьющие по Земле, — обычное дело. Их энергии намного превосходят черные дыры, тем не менее всякое вредное воздействие на планету отсутствует.) В действительности идея черной дыры, скрывающейся за субатомной частицей, стара. Впервые ее предложил Эйнштейн в 1935 году. С точки зрения Эйнштейна, должна существовать единая теория поля, в которой вещество, состоящее из субатомных частиц, можно было бы рассматривать как некое искривление материи пространства-времени. Эйнштейн считал, что субатомные частицы вроде электрона в действительности являются «изгибами» или порталами-червоточинами в искривленном пространстве, которые на расстоянии выглядят как частицы. Эйнштейн и Натан Розен рассматривали идею о том, что электрон может в действительности выть замаскированной черной мини-дырой. Эйнштейн по-своему ропытался включить вещество в состав такой единой теории поля, которая свела бы субатомные частицы к чистой геометрии. Черные мини-дыры были снова предложены Стивеном Хокингом, который доказал, что черные дыры должны слабо испарять и испускать энергию. В течение многих эпох черная дыра испустила бы акое огромное количество энергии, что постепенно бы сжалась и в юнце концов превратилась бы в субатомную частицу. Сегодня струнная теория заново представляет концепцию черных мини-дыр. Вспомним о том, что черные дыры образуются, когда большое количество вещества сжимается до радиуса Шварцшильда. Масса и энергия могут быть конвертированы друг в друга, а это значит, что черные дыры можно также создать путем сжатия энергии. Ученые задаются вопросом о том, сможет ли Большой адронный коллайдер создать черные мини-дыры среди остатков, образующихся при столкновении двух протонов при энергии в 14 триллионов электронвольт. Такие черные дыры были бы очень малы и имели бы массу, возможно, в тысячу раз меньше электрона, а жизнь их измерялась бы периодом лишь в 10~23 секунды. Но они были бы отчетливо видны среди следов субатомных частиц, созданных Большим адрон-ным коллайдером. Физики также надеются на то, что космические лучи из открытого космоса могут содержать в себе черные мини-дыры. Техника в обсерватории имени Пьера Оже в Аргентине, предназначенная для изучения космических лучей, настолько чувствительна, что может уловить некоторые из самых больших вспышек космических лучей в истории науки. Ученые возлагают надежды на то, что черные мини-дыры могут быть обнаружены в естественном виде среди космических лучей, которые попадают в верхние слои земной атмосферы, порождая тем рамым широкие атмосферные ливни. Один из подсчетов показывает, что в год детектор космических лучей смог бы уловить до десяти ливней космических лучей, вызванных такой черной мини-дырой. Обнаружение черной мини-дыры либо при помощи Большого адронного коллайдера в Швейцарии, либо при помощи детектора космических лучей в Обсерватории Пьера Оже в Аргентине, возможно, уже в этом десятилетии представило бы веское доказательство в пользу существования параллельных вселенных. Хотя это доказательство не окончательно подтвердило бы правильность струнной теории, оно бы убедило все физическое сообщество в том, что струнная теория согласуется с экспериментальными результатами и что ее разработка продвигается в нужном направлении. Черные дыры и информационный парадоксСтрунная теория может также пролить свет на некоторые из глубочайших парадоксов физики черных дыр, такггх, как информационный парадокс. Как вы помните, черные дыры не абсолютно черные, они испускают малые количества излучения посредством туннелиро-вания. Согласно квантовой теории, существует небольшая вероятность того, что излучение может вырваться из тисков гравитации черной дыры. Это приводит к медленной утечке излучения из черной дыры. Такое излучение называется излучением Хокинга. Этому излучению, в свою очередь, присуща некоторая температура (которая пропорциональна площади поверхности горизонта событий черной дыры). Хокинг дал общий вывод этого уравнения, который не отличался доскональной точностью. Однако более тщательный вывод потребовал бы привлечения всей мощи статистической механики (основанной на подсчете квантовых состояний черной дыры). Обычно расчеты в статистической механике осуществляются как подсчет количества состояний, в которых может находиться атом или молекула. Но как можно подсчитать квантовые состояния черной дыры? Согласно теории Эйнштейна, черные дыры абсолютно гладкие, а потому посчитать их квантовые состояния представляется довольно проблематичным. Ученые, занимающиеся теорией струн, изо всех сил стремились закрыть этот пробел, поэтому Эндрю Стромингер и Кумрун Вафа из Гарварда решили проанализировать черную дыру при помощи М-теории. Поскольку с самой черной дырой работать было слишком сложно, они избрали другой подход и задали умный вопрос: что дуально по отношению к черной дыре? (Мы помним, что электрон дуален по отношению к магнитному монополю, такому, как единичный северный полюс. Отсюда путем изучения электрона в слабом электрическом поле, что достаточно просто, мы можем проанализировать гораздо более сложный эксперимент: монополь, помещенный в очень большое магнитное поле.) Итак, ученые надеялись, что дуальный по отношению к черной дыре объект окажется более легким в исследовании, хотя в конечном счете они получат тот же самый результат. При помощи ряда математических процедур Стромингеру и Вафе удалось показать, что черная дыра дуальна по отношению к скоплению одно-бран и пяти-бран. Это принесло ученым огромное облегчение, поскольку квантовые состояния этих бран были известны. Когда Стромингер и Вафа затем посчитали количество квантовых состояний, они обнаружили, что оно в точности соответствовало результату, данному Хокингом. Это стало приятной новостью. Струнная теория, часто высмеиваемая за то, что она не связана с реальным миром, давала, возможно, самое изящное решение термодинамики черной дыры. Теперь ученые, работающие с теорией струн, пытаются подступиться к более сложной проблеме в физике черных дыр — «информационному парадоксу». Хокинг доказал, что если бросить что-либо в черную дыру, то информация, заключенная в этом объекте, будет утеряна безвозвратно и навсегда. (Так можно было бы совершить идеальное преступление. Преступник мог бы воспользоваться черной дырой, чтобы уничтожить все обличающие его улики.) Единственными параметрами, которые мы можем измерить для черной дыры на расстоянии, являются ее масса, спин и заряд. Не имеет значения, что бросить в черную дыру, — все равно вся информация, содержащаяся в объекте, будет утеряна. (Это соответствует утверждению о том, что «у черных дыр нет волос», что они «лысые», то есть потеряли всю информацию, все «волосы», за исключением этих трех параметров.) Потеря информации из нашей Вселенной кажется неизбежным следствием теории Эйнштейна, но это противоречит принципам квантовой механики, которые гласят, что в действительности информацию потерять нельзя. Эта информация должна парить где-то в нашей Вселенной, даже если изначально содержащий ее объект бросили в пасть черной дыры. Хокинг писал: Большинству физиков хотелось бы верить, что информация не теряется, поскольку тогда мир стал бы безопасен и предсказуем. Но я считаю, что если серьезно подходить к общей теории относительности Эйнштейна, то необходимо принять во внимание возможность того, что пространство-время запутывается в узлы и вся информация теряется в образующихся складках. Выяснение того факта, теряется в действительности информация или нет, является одним из основных вопросов теоретической физики на сегодняшний день. Этот парадокс, ставший тем пунктом, в котором Хокинг разошелся во мнении с большинством специалистов по струнной теории, все еще не нашел своего разрешения. Но ставки среди этих ученых делаются в основном на то, чтав конечном счете мы обнаружим, куда девается теряемая информация. (Например, если в черную дыру бросить книгу, то вполне вероятно, что информация, заключенная в книге, плавно просочится обратно в нашу Вселенную в виде крошечных вибраций, содержащихся в излучении Хокинга испаряющейся черной дыры. Или, возможно, эта информация появится из белой дыры по другую сторону черной.) Именно поэтому лично я считаю, что если кто-нибудь вычислит, что происходит с информацией, когда она исчезает в черной дыре согласно струнной теории, то он (или она) обнаружит, что в действительности информация не теряется — она незаметно появляется где-то еще. В 2004 году Хокинг, ко всеобщему удивлению, заявил перед телевизионными камерами, что он пересмотрел свои взгляды на проблему информации, и этим заявлением обеспечил себе место на первой странице «Нью-Йорк тайме». Он признал, что ошибался по этому поводу. (За тридцать лет до того Хокинг поспорил с другими физиками, что информация не могла утечь из черной дыры. Победитель этого пари должен был купить проигравшему хорошую удобную энциклопедию.) Хокинг заново провел некоторые из своих расчетов и сделал вывод, что если такой объект, как книга, попадал в черную дыру, то он мог нарушить поле испускаемого черной дырой излучения, тем самым позволяя информации утекать обратно во Вселенную. Информация, содержащаяся в книге, была бы закодирована в излучении, медленно просачивающемся за пределы черной дыры, но уже в искаженной форме. С одной стороны, такой подход поставил Хокинга в один ряд с большинством квантовых физиков, которые считают, что информация не может быть утеряна. Но это также вызвало следующий вопрос: может ли информация попасть в параллельную вселенную? На ервый взгляд, результат Хокинга ставил под сомнение идею о том, го информация может попасть через портал-червоточину в параллельную вселенную. Однако никто не верит в то, что в этом вопросе сказано последнее слово. До тех пор пока не будет полностью разработана струнная теория или не будет проведен полный квантовый гравитационный расчет, никто не поверит, что информационный Парадокс полностью разрешен. Голографическая вселеннаяИ наконец, существует довольно загадочный прогноз М-теории, доторый еще не до конца понятен, но может иметь далеко идущие физические и философские последствия. Этот результат заставляет «гас задать следующий вопрос: является ли вселенная голограммой? Существует ли «вселенная-тень», в которой наши тела существуют в сжатом двумерном виде? Это также вызывает еще один столь же ролнующий вопрос: является ли вселенная компьютерной программой? Можно ли загнать вселенную на компакт-диск и проигрывать его на досуге? Сейчас голограммы используются на кредитных картах, в детских музеях и в парках развлечений. Они примечательны тем, что могут фиксировать завершенное трехмерное изображение на двумерной поверхности. Если вы взглянете на фотографию, а затем пошевелите головой, то изображение на фотографии не изменится. Но если вы взглянете на голографическую картинку, а затем пошевелите головой, и вы увидите, что изображение меняется, как если бы вы смотрели него через окно или в замочную скважину. (Голограммы могут в юнечном счете привести к появлению трехмерного телевидения и кино. В будущем мы, очень может быть, получим возможность рас-биться в гостиной и посмотреть на настенный экран, который даст нам полное трехмерное изображение далеких мест, как если бы растеннып телеэкран был окном, открытым на новый пейзаж. Далее, если бы настенный экран имел форму большого цилиндра, а наша гостиная при этом находилась бы в самом центре, то нам казалось бы, что мы перенеслись в новый мир. Куда бы мы ни глянули, мы бы увидели трехмерное изображение новой реальности, неотличимое от реального объекта.) Суть голограммы состоит в том, что в двумерной поверхности голограммы закодирована вся информация, необходимая для воспроизведения трехмерного изображения. (Голограммы создаются в лабораторных условиях при помощи облучения чувствительной фотопленки рассеянным на предмете лазерным светом, интерферирующим с исходным излучением. Интерференция двух световых источников создает картину, которая «вмораживает» изображение в двумерную пластину.) Некоторые космологи предположили, что такой подход можно применить и к самой вселенной — что мы, возможно, живем в голограмме. Истоки этого необычного предположения восходят к физике черных дыр. Бекенштейн и Хокинг выдвигают гипотезу о том, что суммарное количество информации, содержащееся в черной дыре, пропорционально площади поверхности ее горизонта событий (который представляет собой сферу). Это довольно странный результат, потому что обычно информация, заключенная в объекте, пропорциональна его объему. Например, количество информации, содержащейся в книге, пропорционально ее толщине, а не площади обложки. Мы понимаем это на инстинктивном уровне, когда говорим, что о книге нельзя судить по обложке. Но интуиция подводит нас в случае с черными дырами: мы вполне можем судить о черной дыре по ее «обложке». Мы можем отбросить эту любопытную гипотезу, поскольку черные дыры сами по себе — причудливые диковинки, где обычная интуиция подводит. Однако этот результат также относится к М-теории, которая может дать нам самое лучшее описание всей Вселенной. В 1997 году Хуан Малдасена из Института передовых исследований в Принстоне вызвал сенсацию, показав, что струнная теория ведет к новому типу голографической вселенной. Он начал с пятимерной «антидеситтеровой вселенной», которая часто фигурирует в струнной теории и теории супергравитации. Вселенная де Ситтера обладает космологической константой с положительным значением, создавая тем самым ускоряющуюся Вселенную. (Мы помним, что в настоящее время наша Вселенная лучше всего представляется на основе вселенной де Ситтера, в которой космологическая константа толкает галактики прочь друг от друга на все увеличивающихся скоростях. В антидеситтеровой вселенной космологическая константа имеет отрицательное значение, а потому такая вселенная может взорваться.) Малдасена показал, что между этой пятимерной вселенной и ее четырехмерной «соседкой» существуют отношения дуальности. Что странно, любые существа, обитающие в этом пятимерном пространстве, были бы в математическом отношении эквивалентны существам, живущим в четырехмерном пространстве. Их просто не различить. Используем грубую аналогию. Представьте рыбок, плавающих в аквариуме. Эти рыбки думают, что их аквариум и есть реальность. Теперь представьте голографическое изображение этих рыбок, проектируемое на поверхность того же аквариума. Это изображение содержит точную копию трехмерных рыбок, только плоскую. Любое движение рыбок в аквариуме в точности воспроизводится рыбками на поверхности аквариума. И рыбки, плавающие в аквариуме, и плоские рыбки, живущие на его поверхности, считают, что именно они настоящие, а те другие — это всего лишь иллюзия. И одни рыбки, и вторые живы и ведут себя как настоящие. Какое из описаний является верным? В действительности верны оба, поскольку математически они эквивалентны и неразличимы. Ученых, занимающихся теорией струн, глубоко взволновал тот факт, что производить вычисления для антидеситтеровского пятимерного пространства сравнительно легче, в то время, как четырехмерные теории поля печально известны тем, что с ними трудно работать. (Даже сегодня, спустя десятилетия напряженной работы, наши мощнейшие компьютеры не могут найти решение для четырехмерной кварковой модели и вывести массы протонов и нейтронов. Уравнения для самих кварков вывести очень легко, но разрешить их в четырех измерениях и получить свойства протонов и нейтронов оказалось сложнее, чем считалось раньше.) Одной из задач является вычисление масс и свойств протона и нейтрона при помощи этой Причудливой дуальности. Такая голографиче екая дуальность может также найти практическое применение, такое, как решение проблемы информации в физике черных дыр. В четырех измерениях чрезвычайно трудно доказать, что информация не теряется, когда мы бросаем объекты в черную дыру. Но такое пространство дуально по отношению к пятимерному миру, в котором, возможно, информация никогда не теряется. Ученые надеются, что те проблемы, которые не поддаются решению в четырех измерениях (такие, как проблема информации, вычисление масс кварковой модели и так далее), могут разрешиться в пятимерной модели, где математика проще. И всегда возможно, что эта аналогия в действительности — отражение реального мира, а мы существуем как голограммы. Является ли Вселенная компьютерной программой?Как мы уже наблюдали, Джон Уилер считал, что всю физическую реальность можно свести к чистой информации. Бекенштейн продвигает идею информации в черной дыре еще на один шаг вперед, задавая вопрос, который заводит нас в неизведанные земли: является ли вся Вселенная компьютерной программой? Являемся ли мы всего лишь битами на космическом компакт-диске? Вопрос о том, живем ли мы в компьютерной программе, получил блестящее воплощение на киноэкране в фильме «Матрица», где пришельцы свели всю физическую реальность к компьютерной программе. Миллиарды людей считают, что они живут повседневной жизнью, понятия не имея о том, что все это лишь сгенерированная компьютером фантазия, в то время как их настоящие тела спят в коконах, а пришельцы используют их как источники энергии. В этом фильме возможно запускать меньшие компьютерные программы, которые могут создавать искусственные мини-реальности. Если вы хотите стать мастером кун-фу или пилотом вертолета, то вы просто вставляете компакт-диск в компьютер, программа подается в мозг и — presto! Вы мгновенно усваиваете эти сложные навыки. Когда запускается компакт-диск, создается целая новая субреальность. Но это вызывает интригующий вопрос: можно ли поместить на диск всю реальность? Компьютерная мощность, необходимая, чтобы симулировать реальность для миллиардов спящих людей, поистине ошеломляет. Но все же теоретический вопрос: может ли вся Вселенная быть оцифрована в завершенную компьютерную программу? Этот вопрос восходит к законам механики Ньютона, имея широкие перспективы практического применения в торговле и наших жизнях. Как известно, Марк Твен говорил: «Все жалуются на погоду, но никто с ней ничего не может поделать». Современная цивилизация не может изменить ход одной-единственной грозы. Физики задались вопросом попроще: можем ли мы предсказывать погоду? Можно ли создать компьютерную программу, которая предскажет ход формирования сложных типов погоды на Земле? Это найдет очень широкое практическое применение для всех заинтересованных в погоде — от фермеров, которые хотят знать, когда сеять и когда собирать урожай, до метеорологов, которые хотят знать ход глобального потепления в этом веке. В принципе, компьютеры могут использовать законы механики Ньютона для вычисления пути молекул, создающих погоду. Это вычисление может быть произведено с практически любой желаемой точностью. Но на практике компьютерные программы чрезвычайно грубы и ненадежны в прогнозировании погоды более чем на несколько дней вперед или около того, в лучшем случае. Для того чтобы составить прогноз погоды, понадобилось бы определить движение каждой молекулы воздуха, а эта задача — нечто, астрономически превосходящее возможности самого мощного компьютера, имеющегося в нашем распоряжении. Кроме того, существует теория хаоса и «эффект бабочки», где даже малейшая вибрация, созданная крылом бабочки, может вызвать эффект ряби, который в ключевые моменты решительно изменит погоду на расстоянии в сотгги миль. Подводя итоги данной ситуации, математики заявляют, что самой маленькой моделью, способной в точности описать погоду, является сама погода. Вместо того чтобы заниматься микроанализом каждой молекулы, лучшее, что мы можем сделать, — это узнать прогноз по-вгды на завтра, а также проследить более масштабные погодные процессы и типы (такие, как парниковый эффект). Итак, свести ньютонианский мир к компьютерной программе представляется чрезвычайно сложным, поскольку существует слишком много переменных и слишком много «бабочек». Но в квантовом мире происходят странные вещи. Как мы видели, Бекенштейн показал, что общая сумма информационного содержимого черной дыры пропорциональна площади поверхности ее горизонта событий. Это чувствуется на уровне интуиции. Многие физики считают, что минимальным возможным расстоянием является длина Планка, 10"33 см. При таком невероятно малом расстоянии пространство-время уже не гладкое, оно становится «пузыристым», похожим на пену, состоящую из крошечных пузырьков. Мы можем разделить всю сферическую поверхность горизонта событий на маленькие квадратики, каждый из которых будет размером с длину Планка. Если каждый из этих квадратиков несет в себе один бит информации, то сложив все эти квадратики, мы приблизительно определим полное информационное содержимое данной черной дыры. Видимо, это указывает на то, что каждый из таких «квадратов Планка» является минимальной единицей информации. Если это верно, то тогда, как утверждает Бекенштейн, скорее всего информация, а не теория поля является истинным языком физики. Он говорит так: «Теория поля с ее бесконечностью не может быть окончательным вариантом». Еще со времен Майкла Фарадея в девятнадцатом веке вся физика формулировалась на языке полей, гладких и протяженных, которые измеряют силу магнетизма, электричества, гравитации и так далее в любой точке пространства-времени. Но теория поля основана на протяженных структурах, а не оцифрованных. Поле может иметь любое значение, в то время как оцифрованность уже сводит все к дискретным числам, состоящим из нулей и единиц. Это такое же различие, как между гладким пластом резины из теории Эйнштейна и мелкой проволочной сеткой. Резиновый пласт можно поделить на бесконечное количество точек, в то время как в проволочной сетке есть минимальное расстояние — длина ячейки. Бекенштейн предполагает, что «конечная теория должна заниматься уже не полями и даже не пространством-временем, а скорее обменом информации между физическими процессами». Если Вселенную можно оцифровать и свести к нулям и единицам, то каково же суммарное информационное содержимое Вселенной? По оценке Бекенштейна, черная дыра диаметром около сантиметра могла бы содержать 1066 бит информации. Раз объект размером в сантиметр может нести в себе так много информации, то, по оценке Бекенштейна, вся видимая Вселенная должна содержать ее намного большее количество — не меньше 10100 бит информации (которую в принципе можно сжать в сферу размером в одну десятую светового года в поперечнике. Такое колоссальное число, единица, за которой следует сто нулей, носит название гугол, или google.). Если такая картина верна, то мы имеем дело со странной ситуацией. Она может указывать на то, что в то время, как ныотонианский мир не может быть смоделирован при помощи компьютеров (или моожет быть смоделирован только системой столь же большой, как и он сам), в квантовом мире, возможно, саму Вселенную можно загнать на компакт-диск! Теоретически, если мы можем поместить 10100 бит информации на компакт-диск, то мы можем наблюдать за тем, как любое событие нашей Вселенной разворачивается у нас в гостиной. В принципе, можно было бы организовать или перепрограммировать биты информации на этом компакт-диске таким образом, чтобы физическая реальность была иной. В каком-то смысле у человека появится богоподобная способность переписать весь сценарий. (Бекенштейн также признает, что все информационное содержимое Вселенной может быть и намного большим. В сущности, наименьшим объемом, в котором может содержаться информация Вселенной, может оказаться объем самой Вселенной. Если это верно, то мы возвращаемся к тому, с чего начали: наименьшей системой, которая может служить моделью Вселенной, является сама Вселенная.) Однако струнная теория предлагает несколько иную интерпретацию «наименьшего расстояния», а также того, сможем ли мы оцифровать Вселенную и записать ее на диск. М-теория обладает Т-дуальностью. Вспомним о том, что греческий философ Зенон считал, что линию можно разделить на бесконечное количество точек, без всякого ограничения. Сегодня такие квантовые физики, как Бекенштейн, считают, что наименьшим расстоянием может быть длина Планка — 10~33 см. При таком расстоянии материя пространства-времени становится пенистой и пузыристой. Но М-теория представляет эту картину в новом свете. Предположим, мы возьмем струнную теорию и свернем одно измерение в окружность с радиусом R. Затем возьмем еще одну струнную теорию и свернем одно измерение в окружность с радиусом 1/R. При сравнении этих двух довольно сильно отличающихся друг от друга теорий мы обнаружим, что они совершенно одинаковы. Теперь предположим, что радиус R чрезвычайно мал, намного меньше длины Планка. Это означает, что физика при расстояниях, меньших, чем длина Планка, идентична физике при расстояниях, превышающих длину Планка. При длине Планка пространство-время может стать комковатым и пенистым; однако физика при расстояниях, меньших, чем длина Планка, и физика на очень больших расстояниях могут быть гладкими и, в сущности, являются идентичными. Эта дуальность была впервые обнаружена в 1984 году моим коллегой Кейджи Киккавой и его учеником Масами Юмасаки из Университета Осаки. Хотя струнная теория наглядно показывает, что существует «наименьшее расстояние», длина Планка, физика не заканчивается внезапно при достижении длины 10~33 см. Новым светом, пролитым М-теорией на этот вопрос, является то, что физика при расстояниях, меньших длины Планка, эквивалентна физике при расстояниях, превышающих длину Планка. Если интерпретация «шиворот-навыворот» верна, то это означает, что даже в пределах «наименьшего расстояния» в струнной теории может существовать целая вселенная. Иными словами, мы все еще можем использовать теорию поля с ее протяженными (не оцифрованными) структурами для описания вселенной даже при расстояниях, намного меньших, чем длина Планка. Так что, возможно, вселенная — это вовсе не компьютерная программа. В любом случае, поскольку проблема четко обозначена, все решит время. (Эта Т-дуальность является подтверждением упоминавшегося мною ранее сценария Венециано о событиях до Большого Взрыва. В этой модели черная дыра схлопывается до размеров длины Планка, а затем снова разлетается в Большом Взрыве. Этот «взрыв» не является внезапным событием, он представляет собой плавную Т-дуальность между черной дырой размером меньше длины Планка и расширяющейся вселенной, большей, чем длина Планка.) Конец?Если М-теория окажется верной, если она и в самом деле окажется теорией всего, то станет ли это концом той физики, что нам известна? Ответом на этот вопрос будет «нет». Разрешите привести пример. Даже если нам известны правила игры в шахматы, это не превратит нас автоматически в великого мастера. Подобным образом и знание законов вселенной не означает, что мы великие мастера в вопросах понимания богатого разнообразия ее решений. Лично я считаю, что, быть может, еще преждевременно применять М-теорию к космологии, хотя такой подход и представляет нам поразительную картину того, как могла зародиться вселенная. По моему мнению, основной проблемой является то, что эта модель не нашла своей окончательной формы. М-теория вполне может быть теорией всего, но я считаю, что до ее завершения еще очень далеко. Эта теория развивается в обратном направлении к 1968 году (возможно, и далее), и ее окончательные уравнения все еще не найдены. (К примеру, струнную теорию можно сформулировать через струнную теорию поля, как показали Киккава и я несколько лет назад. Для М-теории эквивалент таких уравнений до сих пор неизвестен.) Перед М-теорией стоит несколько проблем. Одной из них является то, что сейчас физики утопают в А-бранах. Был написан ряд работ, в которых производились попытки каталогизации потрясающего количества мембран, которые могут существовать в различных измерениях. Существуют мембраны в форме пончика с одной дыркой, пончика со множеством дырок, перекрещивающиеся мембраны и так далее. Это напоминает известную басню о том, как три слепых мудреца встретили слона. Ощупывая его с разных сторон, все трое выдвигают различные теории. Один мудрец, беря слона за хвост, говорит, что слюн — это одно-брана (струна). Другой мудрец, ощупывая слоновье ухо, говорит, что слон — это дву-брана (мембрана). И наконец, третий говорит, что двое первых ошибаются. Ощупывая ноги слона, похожие на стволы деревьев, третий мудрец говорит, что в действительности слон — это три-брана. Поскольку мудрецы слепы, они не могут охватить всю картину, не могут увидеть то, что общая сумма одно-браньг, дву-браньг и три-браньг представляет собой не что иное, как единое животное — слона. Аналогично, с трудом верится, что сотни мембран, обнаруженных в М-теории, каким-то образом фундаментальны. В настоящее время мы не обладаем целостным пониманием М-теории. Моя собственная точка зрения, согласно которой я проводил исследования, состоит в том, что эти мембраны и струны представляют собой «конденсацию» пространства. Эйнштейн пытался описать вещество в чисто геометрических терминах, как какой-то излом в материи пространства-времени. Если взять, к примеру, простыню, на которой появляется складка, то складка ведет себя так, будто живет своей собственной жизнью. Эйнштейн пытался смоделировать электрон и другие элементарные частицы как некое нарушение геометрии пространства-времени. Хотя в конечном счете он потерпел неудачу, эта идея может возродиться на гораздо более высоком уровне в М-теории. Я считаю, что Эйнштейн шел по верному следу. Его идея состояла в том, чтобы сгенерировать субатомные частицы посредством геометрии. Вместо того чтобы пытаться найти геометрический аналог точечных частиц, в чем и заключалась стратегия Эйнштейна, можно было бы попытаться пересмотреть ее и попытаться сконструировать геометрический аналог струн и мембран, состоящих из чистого пространства-времени. Один из способов проследить логику в таком подходе состоит в том, чтобы взглянуть на физику с исторической точки зрения. В прошлом каждый раз, как физики сталкивались с целым спектром объектов, было понятно, что в основе лежало нечто фундаментальное. Например, когда мы открыли спектральные линии, испускаемые водородом, мы в конце концов поняли, что они происходили из атома, из квантовых скачков, совершаемых электроном при его вращении вокруг ядра. Подобным образом, столкнувшись с изобилием сильных частиц в 1950-е годы, физики в конце концов поняли, что они являлись не чем иным, как связанными состояниями кварков. А теперь, столкнувшись с изобилием кварков и других «элементарных» частиц Стандартной модели, большинство физиков считает, что они происходят из вибраций струны. В М-теории мы сталкиваемся с изобилиемр-бран всехтипов и разновидностей. Трудно поверить, что они могут быть фундаментальны, поскольку р-бран слишком много, а во-вторых, они неустойчивы и противоречивы. Более простой вариант решения, согласующийся с историческим подходом, состоит в том, чтобы предположить, что М-теория происходит из более простой парадигмы — возможно, из самой геометрии. Для того чтобы разрешить этот фундаментальный вопрос, нам необходимо узнать, какой физический принцип лежит в основе всей теории, а не просто записать ее таинственные математические формулы. Как говорит физик Брайан Грин: В настоящее время ученые, занимающиеся теорией струн, находятся в том же положении, что и Эйнштейн, будь он лишен принципа эквивалентности. Со времен проницательной догадки Венециано в 1968 году теория собиралась учеными по кусочкам, открытие за открытием, испытывая один революционный переворот за другим. Но до сих пор отсутствует центральный организующий принцип, который охватил бы все эти открытия и характеристики этой теории в пределах сводной и систематической структуры — такой структуры, которая делает существование каждого отдельного ингредиента абсолютно неизбежным. Открытие этого принципа стало бы поворотным моментом в развитии струнной теории, поскольку оно бы обнаружило внутренние механизмы этой теории с беспрецедентной ясностью. Открытие этого основополагающего принципа также разъяснит миллионы решений, на данный момент найденных для струнной теории. Каждое из этих решений представляет собой абсолютно непротиворечивую вселенную. В прошлом считалось, что из целого леса решений правильным для струнной теории является лишь одно. Сегодня наши представления меняются. До сих пор нельзя выбрать одну вселенную из миллионов сконструированных на сегодняшний день. Все более утверждается мнение о том, что если мы не можем найти уникального, единственного решения струнной теории, то, возможно, причиной тому является факт его отсутствия. Все решения равноценны. Существует Мультивселенная вселенных, каждая из которых отвечает всем законам физики. Это, в свою очередь, приводит нас к тому, что называется антропным принципом, и к возможности того, что наша вселенная «спроектирована». ГЛАВА 8 Спроектированная вселенная?
Тогда я учился во втором классе, моя учительница мимоходом обронила замечание, которое я не забуду никогда. Она сказала: «Бог так любил Землю, что Он расположил ее как раз на том расстоянии от Солнца, которое нужно». В мои шесть лет меня поразила простота и сила этого аргумента. Если бы Бог расположил Землю слишком далеко от Солнца, то все океаны замерзли бы. Если бы он расположил Землю слишком близко, то все они выкипели бы. Для учительницы это не только служило доказательством того, что Бог существует, но и означало, что Он также благожелателен, раз он так любил Землю, что расположил ее именно на том расстоянии от Солнца, которое нужно. Это произвело на меня глубокое впечатление. Сегодня ученые говорят, что Земля существует в «зоне обитания», как раз на таком расстоянии, чтобы было возможным существование воды, «универсального растворителя», создающего химические вещества, необходимые для жизни. Если бы Земля находилась дальше от Солнца, она могла бы стать похожей на Марс, «замерзшую пустыню», где низкие температуры создали твердую голую поверхность, на которой вода и даже углекислый газ часто замерзают до твердого состояния. Даже под поверхностью Марса находится вечная мерзлота, постоянный слой замерзшей воды. Если бы Земля находилась ближе к Солнцу, то она могла бы стать похожей на Венеру, размеры которой почти совпадают с размерами Земли. Венера известна как «планета парникового эффекта». Поскольку эта планета находится так близко к Солнцу, а атмосфера ее состоит из углекислого газа, энергия солнечного света захватывается Венерой и температуры взлетают до 500 градусов по Цельсию. Вот почему Венера является самой горячей в среднем планетой Солнечной системы. Дожди серной кислоты, атмосферные давления, в сотни раз превышающие наши, и убийственные температуры превращают Венеру, похоже, в самую адскую планету в Солнечной системе, в основном из-за того, что она находится ближе к Солнцу, чем Земля. Рассматривая аргумент моей учительницы, ученые бы сказали, что он является примером антропного принципа, который гласит, что законы природы организованы таким образом, который делает возможным существование жизни и сознания. Вопрос о том, организованы ли эти законы каким-то проектировщиком или появились благодаря случаю, был предметом многих споров, особенно в последние годы, поскольку было обнаружено несметное множество «случайностей» или совпадений, которые делают возможным существование жизни и сознания. Для некоторых эти данные являются подтверждением существования некоего божества, которое намеренно организовало законы природы таким образом, чтобы существование жизни, а также наше существование стало возможным. Однако для других ученых эти данные означают, что мы являемся побочными продуктами ряда удачных случайностей. Или, возможно, если верить в положения теории инфляции и М-теории, существует Мультивселенная вселенных. Чтобы правильно оценить сложность этих споров, сначала рассмотрим те совпадения, которые делают возможным существование жизни на Земле. Мы не просто живем в солнечной зоне обитания, мы также живем в ряде других зон обитания. Например, Луна имеет как раз такие размеры, которые необходимы для стабилизации орбиты Земли. Если бы Луна была намного меньше, то даже малейшие нарушения вращения Земли постепенно накапливались бы в течение сотен миллионов лет. Это вызвало бы раскачивание Земли на своей орбите, чреватое катастрофой, а также создало бы разительные изменения в климате, которые сделали бы жизнь на Земле невозможной. Компьютерные программы показывают, что без большой Луны (около трети размера Земли) земная ось за миллионы лет могла бы сместиться на целых 90 градусов. Поскольку ученые считают, что для создания ДНК потребовались сотни миллионов лет климатической стабильности, то периодические отклонения Земли от ее оси вызвали бы катастрофические изменения погодных условий, что сделало бы создание ДНК невозможным. К счастью, Луна имеет как раз подходящий размер для того, чтобы стабилизировать земную орбиту, так что такая катастрофа не произойдет. (Луны Марса недостаточно велики, чтобы стабилизировать его вращение. В результате этого Марс начинает медленно вступать в следующую эпоху нестабильности. Астрономы считают, что в прошлом Марс мог отклоняться от своей оси на целых 45 градусов.) Благодаря малым приливным силам Луна медленно отодвигается от Земли со скоростью приблизительно 4 см в год. Примерно через 2 миллиарда лет она окажется слишком далеко, чтобы стабилизировать вращение Земли. Это может иметь катастрофические последствия для жизни на Земле. Спустя миллиарды лет не только Луны не будет в ночном небе — мы можем увидеть совершенно другой набор созвездий, когда Земля будет скакать на своей орбите. Погода на Земле станет неузнаваемой, что сделает невозможным существование жизни. Геолог Питер Уорд и астроном Дональд Браунли из Университета Вашингтона написали: «Без Луны в мире не было бы ни лунного света, ни месяца, ни программы «Аполлон», было бы меньше поэзии, а каждая ночь была бы темной и безрадостной. Вполне вероятно, что без Луны не было бы птиц, секвой, китов, трилобитов, да и другие развитые формы жизни не украшали бы нашу Землю». Подобным образом компьютерные модели нашей Солнечной системы показывают, что и присутствие Юпитера в нашей Солнечной системе является благоприятным для жизни на Земле, поскольку невероятно сильное гравитационное притяжение Юпитера помогает отбрасывать астероиды в открытый космос. Понадобился почти миллиард лет в «эпоху метеоров», закончившуюся около 3,5 млрд лет назад, чтобы «очистить» Солнечную систему от обломков астероидов и комет, оставшихся после ее формирования. Если бы Юпитер был намного меньше, а его притяжение намного слабее, то в нашей Солнечной системе было бы полно астероидов, которые сделали бы жизнь на Земле невозможной. Они бы падали в океаны и уничтожали всякую жизнь. Отсюда мы видим, что Юпитер тоже как раз нужного размера. Мы также живем в зоне подходящих планетарных масс. Если бы Земля была чуть меньше, то ее гравитационное притяжение было бы настолько слабым, что она не могла бы удерживать кислород. Если бы Земля была слишком большой, то она сохранила бы многие из начальных ядовитых газов, что сделало бы невозможной жизнь на Земле. Масса Земли как раз такова, как нужно, чтобы поддерживать необходимый для жизни атмосферный состав. Мы также живем в зоне подходящих планетарных орбит. Что примечательно, орбиты всех остальных планет, кроме Плутона, являются почти правильными окружностями, что делает столкновения планет в Солнечной системе практически невозможными. Это означает, что Земля не подойдет близко ни к одному из газовых гигантов, гравитация которых легко нарушила бы орбиту Земли. Это опять-таки благоприятное обстоятельство для жизни, которой необходимы сотни миллионов лет стабильности. Земля также существует в зоне обитания Галактики Млечный Путь, находясь от ее центра на расстоянии двух третей диаметра. Если бы Солнечная система располагалась слишком близко к центру Галактики, где таятся черные дыры, то поле излучения было бы столь сильным, что жизнь была бы невозможна. А если бы Солнечная система находилась слишком далеко от центра Галактики, то существовало бы недостаточно тяжелых элементов, чтобы создать необходимые компоненты жизни. Ученые приводят множество примеров того, что Земля находится в мириаде зон обитания. Астрономы Уорд и Браунли утверждают, что мы живем в границах такого узкого диапазона многих параметров или зон обитания, что, возможно, разумная жизнь на Земле — действительно уникальное явление для нашей Галактики, а возможно, даже для всей Вселенной. Они приводят впечатляющий список тех моментов, которые удивительным образом делают возможной разумную жизнь на Земле, а именно, что на Земле «как раз» необходимое количество океанов, «какраз» требуемая тектоника плит, содержание кислорода, теплосодержание, наклон оси и так далее. Если бы Земля лежала хотя бы вне одного из этих диапазонов, мы бы с вами не обсуждали этот вопрос. Так была ли Земля расположена на пересечении этих зон обитания потому, что Бог любил ее? Возможно. Однако мы можем прийти к выводу, который не предполагает участие божества. Возможно, в космосе существуют миллионы мертвых планет, которые действительно находятся слишком близко к своим солнцам, чьи Луны слишком малы, чьи Юпитеры слишком малы, или которые находятся слишком близко к центру их галактик. Что касается Земли, существование зоны обитания не обязательно означает, что Бог даровал нам особое благословение; возможно, это просто совпадение, один редкий пример среди миллионов мертвых планет в космосе, которые лежат за пределами зон обитания. Греческий философ Демокрит, который выдвинул гипотезу о существовании атомов, писал: «Существуют миры, бесконечные в своем количестве и разнообразные по размерам. В некоторых из них нет ни Солнца, ни Луны. В других больше одного Солнца и Луны. Расстояния между мирами неодинаковы, в некоторых направлениях их больше… Их разрушение происходит из-за столкновений между собой. Некоторые миры лишены животной и растительной жизни и всякой влаги». В сущности, к 2002 году астрономы открыли сотню экстрасолнечных планет, вращающихся по орбитам других звезд. Ученые открывают их приблизительно каждые две недели. Поскольку такие планеты не испускают собственного света, астрономы вычисляют их при помощи разнообразных средств непрямого наблюдения, наиболее надежным из которых являются поиски раскачивающейся основной звезды: она раскачивается вперед-назад по мере того, как планета размером с Юпитер вращается вокруг нее. Путем анализа доппле-ровского смещения света, испускаемого раскачивающейся звездой, можно вычислить, насколько быстро она движется, и применить законы Ньютона для вычисления массы ее планеты. «Можно представить звезду и большую планету как партнеров, кружащихся в танце, держась за вытянутые руки. Планета меньших размеров с внешней стороны проходит большие расстояния по большей окружности, в то время как звезда-партнер перемещается маленькими шажками по очень малой окружности — движение по очень маленькой внутренней окружности и является тем «раскачиванием», которое мы наблюдаем в этих звездах», — говорит Крис Маккарти из Института Карнеги. Сегодня такие наблюдения настолько точны, что мы можем определить очень малые изменения в скорости (до трех метров в секунду — скорость быстрой ходьбы) в звезде на расстоянии сотен световых лет от нас. Предлагаются и другие, более передовые методы обнаружения еще большего количества планет. Один из них — это поиски планеты в тот момент, когда она затмевает свою материнскую звезду, что ведет к некоторому снижению ее яркости. В течение 15–20 лет НАСАзапу-стит на орбиту свой интерферометрический космический спутник, который сможет обнаружить в открытом космосе планеты меньшего размера, сходные с Землей. (Поскольку яркость материнской звезды затмит планету, спутник будет использовать интерференцию света, чтобы обнулить яркое свечение материнской звезды и открыть нашим глазам землеподобную планету.) До настоящего времени ни одна из обнаруженных нами экстрасолнечных планет размером с Юпитер не имеет сходства с Землей, и все они, по всей вероятности, мертвы. Орбиты обнаруженных астрономами планет либо очень вытянуты, эксцентричны, либо проходят в непосредственной близости к материнской звезде; в обоих случаях существование в подобной зоне обитания планеты, похожей на Землю, было бы невозможным. В этих солнечных системах планета размером с Юпитер пересекала бы зону обитания, отшвыривая любую меньшую планету размером с Землю в открытый космос, что препятствовало бы формированию известной нам жизни. Слишком вытянутые орбиты — обычное для космоса явление, настолько обычное, что в сущности, когда астрономы в 2003 году открыли «нормальную» солнечную систему, это событие попало на первые полосы. Астрономы Соединенных Штатов и Австралии с таким же восторгом объявили об открытии планеты размером с Юпитер, вращающейся вокруг звезды HD 70642. Необычность этой планеты (размеры которой вдвое превышают размеры Юпитера) состоит в том, что она вращается по орбите, имеющей форму окружности, при этом расстояние до ее солнца приблизительно соответствует расстоянию Юпитера до нашего Солнца. Однако в будущем астрономы должны каталогизировать все близлежащие звезды, отнеся их к потенциальным солнечным системам. «Наша работа заключается в том, чтобы создать каталог всех двух тысяч ближайших наблюдаемых солнцеподобных звезд, которые находятся на расстоянии до 150 световых лет от нас, — говорит Пол Батлер из Института Карнеги в Вашингтоне, участвовавший в открытии первой экстрасолнечной планеты в 1995 году. — Мы преследуем двойную цель: провести исследование и составить первую перепись наших ближайших соседей по космосу, а также собрать первые данные для того, чтобы обратиться к фундаментальному вопросу о том, насколько обычным или редким феноменом является наша Солнечная система». Космические случайностиЧтобы создать жизнь, наша планета должна была находиться в относительной стабильности в течение сотен миллионов лет. Но удивительно сложно создать мир, который был бы стабилен на протяжении такого времени. Начнем с того, как образованы атомы, — с того факта, что протон чуть легче нейтрона. Это означает, что если бы протон был всего лишь на один процент тяжелее, он бы распался до нейтрона, все ядра стали бы неустойчивыми и расщепились бы. Атомы бы разлетелись в стороны, что сделало бы жизнь невозможной. Еще одна случайность, которая делает возможной жизнь на Земле, — это тот факт, что протон устойчив и не распадается с образованием позитрона. Эксперименты показали, что срок жизни протона поистине астрономически велик: он больше срока жизни вселенной. Для того чтобы создать устойчивую ДНК, протоны должны оставаться устойчивыми на протяжении как минимум сотен миллионов лет. Если бы сильное ядерное взаимодействие было чуть слабее, то такие ядра, как ядра дейтерия, разлетелись бы в стороны и ни один из элементов вселенной нельзя было бы построить внутри звезд путем нуклеосинтеза. Если бы сильное ядерное взаимодействие было чуть сильнее, то звезды сожгли бы свое ядерное топливо слишком быстро и жизнь не смогла бы развиться. Если мы изменим силу слабого ядерного взаимодействия, то обна-режим, что жизнь опять-таки невозможна. Нейтрино, действующие через слабое ядерное взаимодействие, необходимы для того, чтобы уносить энергию из взрывающихся сверхновых. Эта энергия, в свою очередь, отвечает за создание элементов выше железа. Если бы слабое ядерное взаимодействие было чуть слабее, нейтрино вряд ли бы вообще смогли взаимодействовать, что означает, что сверхновые не смогли бы создать элементы выше железа. Если бы слабое взаимодействие было чуть сильнее, то нейтрино не могли бы покинуть звездное ядро, что опять-таки воспрепятствовало бы созданию высших элементов, из которых состоят наши тела и весь мир. В сущности, ученые составили длинные списки таких «удачных космических случайностей». Видя этот внушительный список, с удивлением обнаруживаешь, как много знакомых констант вселенной находятся в очень узком диапазоне, в пределах которого возможна жизнь на Земле. Если изменить всего лишь одну из этих случайностей, звезды никогда бы не образовались, вселенная разлетелась бы в стороны, ДНК не существовала бы, известная нам жизнь была бы невозможной, Земля бы перевернулась или замерзла, и так далее. Чтобы подчеркнуть, насколько примечательной является сложившаяся ситуация, астроном Хью Росс уподобил ее Боингу-747, полностью собранному ураганом, наткнувшимся на свалку старых автомобилей. Антропный принципВсе приведенные выше аргументы сводятся к антропному принципу. Существует несколько позиций, которые можно занять относительно этого противоречивого принципа. Моя учительница во втором классе считала, что эти удачные совпадения предполагали существование великого проекта или плана. Как когда-то сказал физик Фриман Дайсон, «вселенная словно знала, что мы придем». Это иллюстрация сильного антропного принципа, который заключается в идее того, что точная настройка физических констант была не случайностью, а предполагает некий проект. (Слабый антропный принцип просто утверждает, что физические константы вселенной таковы, что возможно существование жизни и разума). Физик Дон Пейдж суммировал различные формы антропного принципа, предлагавшиеся в различные годы. Слабый антропный принцип: «То, что мы видим во вселенной, ограничивается требованием нашего существования в качестве наблюдателей». Сильно-слабый антропный принцип: «По крайней мере в одном мире… из вселенной многих миров должна развиваться жизнь». Сильный антропный принцип: «Вселенная должна нести в себе определенные качества, чтобы в какой-то момент в ней развилась жизнь». Конечный антропный принцип: «Разум должен развиться во вселенной, после чего он никогда не погибнет». Одним из физиков, всерьез воспринимающих сильный антропный принцип и утверждающих, что это признак существования Бога, является Вера Кистяковски, физик из Массачусетского технологического института. Она говорит: «Утонченное совершенство физического мира, открывающееся нашему научному взору, требует присутствия божественного». Еще одним ученым, поддерживающим это мнение, является Джон Полкингхорн, физик, занимавшийся частицами, который отказался от занимаемой должности в Кембриджском университете и стал священником англиканской церкви. Он пишет о том, что вселенная — это «не просто «какой-то мир», она особенна и тонко настроена для жизни, поскольку является созданием Творца, чья воля в том, чтобы все было именно так». И в самом деле, сам Исаак Ньютон, которому принадлежит концепция непреложных законов, управляющих движением планет и звезд без всякого божественного вмешательства, считал, что изящество этих законов указывает на существование Бога. Но нобелевский лауреат Стивен Вайнберг не поддерживает такую точку зрения. Он признает всю притягательность антропного принципа: «Для людей практически непреодолимым является стремление верить в то, что мы имеем какое-то особое отношение ко вселенной, что человеческая жизнь не просто более или менее нелепый результат цепи случайностей, простирающейся до первых трех минут после Большого Взрыва, а что мы были каким-то образом встроены с самого начала». Однако в заключение он говорит о том, что сильный антропный принцип представляет собой «едва ли нечто большее чем пустую мистическую бессмыслицу». Остальные физики также не слишком убеждены в силе ашропного принципа. Ныне покойный физик Хайнц Пейджелс был сильно увлечен антропным принципом, но в конечном счете потерял к нему интерес, поскольку этот принцип не содержал в себе прогностической силы. Эта теория не подлежит проверке. Кроме того, не существует способов извлечь из нее какую-либо новую информацию. Вместо этого она несет бесконечный поток пустых тавтологий — «мы здесь потому, что мы здесь». Гут также отбрасывал антропный принцип, утверждая: «Мне трудно поверить, что кто-либо вообще стал бы использовать антропный принцип, если бы у нас было лучшее объяснение. Мне еще предстоит услышать, к примеру, об антропном принципе в мировой истории… Люди занимаются антропным принципом, когда они не могут придумать чего-то лучшего». МультивселеннаяДругие ученые, такие, как сэр Мартин Рис из Кембриджского университета, считают, что эти космические случайности являются доказательством существования Мультивселенной. Рис считает, что единственным способом объяснения того факта, что мы живем в невероятно узкой диапазонной полосе сотен «совпадений», является постулирование существования миллионов параллельных вселенных. В этой Мультивселенной большинство вселенных мертвы. Протон в них неустойчив. Атомы так и не создаются. ДНК не образуется. Вселенная либо преждевременно коллапсирует, либо практически немедленно замерзает. Но в нашей вселенной произошел ряд космических случайностей, при этом совершенно не обязательно считать, что Господь приложил к этому руку; можно основываться просто на законе больших величин. В каком-то смысле от сэра Мартина Риса в последнюю о можно было бы ожидать услышать об идее параллельных ных. Он Королевский Астроном Великобритании, и на нем большая ответственность за формирование взгляда на вс Седовласый, солидный, безупречно одетый, Рис в равной с хорошо говорит как о космических чудесах, так и о заботах публики. Он отнюдь не считает совпадением то, что вселенная то строена для возможности существования жизни. Во все просто-напросто слишком много случайностей, чтобы все о запись в столь узком диапазоне, позволяющем существовать «То, что кажется нам тонкой настройкой, от которой завис существование, может оказаться всего лишь совпадением, шет Рис. — Когда-то и я думал именно так. Но сейчас этот кажется мне слишком узким… Если мы примем его, разнооб-будто бы особенные черты нашей вселенной — которые не теологи когда-то приводили в качестве доказательств существ Провидения или изначального проекта — не вызовут удивле Рис попытался подкрепить свои аргументы перечислени которых из этих концептов. Он утверждает, что вселенная, п видимости, управляется шестью параметрами, каждый из к поддается измерению и является тонко настроенным. Эти величин должны удовлетворять условиям жизни, или же они с мертвые вселенные. Первый — это то, что параметр Ј равен 0,007 — относ количество водорода, который конвертируется в гелий путем за в момент Большого Взрыва. Если бы эта величина имела зн не 0,007, а 0,006, то это ослабило бы силу ядерного взаимодей протоны и нейтроны не смогли бы соединиться, сформиров Невозможным оказалось бы образование дейтерия (ядер с протоном и одним нейтроном), а отсюда следует, что более т. элементы так и не образовались бы в звездах, а вся вселенная о лась бы в сплошной водород. Даже малейшее снижение силь_ ного взаимодействия вызвало бы нестабильность периодич таблицы химических элементов, а количество устойчивых элем необходимых для создания жизни, уменьшилось бы. Если бы значение Ј равнялось 0,008, то синтез происходил бы настолько быстро, что после Большого Взрыва не осталось бы водорода и сегодня не было бы звезд, дающих свою энергию планетам. Или, возможно, два протона оказались бы связаны вместе, что также сделало бы синтез в звездах невозможным. Рис указывает на вывод Фреда Хойла, что изменение силы ядерного взаимодействие всего лишь на 4 % сделало бы невозможным образование углерода в звездах, а это, в свою очередь, стало бы препятствием для формирования высших элементов и, следовательно, для возникновения жизни. Хойл обнаружил, что при незначительном изменении силы ядерного взаимодействия бериллий становится настолько неустойчив, что не может служить «мостом» для образования атомов углерода. Второй параметр — это N, значение которого равно 1036. N — это частное от деления силы электрического взаимодействия на силу гравитации. Этот параметр показывает, насколько слаба гравитация. Если бы гравитация была еще слабее, то стала бы невозможной конденсация звезд в плотные скопления вещества и создание невероятно высоких температур, необходимых для синтеза. Отсюда следует, что звезды не светились бы и планеты погрузились бы в замораживающую тьму. Но если бы гравитация была чуть сильнее, то это вызвало бы слишком быстрый разогрев звезд и они сожгли бы свое топливо слишком быстро. При таком варианте развития событий жизнь просто не успела бы зародиться. Кроме того, более сильная гравитация вызвала бы более раннее образование галактик, и они были бы слишком маленькими. Звезды встречались бы в более плотных скоплениях, что стало бы причиной катастрофических столкновений между различными звездами и планетами. Третьим параметром является со, относительная плотность вселенной. Если бы со была слишком мала, то вселенная расширилась бы и остыла слишком быстро. Но если бы со была слишком велика, то вселенная сжалась бы еще до начала всякой жизни. Рис пишет: «Через одну секунду после Большого Взрыва со не могла отличаться от единицы больше, чем на 10-11, чтобы сегодня, 10 миллиардов лет спустя, вселенная все еще продолжала расширяться, а значение со при этом наверняка не ушло бы далеко от единицы». Четвертым параметром является л, космологическая константа, которая определяет ускорение нашей вселенной. Если бы эта константа была всего лишь в несколько раз больше, то создалась бы антигравитация, которая разорвала бы нашу вселенную, и это стало бы причиной ее немедленного Большого Охлаждения, при котором жизнь невозможна. Но если бы значение космологической константы было отрицательным, то вселенная бы коллапсировала в Большом Сжатии, причем это случилось бы слишком быстро, чтобы смогла сформироваться какая-либо жизнь. Иными словами, чтобы существование жизни оказалось возможным, космологическая константа, как и ш, также должна находиться в определенном узком диапазоне. Пятым параметром является Q средняя относительная амплитуда флуктуации в космическом микроволновом излучении, равная 105. Если бы это число было чуть меньше, то вселенная имела бы чрезвычайно однородную структуру, будучи безжизненной массой газа и пыли, которые никогда не конденсировались бы в сегодняшние звезды и галактики. Вселенная была бы темной, однородной, лишенной характерных черт и безжизненной. Если бы значение Q. было больше, то конденсация вещества произошла бы раньше, при этом оно конденсировалось бы в огромные сверхгалактические структуры. Эти «огромные куски вещества конденсировались бы в черные дыры», пишет Рис. Эти черные дыры были бы тяжелее, чем целые галактические скопления. Любые звезды, образование которых возможно в таком огромном скоплении газа, располагались бы слишком плотно, а потому существование планетарных систем было бы невозможным. Последним параметром является D, то есть количество пространственных измерений. Благодаря заинтересованности в М-теории физики возвратились к вопросу о том, является ли жизнь возможной в дополнительных высших или низших измерениях. Если пространство одномерно, то, вероятно, существование жизни невозможно, поскольку вселенная становится слишком упрощенной. Как правило, при попытках физиков применить квантовую теорию к одномерным вселенным мы обнаруживаем, что частицы проходят одна сквозь другую без всякого взаимодействия. Поэтому вполне возможно, что вселенные, существующие в одном измерении, не могут нести жизнь, поскольку частицы не могут «приклеиться» одна к другой, образуя все более сложные объекты. В двух измерениях мы также сталкиваемся с проблемой, поскольку жизненные формы, вероятно, дезинтегрировали бы. Представьте двумерную расу существ, обитателей Плоской Страны, живущих на поверхности стола. Представьте, что они пытаются есть. Пищевод, тянущийся ото рта к заднему проходу, расщепил бы обитателя Плоской Страны надвое, и он распался бы. Таким образом, трудно представить, как обитатель Плоской Страны мог бы существовать, не распадаясь на части. Еще один аргумент из области биологии указывает на то, что разумная жизнь не может существовать менее чем в трех измерениях. Наш мозг состоит из большого количества пересекающихся нейронов, объединенных обширной электрической сетью. Если бы вселенная была одно- или двумерной, было бы невозможно строить сложные нейронные сети, особенно в условиях короткого замыкания при наложении их друг на друга. В условиях низших измерений мы жестко ограничены количеством сложных логических схем и нейронов, которые можно разместить на маленьком участке. Например, наш собственный мозг состоит из 100 миллиардов нейронов, что приблизительно равно количеству звезд в Галактике Млечный Путь; при этом каждый нейрон связан с десятью тысячами других нейронов. Такую сложность было бы трудно воспроизвести в условиях меньшего количества измерений. В четырех пространственных измерениях возникает следующая проблема: планеты неустойчивы на своих околосолнечных орбитах. На смену закону обратных квадратов Ньютона приходит закон обратных кубов. В 1917 году Пол Эренфест, близкий сотрудник Эйнштейна, размышлял о том, какой была бы физика в четырех измерениях. Он проанализировал уравнение, называемое уравнением Пуассона-Лапласа (которое управляет движением планетарных объектов, а также электрическими зарядами в атомах), и обнаружил, что орбиты теряют свою устойчивость в четырех и более пространственных измерениях. Поскольку электроны, подобно планетам, испытывают беспорядочные столкновения, это означает, что атомы и солнечные системы, вероятно, не могут существовать в большем количестве измерений. Иными словами, трехмерный случай — особый. С точки зрения Риса, антропный принцип является одним из наиболее убедительных аргументов в пользу существования Мультивселенной. Точно так же как существование зон обитания для Земли предполагает существование экстрасолнечных планет, существование зон обитания для вселенной предполагает существование параллельных вселенных. Рис комментирует это так: «Если есть большой ассортимент одежды, то никак не удивительно обнаружить в нем подходящий костюм. Если существует много вселенных, каждая из которых управляется различным набором величин, то будет и одна, где есть особый набор величин, пригодный для жизни. И мы находимся именно в ней». Иными словами, вселенная такова, какая она есть, благодаря закону больших величин, действующему среди многих вселенных Мультивселенной, а вовсе не благодаря некоему великому проекту. Вайнберг, похоже, с этим согласен. В сущности, он считает идею Мультивселенной довольно интересной пищей для размышления. Ему никогда не нравилась та идея, что время внезапно могло начать свое существование в момент Большого Взрыва и что до этого момента времени просто не существовало. В Мультивселенной же происходит вечное создание вселенных. Существует еще одна, несколько необычная причина, по которой Рис предпочитает идею Мультивселенной. Он считает, что вселенная содержит в себе небольшое количество «безобразия». К примеру, земная орбита несколько эллиптична. Если бы она была идеально круговой, то можно было бы заявить, подобно теологам, что Земля представляет собой побочный продукт божественного вмешательства. Но орбита имеет слегка эллиптическую форму, что указывает на некоторое количество беспорядочности в пределах диапазонов зон обитания. Подобным образом и космологическая константа не полностью равна нулю, но весьма мала, что указывает на то, что наша вселенная «является не более особенной, чем того требует наше присутствие». Все это не противоречит тому, что наша вселенная была создана случайно. Эволюция вселенныхБудучи скорее астрономом, нежели философом, Рис говорит о том, что все эти теории должны подлежать проверке. В сущности, именно по этой причине он предпочитает идею Мультивселенной среди соперничающих мистических теорий. Рис считает, что теорию Мультивселенной можно будет проверить в течение ближайших двадцати лет. Один из вариантов теории Мультивселенной действительно можно проверить уже сейчас. Физик Ли Смолин идет еще дальше Риса и предполагает, что имела место «эволюция» вселенных, аналогичная эволюции Дарвина, которая в конечном счете привела к образованию таких вселенных, как наша. К примеру, в теории беспорядочной инфляции «дочерние» вселенные характеризуются физическими константами, несколько отличными от констант вселенной-матери. Если вселенные могут возникать из черных дыр, то, по мнению некоторых физиков, доминирующими вселенными в Мультивселенной будут вселенные с наибольшим количеством черных дыр. Это означает, что, как и в животном царстве, вселенные, дающие начало наибольшему количеству «детей», в конечном счете становятся доминирующими распространяют свою «генетическую информацию» — физические константы природы. Если это верно, то у нашей вселенной в прошлом могло быть бесчисленное множество предков-вселенных, а сама она является побочным продуктом триллионов лет естественного отбора. Иными словами, наша вселенная является побочным продуктом выживания наиболее приспособленных, что означает, что она — дитя вселенных с наибольшим количеством черных дыр. Хотя дарвиновская эволюция вселенных является необычной и оригинальной идеей, Смолин считает, что ее можно проверить путем простого подсчета количества черных дыр. Наша вселенная должна быть максимально благоприятной для создания черных дыр. (Однако еще предстоит доказать, что вселенные с наибольшим количеством черных дыр благоприятны для жизни, как наша.) Поскольку эту идею можно проверить, можно рассмотреть и контрпримеры. Например, можно показать, гипотетически настроив физические параметры вселенной, что черные дыры наиболее активно рождаются в безжизненных вселенных. К примеру, быть может, можно было бы показать, что во вселенной, где ядерное взаимодействие было бы намного более сильным, звезды выгорели бы чрезвычайно быстро, в результате чего образовалось бы большое количество сверхновых, которые затем схлопнулись бы в черные дыры. В такой вселенной более высокий уровень ядерного взаимодействия означает, что жизнь звезд длится в течение краткого промежутка времени, а отсюда следует, что зарождение жизни невозможно. Но в такой вселенной также могло бы быть намного больше черных дыр, что опровергает теорию Смолина. Преимущество этой теории состоит в том, что ее можно проверить, воспроизвести или опровергнуть (признак любой по-настоящему научной теории). Время покажет, выстоит она или нет. Хотя любая теория, включающая в себя порталы-червоточины, суперструны и дополнительные высшие измерения, лежит за пределами наших экспериментальных возможностей, сейчас проводятся и планируются новые эксперименты, при помощи которых можно будет определить истинность этих теорий. Мы сейчас находимся в самом разгаре переворота в экспериментальной науке, и вся мощь спутников, космических телескопов, детекторов гравитационных волн и лазеров привлекается для решения этих вопросов. Богатый урожай, принесенный этими экспериментами, вполне мог бы разрешить некоторые из глубочайших вопросов космологии. ГЛАВА 9 В поисках эхо-сигналов из одиннадцатого измерения
Какое бы глубокое впечатление ни производили параллельные вселенные, порталы в другие измерения, да и сами дополнительные высшие измерения, все же требуются неопровержимые доказательства их существования. Как отмечает астроном Кен Кросвелл, «Другие вселенные — словно хмельной напиток дальних стран: о них можно говорить все, что захочешь, безо всякого опровержения, поскольку астрономы их так и не видят». Раньше проверка многих из этих прогнозов считалась безнадежным предприятием в условиях примитивности нашей экспериментальной техники. Однако последние достижения в области компьютерной, лазерной и спутниковой технологий подвели многие из этих теорий соблазнительно близко к экспериментальной проверке. Прямая проверка этих теорий может оказаться чересчур сложной, однако косвенная проверка может оказаться в пределах нашей досягаемости. Иногда мы забываем, что астрономия во многом основана на косвенных методах. К примеру, никто никогда не был на Солнце или других звездах, однако же нам известно, из чего состоят звезды, а выяснили мы это при помощи света, испускаемого этими светящимися объектами. Анализируя оптический спектр звездного света, мы узнали, что звезды состоят в основном из водорода и некоторого количества гелия. Подобным образом, никто никогда не видел черной дыры: в сущности, черные дыры невидимы и их нельзя наблюдать непосредственно. Однако мы можем получить косвенное доказательство их существования путем поисков аккреционных дисков и вычисления массы этих мертвых звезд. Во всех этих экспериментах мы ведем поиски «эхо-сигналов», исходящих от звезд и черных дыр, с целью определить их природу. Подобным образом и одиннадцатое измерение может находиться вне нашей прямой досягаемости, но новые революционные инструменты, имеющиеся в нашем распоряжении, делают реальными потенциальные способы проверки теории инфляционного расширения и теории суперструн. GPS и теория относительностиПростейшим примером переворота в исследованиях теории относительности, произведенного спутниками, является Глобальная система навигации и определения положения (англ. Global Positioning System, или GPS), 24 спутника которой беспрерывно вращаются вокруг Земли, испуская точные синхронизированные сигналы, которые позволяют определить положение объекта с невероятной точностью. Эта глобальная система стала незаменимым элементом в навигации, торговле, а также при проведении военных действий. Все — от компьютеризованных карт в автомобилях до крылатых ракет — основано на возможности синхронизации сигналов с точностью до 50 миллиардных долей секунды для определения положения объекта на Земле с точностью до 14 метров. Но для того, чтобы обеспечить столь высокую точность, ученым необходимо вычислить небольшие поправки к законам Ньютона согласно теории относительности, которая утверждает, что при движении спутников произойдет небольшое смещение частоты радиоволн. В сущности, если мы неосмотрительно пренебрежем поправками согласно теории относительности, то часы на спутниках глобальной системы будут спешить на 40 миллионных долей секунды в день и на данные системы полагаться будет нельзя. Таким образом, теория относительности асолютно необходима для торговли и военных. Физику Клиффорду Уиллу как-то довелось провести инструктаж генерала ВВС США на тему необходимых поправок для глобальной системы навигации и определения положения, исходящих из теории относительности Эйнштейна. Позднее Уилл заметил, что теория относительности достигла стадии зрелости, раз уже даже высшие офицеры Пентагона нуждаются в инструктаже по теории относительности. Детекторы гравитационных волнДо сих пор все, что известно об астрономии, приходило к нам в форме электромагнитного излучения, будь это звездный свет, радио- или микроволновые сигналы из глубин космоса. Сегодня ученые вводят первое новое средство для научных открытий, а именно гравитацию. «Каждый раз, как мы смотрели на небо по-новому, мы видели новую вселенную», — говорит Гари Сандерс из Калифорнийского технологического института, заместитель директора проекта гравитационных волн. Впервые о гравитационных волнах заговорил Эйнштейн в 1916 году. Представьте, что случилось бы, если бы Солнце исчезло, Припоминаете аналогию шара для игры в боулинг, утопающего в матрасе? Или еще лучше — в батуте? Если этот шар внезапно убрать, то батут немедленно возвратится в свое первоначальное состояние, что создаст волны, бегущие вовне по батуту. Если шар для боулинга заменить Солнцем, то мы увидим, что гравитационные волны движутся с определенной скоростью, а именно со скоростью света. Хотя позднее Эйнштейн нашел точное решение для своих уравнений, допускавших существование гравитационных волн, он отчаялся увидеть при жизни подтверждение своего прогноза, Гравитационные волны чрезвычайно слабы. Даже ударные взрывные волны, образующиеся при столкновениях звезд, недостаточно сильны, чтобы их можно было измерить в ходе проводимых в настоящее время экспериментов. Пока что существование волн гравитации подтверждено лишь косвенно. Два физика, Рассел Хале и Джозеф Тейлор мл., выдвинули следующую гипотезу: если изучить двойные звездные системы, в которых вращающиеся звезды движутся одна за другой в космическом пространстве, то окажется, что каждая звезда испускает поток гравитационных волн, похожих на волны, образующиеся при размешивании патоки. При этом орбита обеих звезд постепенно становится все меньше и меньше. Эти ученые изучили смертельную спираль двух нейтронных звезд, постепенно приближающихся друг к другу. Объектом их исследования стала двойная система нейтронных звезд PSR 1913+16, которая находится на расстоянии около 16000 световых лет от Земли. Звезды этой системы совершают полный виток одна вокруг другой за 7 часов 45 минут, и в этом процессе в космическое пространство испускаются волны гравитации. Применив теорию Эйнштейна, эти ученые обнаружили, что две рассматриваемые звезды должны сближаться друг с другом на один миллиметр за каждый полный виток. Хотя такое расстояние фантастически мало, в год оно увеличивается почти до метра, в то время как орбита в 700 000 км медленно уменьшается в размерах. Эта новаторская работа показала, что уменьшение орбиты в точности соответствует предсказаниям теории Эйнштейна на основе гравитационных волн. (В сущности, уравнения Эйнштейна предсказывают, что звезды в конце концов столкнутся через 240 миллионов лет вследствие потери энергии, испускаемой в космос в виде гравитационных волн.) За свою работу Рассел Хале и Джозеф Тейлор мл. получили Нобелевскую премию по физике в 1993 году. Мы можем также пойти в обратном направлении и использовать этот точный эксперимент, чтобы измерить, насколько точна сама общая теория относительности. При проведении вычислений в обратном порядке выясняется, что общая теория относительности верна как минимум на 99,7 %. LIGO — лазерная обсерватория-интерферометр гравитационных волнЧтобы получить полезную информацию о ранней вселенной, необходимы прямые наблюдения гравитационных волн. В 2003 году первый действующий детектор гравитационных волн LIGO (Laser Interferometer Gravitational-Wave Observatory, или лазерная обсерватория-интерферометр гравитационных волн) наконец был запущен, реализовав тем самым давнюю мечту прощупать тайны вселенной посредством гравитационных волн. Целью детектора LIGO является регистрация космических событий, которые происходят слишком далеко или имеют слишком маленькие масштабы, чтобы их можно было наблюдать при помощи наземных телескопов. Это, скажем, такие события, как столкновения черных дыр или нейтронных звезд. Обсерватория LIGO состоит из двух гигантских лазерных установок, одна из которых расположена в Хэнфорде (штат Вашингтон), а другая в Ливингстоне (штат Луизиана). Каждая из установок снабжена двумя трубами по 4 км длиной каждая, которые образуют гигантскую букву L. Внутри каждой трубы включается лазер. В углу буквы L оба лазерных луча сталкиваются, и происходит интерференция их волн. Обычно в отсутствие каких-либо возмущений две волны синхронизируются и взаимоуничтожаются. Но если в устройство попадает даже малейшая гравиволна, образовавшаяся при столкновении черных дыр или нейтронных звезд, то одно плечо уменьшается или увеличивается иным образом, нежели второе. Такого возмущения достаточно, чтобы разрушить хрупкий баланс двух лазерных лучей — они не взаимоуничтожаются, а создают характерную картину интерференции волн, которую можно подвергнуть детальному компьютерному анализу. Чем больше гравитационная волна, тем больше несовпадение между двумя лазерными лучами и тем больше интерференция. Обсерватория LIGO являет собой чудо техники. Поскольку молекулы воздуха могут поглощать свет лазеров, трубку, по которой проходит свет, вакуумируют до давления в одну триллионную часть атмосферы. Каждый детектор занимает около 8,4 м3 пространства, что означает, что в обсерватории LIGO находится самый большой объем искусственного вакуума в мире. Особая чувствительность LIGO объясняется, в частности, конструкцией зеркал, управляемых крошечными магнитами размером с муравья, которых всего шесть. Зеркала так отполированы, что точность их составляет до одной тридцатимиллиардной доли дюйма. «Представьте, что Земля была бы настолько гладкой. Тогда средняя гора возвышалась бы не более, чем на дюйм (ок. 2,5 см)», — говорит Гарилинн Биллингсли, в обязанности которой входит контроль зеркал. Конструкция этих зеркал настолько тонка, что их можно сдвигать менее чем на микрон, что делает их, вероятно, самыми чувствительными зеркалами в мире. «У большинства инженеров, занимающихся системами контроля и управления, просто отвисает челюсть, когда они слышат о том, что мы пытаемся сделать», — говорит Майкл Цукер, ученый, принимающий участие в проекте LIGO. Поскольку детектор LIGO столь тонко сбалансирован, иногда его работе мешают крошечные вибрации, идущие от самых нежелательных источников. К примеру, установку LIGO в Луизиане нельзя запускать днем из-за лесорубов, которые валят деревья в полукилометре от детектора. (Детектор LIGO настолько чувствителен, что его нельзя было бы запускать в течение дня даже в том случае, если рубка леса проходила бы на расстоянии полутора километров.) Даже ночью вибрации, источником которых являются товарные составы, проходящие в полночь и в шесть часов утра, ограничивают продолжительность непрерывной работы детектора LIGO. Даже столь слабое явление, как волны, бьющие о берег на расстоянии нескольких километров от установки, может повлиять на результаты. Волны океана бьют о берег Северной Америки в среднем каждые шесть секунд, создавая низкий гул, который может быть зафиксирован лазерами. Частота этого шума настолько низка, что он, в сущности, может распространяться прямо сквозь землю. «Это похоже на рокот, — так комментирует этот шум Цукер. — В сезон ураганов в Луизиане это становится просто кошмаром». Кроме того, на детектор LIGO оказывают влияние приливы, создаваемые гравитацией Луны и Земли, что создает возмущение в несколько миллионных долей дюйма. Для того чтобы исключить эти невероятно малые возмущения, инженеры детектора LIGO предприняли чрезвычайные меры для обеспечения изоляции установки. Каждая лазерная система покоится на вершине четырех огромных платформ из нержавеющей стали, расположенных одна поверх другой; каждый уровень разделен рессорами для погашения всех вибраций. Каждый оптический инструмент снабжен своей собственной системой сейсмической изоляции; цементный пол в 75 сантиметров толщиной не соединен со стенами. Детектор LIGO представляет собой часть интернационального консорциума, в который также входят французско-итальянский детектор под названием VIRGO в Пизе (Италия), японский детектор TAMA, расположенный за пределами Токио, а также британско-немецкий детектор GEO600 в Ганновере (Германия). В целом, общая стоимость постройки детектора LIGO обойдется в 292 млн долларов (плюс 80 млн долларов на пуско-наладочные работы и модернизацию), что делает его самым дорогим проектом из когда-либо финансировавшихся Национальным научным фондом. Однако, даже несмотря на такую чувствительность детектора, многие ученые признают, что LIGO, возможно, не обладает достаточной чувствительностью для улавливания действительно интересных событий за время своей работы. Следующая модернизация установки, LIGO II, намечается на 2007 год (при условии получения финансирования). Если детектор LIGO не уловит гравитационных волн, то смело можно ставить на то, что это получится у LIGO П. Ученый, принимающий участие в проекте LIGO, Кеннет Либбрехт, заявляет, что LIGO II увеличит чувствительность оборудования в тысячу раз: «Вы переходите от [улавливания] одного события раз в 10 лет, что довольно мучительно, к одному событию в три дня, что уже приятно». Чтобы детектор LIGO уловил сигнал от столкновения двух черных дыр (на расстоянии до 300 млн световых лет), ученым пришлось бы ждать от года до тысячи лет. Многие астрономы, возможно, сомневаются в целесообразности изучения подобных событий при помощи детектора LIGO, если это означает, что свидетелями этого события станут их пра-пра-пра… правнуки. Но как выразился один из участников проекта LIGO Питер Солсон: «Людям нравится решать эти технически сложные задачи подобно тому, как строители средневековых соборов продолжали свою работу, зная, что они, возможно, не увидят оконченной церкви. Но если бы не существовало такой большой вероятности увидеть гравитационные волны в течение моей жиизни, то я бы не работал в этой области. Это не просто Нобелевская лихорадка… Характерным отличием нашей работы является степень точности, к которой мы стремимся; если вы работаете таким образом, то вы двигаетесь в правильном направлении». Вероятность обнаружения поистине интересного события в течение нашей жизни будет намного выше при использовании детектора LIGO П. LIGO II, возможно, обнаружит сталкивающиеся черные дыры на расстояниях до б миллиардов световых лет с частотой от десяти в день до десяти в год. Однако даже детектор LIGO II не будет обладать достаточной чувствительностью для обнаружения гравитационных волн, испускаемых в момент его создания. Для этого нам придется подождать еще 15–20 лет до запуска космической лазерной антенны-интерферометра LISA. Детектор гравитационных волн LISALISA (Laser Interferometry Space Antenna, или космическая лазерная антенна-интерферометр) представляет собой следующее поколение детекторов гравитационных волн. В отличие от детектора LIGO он будет базироваться в открытом космосе. Около 2010 года НАСА совместно с Европейским управлением космических исследований планирует запуск трех спутников, которые будут выведены на солнечную орбиту на расстоянии почти в 50 млн км от Земли. Три лазерных детектора образуют в космосе равносторонний треугольник (со стороной в 5 млн километров). Каждый спутник будет оснащен двумя лазерами, которые обеспечат непрерывный контакт с двумя другими спутниками. Хотя мощность испускаемых лазерами лучей будет составлять всего лишь 0,5 Вт, оптическое оборудование спутников настолько чувствительно, что оно сможет улавливать вибрации, исходящие от гравитационных волн с точностью до 10~21 (что соответствует смещению на одну сотую размера одного атома). LISA должна уловить гравитационные волны от источников, находящихся на расстоянии до 9 млрд световых лет от нас, охватывая таким образом большую часть видимой вселенной. Антенна-интерферометр LISA будет настолько точна, что, возможно, зафиксирует первоначальные ударные волны самого Большого Взрыва. Это представит нам наиболее точную картину момента сотворения. Если все будет идти по плану,[8] то LISA сможет заглянуть в первую триллионную долю секунды после Большого Взрыва, что, вероятно, сделает ее самым мощным инструментом для космологических исследований. Считается, что LISA сможет представить первые экспериментальные данные относительно точной природы единой теории поля, теории всего. Одной из важных целей антенны-интерферометра LISA является представление неоспоримого доказательства, «дымящегося ружья» для теории инфляционного расширения вселенной. До сих пор теория инфляции вписывается во все космологические данные (плоскость, флуктуации в космическом фоне и так далее). Но это не означает, что данная теория верна. Чтобы окончательно решить этот вопрос, ученые хотят изучить гравитационные волны, пущенные в самом процессе инфляционного расширения. «Отпечаток пальца» гравитационных волн, образовавшихся в момент Большого Взрыва, должен показать разницу между теорией инфляционного расширения и любой другой конкурирующей теорией. Некоторые ученые, к примеру Кип Торн из Калифорнийского технологического института, считают, что LISA сможет установить, является ли правильной хотя бы одна из вариаций струнной теории. Как я уже объяснял в главе 7, согласно теории инфляционного расширения вселенной гравитационные волны, возникающие в результате Большого Взрыва, должны быть довольно интенсивными, чтобы соответствовать стремительному, экспоненциальному расширению молодой вселенной; в то время как экпиротическая модель говорит о более медленном расширении, которое сопровождалось более плавными гравитационными волнами. Антенна-интерферометр LISA должна опровергнуть различные конкурирующие теории Большого Взрыва, а также Водвергнуть серьезному испытанию струнную теорию. Линзы и кольца ЭйнштейнаЕще одним мощным средством исследования космоса могут служить гравитационные линзы и «кольца Эйнштейна». Уже в 1801 году берлинскому астроному Иоганну Георгу фон Зольднеру удалось вычислить возможное преломление звездного света солнечной гравитацией (хотя, поскольку Зольднер использовал исключительно законы ньютоновской механики, его результат был ошибочным и вдвое отличался от правильного. Эйнштейн написал: «Половина этого преломления вызвана ньютоновским полем притяжения Солнца, а вторая половина- геометрической трансформацией [ «искривлением»] пространства, вызываемой Солнцем»). В 1912 году, еще до окончания последней версии общей теории Относительности, Эйнштейн задумывался о возможности использования этого преломления в качестве «линзы» подобно тому, как стекла ваших очков преломляют свет перед тем, как он достигнет ваших глаз. В 1936 году чешский инженер Руди Мандл написал Эйнштейну письмо, в котором спрашивал, может ли гравитационная линза преломлять свет, исходящий от близлежащей звезды. Ответ был утвердительным, но уловить такое преломление не представлялось возможным из-за несовершенства технологий того времени. В частности, Эйнштейн понял, что мы бы увидели оптические иллюзии, такие, как двойные изображения самого объекта или кольцеобразное искажение света. Свет из очень далекой галактики, проходя, к примеру, мимо нашего Солнца, прошел бы слева и справа от него, прежде чем лучи соединились бы снова и достигли наших глаз. Когда мы вглядываемся в далекие галактики, мы наблюдаем кольцеобразные картины, оптические иллюзии, вызванные действием, которое объясняет общая теория относительности. Эйнштейн сделал вывод о том, что было «не много надежды на прямое наблюдение этого явления». В сущности, он написал о том, что эта работа «не имеет большой ценности, но доставляет радость бедняге [Мандлу]». Больше чем через 40 лет, в 1979 году, Деннис Уолш из обсерватории Джодрелл-Бэнк получил первое частичное доказательство лин-зирования: он открыл двойной квазар Q0957+561. В 1988 году кольцо Эйнштейна впервые наблюдалось из источника радиоизлучения MG1131+0456. В 1997 году Космический телескоп Хаббла и сеть радиотелескопов MERLIN в Великобритании при изучении далекой галактики 1938+666 уловили первое кольцо Эйнштейна совершенно правильной формы, что в очередной раз подтвердило теорию великого ученого. (Это кольцо совсем крошечное, всего лишь в одну угловую секунду, то есть размером с маленькую монетку, наблюдаемую с расстояния в три километра.) Астрономы так описывают восторг, охвативший их при виде этого исторического события: «Сначала кольцо выглядело довольно искусственно и мы подумали, что это какой-то дефект изображения, но потом мы поняли, что перед нами кольцо Эйнштейна совершенно правильной формы!» — сказал Иен Браун из Манчестерского университета. Сегодня кольца Эйнштейна являются важным инструментом в арсенале астрофизиков. В открытом космосе было обнаружено около 64 двойных, тройных и других кратных квазаров (миражей, вызванных гравитационным линзированием Эйнштейна), что приблизительно составляет пятисотую часть всех известных квазаров. Даже такие невидимые формы вещества, как темное вещество, можно наблюдать при помощи создаваемого ими преломления света. Таким способом можно получить «карты», на которых показано распределение темного вещества во вселенной. Поскольку гравитационное линзирование Эйнштейна преломляет свет больших галактических скоплений скорее в дуги (нежели в кольца), представляется зможным оценить концентрацию темного вещества в этих скоплениях. В 1986 году астрономы Национальной оптической астрономической обсерватории Стэнфордского университета и Обсерватории Пик-дю-Миди во Франции наблюдали первые гигантские галактические дуги. С тех пор было обнаружено около сотни галактических дуг, наиболее впечатляющей из которых является Абель 2218. Линзы Эйнштейна можно также использовать в качестве объеквного метода измерения количества массивных компактных объектов гало (МАСНО) во вселенной (которые состоят из обычного щества, такого, как мертвые звезды, коричневые карлики и пылевые блака). В 1986 году Богдан Пачински из Принстона понял, что в кучае, если массивные компактные объекты гало проходят перед здой, они тем самым увеличивают ее яркость и создают второе ее ображение. В начале 1990-х годов несколько групп ученых (в частности, французкая группа EROS, американо-австралийская группа МАСНО и польско-американская группа OGLE) воспользовались этим методом для изучения центра Галактики Млечный Путь и обнаружили более пятисот микролинзовых событий (этот результат превзошел ожидания, поскольку некоторое количество этого вещества состояло из звезд с малой массой и неистинных массивных компактных объектов гало). Этот же метод может применяться для обнаружения экстрасолнечных планет, вращающихся вокруг других звезд. Поскольку планета оказывала бы очень малое, но измеримое гравитационное воздействие на свет материнской звезды, линзирование Эйнштейна принципе могло бы их обнаружить. При помощи этого метода уже было выявлено небольшое количество кандидатов в экстрасолнечные планеты, некоторые из них располагаются у центра Млечного Пути. При помощи линз Эйнштейна можно измерить даже постоянную Хаббла и космологическую константу. Постоянная Хаббла измеряется путем тщательного наблюдения. Квазары становятся ярче и тускнеют с течением времени. Можно было бы ожидать, что двойные квазары, будучи изображениями одного и того же объекта, мерцали бы в унисон. Используя имеющиеся данные о распределении вещества во вселенной, астрономы могут вычислить долю задержки во времени, потребовавшемся свету, чтобы достичь Земли. Измерив отставание во времени, когда двойные квазары становятся ярче, можно определить, на каком расстоянии от Земли они находятся. Зная же их красное смещение, можно вычислить постоянную Хаббла. (Именно такой метод был использован применительно к квазару Q0957+561, расстояние до которого оказалось равно приблизительно 14 млрд световых лет от Земли. С тех пор постоянная Хаббла была определена путем изучения семи других квазаров. В пределах погрешности полученные при таком изучении результаты совпали с уже имеющимися данными. Интересным отличием этого метода является то, что он совершенно не зависит от яркости звезд (таких, как цефеиды и сверхновые типа 1а), что подчеркивает объективность полученных результатов.) Этим способом можно измерить и космологическую константу, в которой, возможно, заключен ключ к будущему нашей вселенной. Такой способ вычисления немного неточен, но в принципе, результаты совпадают с данными, полученными при применении других методов. Поскольку миллиарды лет тому назад суммарный объем вселенной был меньше, вероятность обнаружения квазаров, образующих линзу Эйнштейна, в прошлом также была большей. Таким образом, определив количество двойных квазаров на различных этапах эволюции вселенной, можно вычислить приблизительный объем вселенной, а отсюда — космологическую константу, которая движет расширением вселенной. В 1998 году астрономы из Гарвард- Смитсоновского астрофизического центра осуществили первое приблизительное вычисление космологической константы и пришли к выводу, что она, вероятно, составляет не более 62 % от суммарного содержимого вещества/энергии вселенной. (Действительный результат, полученный при помощи спутника WMAP, составляет 73 %.) Темное вещество у вас в гостинойЕсли вселенная заполнена темным веществом, то оно существует не только в холодном космическом вакууме. В сущности, темное вещество можно также обнаружить и у вас в гостиной. Сегодня несколько исследовательских групп соревнуются за первенство в поимке частицы темного вещества в лаборатории. Ставки высоки: ученые той группы, которой удастся поймать частицу темного вещества, проносящуюся сквозь детектор, окажутся первыми, кто открыл новую форму вещества за две тысячи лет. Основная идея этих экспериментов заключается в следующем: необходим большой кусок чистого материала (такого, как йодид натрия, оксид алюминия, фреон, германий или кремний), в котором может происходить взаимодействие частиц темного вещества. Время от времени частица темного вещества может сталкиваться с ядром атома, создавая характерную картину распада. Фотографируя следы частиц, участвующих в этом распаде, ученые смогут подтвердить присутствие темного вещества. Экспериментаторы полны сдержанного оптимизма, поскольку находящееся в их распоряжении чувствительное оборудование предоставляет им наилучшую возможность для наблюдения темного вещества. Наша Солнечная система вращается по орбите вокруг черной дыры в центре Галактики Млечный Путь со скоростью 220 километров в секунду. В результате этого наша планета проходит сквозь значительное количество темного вещества. Согласно расчетам физиков, миллиард частиц темного вещества в секунду пролетает сквозь каждый квадратный метр нашего мира, в том числе сквозь наши тела. Хотя мы живем в «ветре темного вещества», дующем сквозь нашу Солнечную систему, лабораторные эксперименты по обнаружению темного вещества чрезвычайно сложны из-за того, что частицы темного вещества вступают в столь слабое взаимодействие с обычным веществом. Так, ученые ожидают за год обнаружить от 0,01 до 10 событий, происходящих в килограмме материала, наблюдающегося в лаборатории. Иными словами, пришлось бы многие годы внимательно наблюдать за большими количествами материала, чтобы увидеть события, имеющие отношение к столкновениям темного вещества. До сих пор в ходе таких экспериментов, как UKDMC в Великобритании, ROSEBUD в Канфранке (Испания), HIE в Рустреле (Франция) и Edelweiss в городе Фрежус (Франция), подобных событий обнаружено не было. Эксперимент под названием 111 (ot Dark Matter- «темное вещество»), проводившийся неподалеку от Рима, вызвал шумиху в 1999 году, когда ученые заявили, что наблюдали частицы темного вещества. Поскольку в детекторе DAMA используется 100 килограммов йодида натрия, он является самым большим в мире. Однако попытки воспроизвести тот же результат при помощи других детекторов не увенчались успехом — не было обнаружено ничего; и это бросило тень сомнения на данные, полученные в ходе эксперимента DAMA. Физик Дэвид Б. Клайн замечает: «Если детекторы уловят и подтвердят сигнал, то это станет одним из крупнейших достижений двадцать первого столетия… Вскоре может разрешиться величайшая загадка современной астрофизики». Если надежды физиков оправдаются и темное вещество вскоре будет обнаружено, то оно может представить доказательство в пользу суперсимметрии (а вероятно, с течением времени и в пользу теории суперструн) без использования ускорителей частиц. SUSY — суперсимметричное темное веществоБеглый взгляд на частицы, существование которых предсказывает супер симметрия, показывает, что есть несколько потенциальных претендентов на объяснение тайны темного вещества. Одним из них является нейтралино, семейство частиц, куда входит суперпартнер фотона. С теоретической точки зрения нейтралино, кажется, соответствует имеющимся данным. Нейтралино не только имеет нейтральный заряд, а потому невидимо, — оно также массивно (а потому на него воздействует только гравитация), а кроме того, оно стабильно. (Такая ситуация складывается потому, что нейтралино обладает наименьшей массой из всех частиц семейства, к которому оно принадлежит, а потому оно не может распадаться до каких-то более легких частиц). И наконец, последним и, вероятно, важнейшим моментом является то, что во вселенной должно быть полно ней-гралино, что делает их идеальными претендентами на роль темного вещества. У нейтралино есть одно веское преимущество: они, возможно, способны разрешить загадку, почему темное вещество составляет Ј3 % вещественно-энергетического содержимого вселенной, в то даремя как водород и гелий отвечают лишь за какие-то жалкие 4 %. Вспомним о том, что когда Вселенной было 380 ООО лет, температура продолжала снижаться до тех пор, пока атомы уже не разрывало на части при столкновениях, вызванных невероятным жаром Большого Взрыва. В то время изначальный огненный шар начал остывать, конденсироваться и образовывать устойчивые целые атомы. Общее количество атомов восходит приблизительно к тому временному отрезку. Вывод таков: относительное содержание вещества во Вселенной складывалось в то время, когда Вселенная достаточно остыла, чтобы это вещество могло стать стабильным. Этот же самый аргумент можно использовать при подсчете относительного содержания нейтралино. Сразу после Большого Взрыва температура была настолько высока, что даже нейтралино уничтожались при столкновениях. Однако по мере остывания Вселенной, некоторое время спустя, температура снизилась достаточно, чтобы стало возможным образование нейтралино без их последующего уничтожения. Относительное содержание нейтралино во Вселенной надо искать именно в той ранней эпохе. Осуществляя это вычисление, мы обнаруживаем, что относительное содержание нейтралино намного выше содержания атомов и, в сущности, приблизительно соответствует процентному содержанию темного вещества в настоящее время. Таким образом, суперсимметричные частицы могут объяснить, почему настолько высоко относительное содержание темного вещества во Вселенной. Слоановский обзор небаХотя многие из достижений двадцать первого столетия будут заключаться в усовершенствовании оборудования, такого, как спутники, это вовсе не означает, что прекратятся работы с оптическими телескопами и радиотелескопами, базирующимися на Земле. В сущности, благодаря цифровому перевороту произошли изменения в использовании оптических телескопов и радиотелескопов; стал возможен статистический анализ сотен тысяч галактик. Сегодня благодаря этой новой технологии телескопы переживают второе рождение. На протяжении всей истории астрономы воевали за то ограниченное время, которое им разрешалось проводить за наблюдениями у объективов величайших телескопов мира. Они ревностно отстаивали драгоценные часы, отведенные им на наблюдения, проводя долгие ночные часы за работой в холодных сырых помещениях. Этот устаревший способ наблюдения был чрезвычайно неэффективен и часто служил причиной ожесточенных споров среди астрономов, которые чувствовали себя ущемленными со стороны «верхушки», монополизировавшей время работы за телескопами. С появлением Интернета и высокоскоростных компьютеров такая ситуация меняется. Сегодня многие телескопы полностью автоматизированы; их работой могут управлять астрономы с различных континентов, находящиеся за тысячи миль от самих телескопов. Результаты этих сложных звездных обзоров могут быть оцифрованы и размещены в Интернете, где полученные данные можно подвергнуть обработке с помощью суперкомпьютеров. Одним из примеров применения этого цифрового метода может служить SETI(S›home, проект, размещенный в Калифорнийском университете в Беркли и предназначенный для изучения сигналов, несущих признаки внеземного разума. Большое количество данных, полученных радиотелескопом Аресибо в Пуэрто-Рико, разбивается на маленькие части и через Интернет отсылается на персональные компьютеры по всему миру. Преимущественно эти данные попадают клюбителям, непрофессионалам. Программа, выполненная в форме скринсейвера, анализирует данные на предмет сигналов внеземного разума в те моменты, когда компьютер не задействуется пользователем. При помощи этого метода данная исследовательская группа создала величайшую компьютерную сеть в мире, связыпающую около 5 миллионов персональных компьютеров во всех уголках земного шара. Наиболее выдающимся примером современного исследования Вселенной при помощи цифровыхтехнологий является Слоановский обзор неба — наиболее амбициозный из всех, когда-либо имевших место. Подобно проведенному ранее Паломарскому обзору неба, при котором использовались фотопластинки старого образца, хранившиеся в громоздких стопках, Слоановский обзор неба ставит целью создание точной карты небесных объектов. При помощи данного обзора удалось построить трехмерные карты далеких галактик впяти цветах, включая красное смещение более миллиона галактик. Результатом Слоановского обзора неба является крупномасштабная карта строения Вселенной, в несколько сотен раз превосходящая все предыдущие. На карте будет в мельчайших деталях представлена четверть всего небосвода, а также определено положение и яркость 100 миллионов небесных объектов. Кроме того, в результате этого обзора будет определено расстояние до миллиона с лишним галактик и около 100 тысяч квазаров. Итоговое количество информации, выясненной входе Слоановского обзора, составит 15 терабайт (триллион байт), что вполне может соперничать с количеством информации в Библиотеке Конгресса. Сердцем Слоановского обзора является 2,5-метровый телескоп на юге штата Нью-Мексико, к которому подсоединена одна из лучших в мире камер. Прибор снабжен тридцатью чувствительными электронными световыми сенсорами, называемыми ПЗС (прибор с зарядовой связью), с площадью 2 квадратных дюйма (ок. 13 см2) каждый, помещенными в вакуум. Каждый сенсор охлажден до -80 °C при помощи жидкого азота и содержит 4 миллиона пикселей. Таким образом, весь свет, улавливаемый телескопом, может быть немедленно оцифрован при помощи ПЗС, после чего данные доступны для компьютерной обработки. Стоимость проекта составляет менее 20 миллионов, долларов, что в сто раз меньше стоимости проекта телескопа Хаббла, но тем не менее при помощи такого обзора создается потрясающая картина Вселенной. Итак, некоторые из оцифрованных данных выкладываются в Интернет с тем, чтобы астрономы по всему миру могли изучить их. Таким образом можно задействовать интеллектуальный потенциал ученых всего мира. Слишком часто в прошлом у ученых третьего мира не было возможности доступа к последним научным журналам и самым свежим данным, полученным при помощи телескопов. Сегодня благодаря Интернету эти ученые могут загружать данные обзоров неба, читать статьи по мере их появления в Интернете, а также ггубликовать свои статьи во всемирной паутине со скоростью света. Слоановский обзор уже меняет методы астрономических исследований Полученные при помощи обзора результаты основаны на анализе сотен тысяч галактик, что было совершенно немыслимо всего лишь несколько лет назад. К примеру, в мае 2003 года команда ученых из Испании, Германии и Соединенных Штатов заявила, что они изучили 250 тысяч галактик на предмет доказательства существования темного вещества. Из этого огромного количества они выбрали три тысячи галактик, вокруг которых вращаются звездные скопления Применив законы механики Ньютона для изучения движения этих спутников, они рассчитали количество темного вещества, которое должно окружать центральную галактику. Уже одним этим они опровергли альтернативную теорию (последняя была впервые предложена в 1983 году; она пыталась объяснить звездные орбиты неправильной формы в галактиках путем корректировки самих законов Ньютона: возможно, темного вещества не существует вообще; возможно, своим предполагаемым существованием оно обязано всего лишь ошибке в законах Ньютона Данные обзора ставят эту теорию под сомнение). В июле 2003 года еще одна команда ученых из Германии и Соединенных Штатов заявила, что они изучили 120 000 близлежащих галактик, используя Слоановский обзор для раскрытия отношений между галакгаками и черными дырами, находящимися в них. Вопрос заключается в следующем: что возникло раньше, черная дыра или галактика, в которой эта черная дыра находится? Результат проведенного исследования показывает, что образование галактик и черных дыр тесно связано и, вероятно, они образовались вместе. Исследование показало, что из 120 000 изученных в ходе обзора галактик целых 20 000 содержат черные дыры, которые продолжают расти (в отличие от черной дыры в Галактике Млечный Путь, которая, кажется, находится в состоянии покоя). Полученные результаты показывают, что галактики, содержащие черные дыры, которые все еще растут в размерах, намного больше Галактики Млечный Путь, а расширяются они путем поглощения относительно холодного газа из галактики Компенсация температурных флуктуацииЕще одним способом возрождения оптических телескопов является использование лазеров для компенсации атмосферного искажения. Звезды мерцают не потому, что они вибрируют, они мерцают главным образом из-за очень малых температурных флуктуации в атмосфере. Это означает, что в открытом космосе, вдали от нашей атмосферы, астронавты видят звезды, сияющие ровным, неизменным светом. Хотя красота ночного неба в большой степени связана с мерцанием звезд, для астрономов это просто кошмар: из-за этого явления снимки небесных тел получаются расплывчатыми (Я помню, как в детстве смотрел на размытые изображения Марса и мне очень хотелось каким-нибудь образом заполучить кристально четкие снимки красной планеты. Если бы только можно было исключить возмущения атмосферы путем перенаправления световых лучей, думал я, то, возможно, разрешилась бы загадка о существовании внеземной жизни.) Одним из способов компенсировать эту размытость является использование лазеров и высокоскоростных компьютеров для того, чтобы свести на нет это искажение. Б этом методе используется «адаптивная оптика», которую впервые задействовала моя однокурсница по Гарварду Клер Макс из Ливерморской национальной лаборатории имени Лоуренса, а также другие ученые, используя телескоп имени Уильяма Майрона Кека нд Гавайях (самый большой в мире), а также меньший трехметровый телескоп Шейна в Ликской обсерватории в Калифорнии Пустив, например, лазерный луч в открытый космос, можно измерить очень малые температурные флуктуации в атмосфере. Эта информация анализируется при помощи компьютера, который затем несколько корректирует положение зеркала телескопа, что позволяет компенсировать это искажение звездного света Таким путем можно в значительной мере исключить возмущения атмосферы. Этот метод был с успехом опробован в 1996 году, и с тех пор с его помощью удается получать кристально четкие изображения планет, звезд и галактик. Система пускает в небо свет из настраиваемого лазера на красителе мощностью в 18 Вт. Лазер крепится к трехметровому телескопу, деформируемые зеркала которого настраиваются для компенсации атмосферных искажений. Само изображение улавливается камерой ПЗС и оцифровывается. При весьма скромном бюджете эта система позволяет получать изображения, четкость которых почти не уступает изображениям с космического телескопа Хаббла. При помощи этого метода астрономы получают снимки, на которых можно различить мелкие детали внешних планет и даже вглядеться в самое сердце квазара, что дает новую жизнь технологии оптических телескопов. Этот метод позволил увеличить разрешение телескопа Кека в десять раз. Обсерватория имени Кека расположена на вершине гавайского спящего вулкана Мауна-Кеа, на высоте в 4201 м над уровнем моря, и состоит из двух телескопов-близнецов, каждый из которых весит 270 тонн. Зеркала имеют диаметр 10 метров (394 дюйма) и состоят из 36 шестиугольников, положение каждого из которых можно непосредственно регулировать при помощи компьютера. В 1999 году система адаптивной оптики была встроена в телескоп Кека П. Система состоит из маленького деформируемого зеркала, которое может менять форму 670 раз в секунду. При помощи этой системы уже удалось сделать снимки звезд, вращающихся вокруг черной дыры в центре нашей Галактики Млечный Путь, снимки поверхности Нептуна и Титана (луны Сатурна) и даже одной экстрасолнечной планеты, которая затмила свою материнскую звезду на расстоянии в 153 световых года от Земли. Свет звезды HD 209458 тускнел в точном соответствии с прогнозами по мере прохождения планеты перед материнской звездой. Соединение радиотелескоповКомпьютерная революция возродила также и радиотелескопы. В прошлом возможности радиотелескопов ограничивались размерами их тарелки. Чем больше была тарелка, тем большее количество радиосигналов из космоса можно было уловить и проанализировать. Однако чем больше тарелка, тем она дороже. Одним из способов решения этой проблемы является соединение нескольких тарелок для того, чтобы получить потенциал улавливания радиосигналов сверхмощного радиотелескопа. (Самым большим радиотелескопом, который можно собрать на Земле, стал бы радиотелескоп размером с саму Землю.) Предыдущие попытки связывания радиотелескопов в Германии, Италии и Соединенных Штатах удались только частично. Одна из проблем такого метода заключается в том, что сигналы, получаемые с различных радиотелескопов, необходимо четко скомбинировать и затем заложить в компьютер. В прошлом эта задача представлялась невыполнимой. Однако появление Интернета и дешевых высокоскоростных компьютеров позволило существенно снизить затраты. В настоящее время создание радиотелескопов с действительным размером порядка самой планеты Земля уже не является фантастикой. В Соединенных Штатах самым лучшим аппаратом, в котором применяется интерференционная технология, является сверхдальняя антенная решетка VLBA, которая представляет собой сеть из десяти радиоантенн, расположенных в различных точках: в штатах Нью-Мексико, Аризона, Нью-Гемпшир, Вашингтон, Техас, на Виргинских островах и на Гавайях. Каждая установка решетки VLBA снабжена огромной тарелкой диаметром ок. 25 метров, которая весит 240 тонн и расположена на высоте десятиэтажного здания. На каждой установке радиосигналы скрупулезно записываются на пленку и отправляются в Операционный центр в Сокорро (штат Нью-Мексико), где эти сигналы коррелируются и анализируются. Система была запущена в 1993 году, а стоимость ее составила 85 млн долларов. С помощью корреляции данных с этих десяти установок мы получаем эффективный гигантский телескоп, размеры которого достигают 8 тысяч километров в ширину и который позволяет получать точнейшие изображения на Земле. Для сравнения можно представить, что вы находитесь в Нью-Йорке и читаете газету, которая сейчас в Лос-Анджелесе. При помощи решетки VLBA уже удалось заснять космические струи и взрывы сверхновых, а также осуществить точнейшие из когда-либо сделанных измерения расстояний до объекта, находящегося за пределами Галактики Млечный Путь. В будущем даже в оптических телескопах можно будет использовать силу интерферометрии, хотя это представляется довольно сложным, учитывая короткую длину волны света. Существует проект, предполагающий сведение оптических данных с двух телескопов в Обсерватории имени Кека, что позволит создать гигантский телескоп намного большего размера, чем представляет собой каждый из них в отдельности. Измеряем одиннадцатое измерениеНаряду с поисками темного вещества и черных дыр одной из самых интригующих для физиков является загадка дополнительных высших измерений пространства и времени. Одна из наиболее смелых попыток подтверждения существования близлежащей вселенной была совершена в Университете Колорадо (город Боулдер) — Ученые этого университета попытались измерить отклонения от знаменитого закона обратных квадратов Ньютона. Согласно теории гравитации Ньютона, сила притяжения между любыми двумя телами уменьшается обратно пропорционально квадрату расстояния, разделяющего их. Если мы удвоим расстояние от Земли до Солнца, то сила гравитации снизится в два в квадрате, то есть в четыре раза. Этот результат, в свою очередь, указывает на количество измерений пространства. До сих пор закон гравитации Ньютона остается верным применительно к космическим расстояниям с большими галактическими скоплениями. Но еще никто не совершил адекватной проверки закона гравитации Ньютона для чрезвычайно малых расстояний — это представлялось чрезвычайно трудным. Поскольку гравитация — взаимодействие чрезвычайно слабое, даже малейшее возмущение может разрушить весь эксперимент. Даже проезжающие мимо машины создают достаточно сильные вибрации, чтобы загубить эксперименты, в ходе которых измеряется гравитационное взаимодействие между малыми объектами. Физики в Колорадо сконструировали чувствительный прибор под названием «высокочастотный резонатор», который был способен проверить закон гравитации на расстояниях до одной десятой миллиметра. Впервые такие испытания совершались при столь, малых расстояниях. Эксперимент проводился с использованием двух тончайших вольфрамовых пластинок, помещенных в вакуум. Одна из пластинок вибрировала с частотой 1000 циклов в секунду, несколько напоминая трамплин после прыжка. Затем физики начали поиски всех вибраций, передаваемых сквозь вакуум второй пластинке. Чувствительность аппарата была настолько велика, что он мог определить движение второй пластинки, вызванное одной миллионной ролей веса песчинки. Если и вправду существовало отклонение от закона Ньютона, то должно было быть зафиксировано едва уловимое движение второй пластинки. Однако проведя эксперимент при расстояниях до 108 миллионных долей метра, физики не обнаружили такого отклонения. «Пока Ньютон еще держит свои позиции», — сказал Д. Хойл из Университета Тренто в Италии, который проводил анализ данного эксперимента для журнала «Нэйчер» (Nature). Итак, полученный результат оказался отрицательным, но он лишь раздразнил аппетит других физиков, которые хотят проверить закон Ньютона на предмет отклонения при расстояниях микроскопического масштаба. ПроведениеещеодногоэкспериментапланируетсявУниверситете Пердью. Там физики хотят измерить крошечные отклонения от закона Ньютона не на миллиметровом уровне, а в масштабах атома. Они рассчитывают провести такой эксперимент, используя нанотехно-логию для измерения разницы между никелем-58 и никелем-64. Эти два изотопа обладают одинаковыми электрическими и химическими свойствами, но у одного изотопа на б нейтронов больше, чем у второго. В принципе, единственное, в чем различны эти изотопы, — это их вес. Ученые планируют создать устройство Казимира, состоящее из двух наборов пластинок с нейтральным зарядом, сделанных из этих двух изотопов. Обычно, когда эти пластинки располагают близко друг к другу, ничего не происходит, поскольку они не имеют заряда. Но если их расположить чрезвычайно близко друг к другу, то имеет место эффект Казимира: пластинки слегка притягиваются друг к другу; этот эффект был измерен в лаборатории. Но поскольку наборы параллельных пластинок сделаны из двух различных изотопов, они будут притягиваться друг к Другу с несколько различной силой. Для того чтобы максимально увеличить эффект Казимира, пластинки должны располагаться очень близко друг к Другу. (Этот эффект обратно пропорционален четвертой степени расстояния. Отсюда следует, что сила эффекта стремительно увеличивается при сближении пластинок.) Физики Университета Пердью воспользуются нанотехнологией для того, чтобы расстояние между пластинками было сравнимо с размерами атома. Ученые используют новейшие микроэлектромеханические торсионные генераторы для измерения крошечных колебаний пластинок. Тогда любое различие между пластинками из никеля-58 и никеля-64 можно приписать действию гравитации. Таким образом, ученые надеются измерить отклонения от законов механики Ньютона на уровне атомарных расстояний. Если при помощи этого гениального устройства им удастся обнаружить отклонения от знаменитого закона обратных квадратов, это может сигнализировать о присутствии вселенной, существующей в дополнительных, более высоких измерениях, которая находится на расстоянии атома от нашей вселенной. Большой адронный коллайдерИ все же устройством, которое окончательно решит многие из упомянутых вопросов, является Большой адронный коллайдер, строительство которого близится к завершению возле Женевы в Швейцарии в знаменитой ядерной лаборатории ЦЕРН (Европейской организации по ядерным исследованиям). В отличие от предыдущих экспериментов по обнаружению незнакомых форм вещества, в естественном виде существующего в мире, Большой адронный коллайдер, возможно, будет обладать достаточной энергией, чтобы создать эти формы вещества прямо в лаборатории. При помощи Большого адронного коллайдера можно будет исследовать малые расстояния до 10-19 м, что в 10000 раз меньше протона, а также создавать температуры, невиданные со времен Большого Взрыва. «Физики уверены, что у природы припасены новые фокусы, которые могут обнаружиться в ходе этих столкновений, — возможно, это будет экзотическая частица, известная под названием бозон Хигтса, возможно, доказательство такого чудесного явления, как супер симметрия, а возможно, обнаружится что-либо неожиданное и поставит с ног на голову всю физику», — пишет Крис Ллевеллин Смит, бывший генеральный директор ЦЕРН, а теперь президент Университетского колледжа в Лондоне. Уже сейчас оборудованием ЦЕРН пользуются около 7 тысяч специалистов, что составляет более половины всех физиков планеты, экспериментирующих с частицами. И многие из них будут самым непосредственным образом участвовать в экспериментах, проводимых при помощи Большого адронного коллайдера. Большой адронный коллайдер представляет собой мощную конструкцию в виде кольца диаметром 27 километров. Размеры этого кольца достаточно велики, чтобы окружить многие города мира. Туннель коллайдера настолько длинен, что он фактически пересе-кает границу между Францией и Швейцарией. Большой адронный коллайдер представляет собой настолько дорогостоящее устройство, что для его строительства потребовались совместные усилия нескольких европейских стран. После запуска коллайдера в 2007 году мощные магниты, расположенные вдоль всего кругового туннеля, заставят пучок протонов циркулировать со все возрастающими энергиями, до тех пор, пока они не приблизятся к 14 триллионам электронвольт. По мере прохождения частиц по кругу в туннель подается энергия, увеличивая скорость протонов. Когда пучок в конце концов попадает в цель, происходит колоссальный выброс излучения. Следы, образовавшиеся в результате этого столкновения, фотографируют при помощи группы детекторов с целью обнаружения новых экзотических субатомных частиц. Большой адронный коллайдер — это поистине гигантское устройство. В то время как детекторы LIGO и LISA бьют все рекорды в плане чувствительности, Большой адронный коллайдер уникален уже благодаря своей колоссальной мощности. Его мощные магниты, искривляющие пучок протонов в изящную дугу, генерируют поле в 8,3 теслы, которое в 160 000 раз сильнее магнитного поля Земли. Для создания такого чудовищного по силе поля физики пропускают ток силой в 12000 ампер по ряду витков, охлажденных до температуры в -271 С. при которой витки теряют сопротивление и становятся сверхпроводниками. В целом на Большом адронном коллайдере установлено 1232 магнита, каждый из которых имеет 15 метров в длину. Таким образом, магниты расположены вдоль 85 % всей окружности коллайдера. В туннеле протоны к моменту удара по цели ускоряются до скорости, равной 99,999999 % скорости света. Цели находятся в четырех местах по всей длине туннеля. Таким образом, каждую секунду происходят миллиарды столкновений. Там же расположены гигантские детекторы (каждый из которых размером с семиэтажный дом), задачей которых является анализ следов столкновения и обнаружение неуловимых субатомных частиц. Как было ранее замечено Смитом, в задачи Большого адронного коллайдера входит обнаружение неуловимого бозона Хиггса, представляющего собой последний элемент Стандартной модели, который до сих пор не удавалось обнаружить. Эта задача имеет большое значение, поскольку эта частица отвечает за спонтанное нарушение симметрии в теориях частиц и дает начало массам квантового мира. По предварительным оценкам, масса бозона Хиггса может быть 115–200 миллиардов электронвольт (для сравнения, масса протона около 1 миллиарда электронвольт). (Теватрон, устройство гораздо меньших размеров, размещенное в лаборатории Ферми на окраине Чикаго, станет, возможно, первым ускорителем, при помощи которого удастся заполучить неуловимый бозон Хиггса, при условии, что масса этой частицы не слишком велика. В принципе, Теватрон может произвести до 10 ООО бозонов Хиггса, если все будет идти, как запланировано. Однако энергия генерирования частиц Большого адронного коллайдера будет в семь раз больше. При 14 триллионах электронвольт Большой адронный коллайдер вполне сможет стать «фабрикой» бозонов Хиггса, миллионы которых будут создаваться при столкновениях протонов.) В задачи Большого адронного коллайдера входит также создание условий, невиданных со времен самого Большого Взрыва. В частности, физики полагают, что изначально Большой Взрыв состоял из хаотичного скопления чрезвычайно горячих кварков и глюонов, называемого кварк-глюонной плазмой. Большой адронный коллайдер сможет произвести такую кварк-глюонную плазму, которая преобладала во вселенной в первые десять микросекунд ее существования. В Большом адронном коллайдере можно будет столкнуть ядра свинца при энергии в 1,1 триллиона электронвольт. В ходе такого мощного столкновения могут «расплавиться» четыре сотни протонов и нейтронов, которые высвободят кварки в эту горячую плазму. Таким образом, космология постепенно сможет стать в меньшей степени наукой, основанной на астрономических наблюдениях, и точные эксперименты на кварк-глюонной плазме будут ставиться прямо в лабораториях. Можно надеяться, что при помощи Большого адронного коллайдера удастся обнаружить черные мини-дыры среди остатков, образовавшихся в результате столкновения протонов при фантастически высоких энергиях, как уже было упомянуто в главе 7. Обычно образование квантовых черных дыр должно происходить при энергии Планка, что в квадриллион раз превышает энергию Большого адронного коллайдера. Но если в миллиметре от нашей вселенной существует параллельная вселенная, то энергия, при которой возможно измерение квантовых гравитационных эффектов, снижается, благодаря чему создание черных мини-дыр оказывается в пределах возможностей Большого адронного коллайдера. И наконец, ученые возлагают надежды на то, что при помощи Большого адронного коллайдера удастся найти подтверждение супер симметрии, что стало бы историческим прорывом в физике частиц. Считается, что эти счастицы являются партнерами обычных частиц, которые мы можем наблюдать в природе. Хотя струнная Теория и суперсимметрия и предсказывают, что у каждой субатомной частицы есть «близнец» с отличающимся спином, суперсимметрия никогда не наблюдалась в природе, — вероятно, потому, что наши приборы не обладают достаточной мощностью для ее обнаружения. Подтверждение существования суперчастиц помогло бы дать ответ на два наболевших вопроса. Во-первых, верна ли струнная теория? Несмотря на то что обнаружить струны прямым путем чрезвычайно сложно, может оказаться возможным обнаружить нижние октавы или резонансы струнной теории. Если будут открыты счастицы, то это станет большим сдвигом в струнной теории, обеспечивая ее экспериментальное подтверждение (хотя все же это не будет прямым доказательством ее истинности). Во-вторых, это предоставило бы наиболее вероятного претендента на роль темного вещества. Если темное вещество состоит из субатомных частиц, то они должны обладать стабильностью и нейтральным зарядом (иначе они были бы видимы), а также между ними должно быть гравитационное взаимодействие. Все эти три качества являются характерными для частиц, которые предсказывает струнная теория. Когда будет запущен Большой адронный коллайдер, он станет самым мощным ускорителем частиц. И все же для большинства физиков это не предел мечтаний. В 1980-е годы президент Рональд Рейган одобрил проект постройки Сверхпроводящего суперколлайдера (SSC), гигантской конструкции, достигающей 80 км в окружности. Строительство этого ускорителя частиц планировалось произвести возле Далласа (штат Техас). По сравнению с Суперколлайдером Большой адронный коллайдер показался бы просто крошкой. В то время как Большой адронный коллайдер позволяет сталкивать частицы с энергией в 14 триллионов электронвольт, по проекту Суперколлайдер должен обеспечить столкновения частиц с энергией в 40 триллионов электронвольт. Первоначально проект получил одобрение, но в последние дни слушаний Конгресс Соединенных Штатов внезапно отклонил его. Это стало тяжелым ударом по физике высоких энергий и задержало развитие этой области на целое поколение. Поначалу предметом спора являлись стоимость проекта, составляющая 11 миллиардов долларов, и научные приоритеты. Мнения представителей научного сообщества по поводу Сверхпроводящего суперколлайдера разделились: некоторые физики заявляли, что проект выкачает средства, которые могли бы пойти на их собственные исследования. Спор разгорелся настолько, что даже «Нью-Йорк тайме» опубликовала критическую редакционную статью, где говорилось об опасностях «большой науки», которая может задушить «малую науку». (Эти аргументы беспочвенны, поскольку средства на строительство Сверхпроводящего суперколлайдера должны были поступать из других источников, а не из бюджета «малой науки». Реальным соперником проекта была космическая станция, которая многими учеными рассматривалась поистине как пустая трата денег.) Но оглядываясь назад, можно сказать, что суть спора сводилась к умению говорить с широкой общественностью на доступном языке. В некотором смысле, мир физики привык к тому, что строительство чудовищных ускорителей частиц получало одобрение со стороны Конгресса, поскольку русские строили свои ускорители. В сущности, русские строили свой ускоритель УНК (Ускорительно-накопительное кольцо. — Прим. перге.), соревнуясь со Сверхпроводящим суперколлайдером. На карту были поставлены честь и престиж нации. Но Советский Союз развалился,[9] строительство было остановлено, и шостепенно ветер перестал надувать паруса программы постройки Сверхпроводящего суперколлайдера. Настольные ускорители частицС появлением Большого адронного коллайдера физики постепенно приближаются к верхнему пределу энергии, которую можно получить при помощи современного поколения ускорителей частиц. Стоимость этих ускорителей исчисляется в десятках миллиардов долларов, а по размеру они превосходят многие большие современные города. Они настолько грандиозны, что их строительство возможно лишь при совместной деятельности нескольких государств. Если мы хотим преодолеть барьер, ограничивающий возможности традиционных ускорителей, то нам необходимы принципиально новые идеи и подходы. Святой Грааль для физиков, занимающихся частицами, — это создание «настольного» ускорителя частиц, который сможет создать пучки с энергией в миллиарды электронвольт, существенно экономя на размерах и стоимости по сравнению с традиционными ускорителями, Чтобы понять, в чем заключается проблема, представьте себе эстафету, участники которой расставлены по кругу вдоль длинной беговой дорожки. Соревнуясь в беге, участники передают друг другу палочку. Теперь представьте, что каждый раз, когда палочка переходит от одного бегуна к другому, участникам сообщается дополнительная энергия, то есть они начинают бежать все быстрее и быстрее. Нечто похожее наблюдается в ускорителе частиц, где роль палочки выполняет пучок субатомных частиц, которые двигаются по кругу. Каждый раз, когда пучок переходит от одного участника к другому, в пучок инжектируется высокочастотная энергия, все больше и больше разгоняя его. По такому принципу строились ускорители частиц на протяжении последних пятидесяти лет. Проблема традиционных ускорителей частиц состоит в том, что мы подходим к пределу высокочастотной энергии, которую можно использовать для приведения ускорителя частиц в действие. Для решения этой досадной проблемы ученые экспериментируют с кардинально новыми способами закачки энергии в пучок, например использованием мощныхлазерныхлучей, мощность которых экспоненциально растет. Одним из преимуществ лазерного света является его «когерентность», то есть все световые волны вибрируют точно в унисон, благодаря чему возможно создание невероятно мощных лучей. Сегодня лазерные лучи могут генерировать мощный энергетический импульс в триллионы ватт (тераватты) мощности за короткий промежуток времени. (Для сравнения, атомная электростанция способна генерировать какой-то несчастный миллиард ватт мощности, но она стабильна). В настоящее время становится возможным использование лазеров, которые могут генерировать до тысячи триллионов ватт (квадриллион ватт, или петаватт). Лазерные ускорители частиц работают по следующему принципу. Лазерный свет достаточно горяч, чтобы создать газ из плазмы (скопления ионизированных атомов), который затем движется с волнообразными колебаниями на высоких скоростях, подобно приливной волне. Затем пучок субатомных частиц ловит эту попутную волну плазмы. При инжектировании большего количества лазерной энергии движение волны плазмы ускоряется, сообщая дополнительную энергию пучку частиц на этой волне. Недавно ученым из Лаборатории Резерфорда-Эпплтона в Англии удалось, направив лазер в 50 тераватт в твердую цель, произвести пучок протонов, несущий до 400 миллионов электронвольт (МэВ) энергии в колли-мированном пучке. Физики из Парижской политехнической школы разогнали электроны до 200 МэВ на расстоянии в один миллиметр. Созданные на данный момент лазерные ускорители частиц отличаются малыми размерами и небольшой мощностью. Но представим на секунду, что масштабы такого ускорителя частиц можно увеличить таким образом, чтобы он работал на расстоянии не миллиметра, а целого метра. Тогда он мог бы разогнать электроны до 200 ГэВ на расстоянии одного метра; тем самым была бы достигнута цель создания настольного ускорителя частиц. Еще одним важным этапом стало ускорение электронов на расстоянии 1,4 метра физиками из Стэнфордского центра линейного ускорителя (SLAC) в 2001 году. Вместо лазерного луча они создали плазменную волну путем инжектирования пучка заряженных частиц. Хотя полученная ими энергия была достаточно низкой, этот опыт продемонстрировал, что плазменные волны могут ускорять частицы на расстоянии метра. Темпы исследований в этой перспективной области очень высоки: энергия, достигаемая при помощи этих ускорителей, возрастает в 10 раз каждые пять лет. При таком развитии событий уже не за горами создание прототипа настольного ускорителя частиц. Если это предприятие окажется успешным, то Большой адронный коллайдер будет смотреться как последний динозавр. Какой бы перспективной ни казалась эта затея, на пути ее реализации стоит множество преград. Подобно серфингисту, которому сложно не упасть, катаясь на предательской волне, очень сложно поддержать пучок так, чтобы он должным образом «ехал» на плазменной волне (в число проблем входит фокусировка пучка и поддержание его стабильности и интенсивности). Однако ни одна из этих проблем не представляется непреодолимой. БудущееЕсть несколько задумок для доказательства струнной теории. Эдвард Виттен выражает надежду на то, что в момент Большого Взрыва вселенная расширялась столь стремительно, что, возможно, вместе с ней растянулась и струна, в результате чего в космосе образовалась струна астрономических размеров. Он размышляет: «Несмотря на то что это звучит несколько нереально, это мой любимый сценарий доказательства струнной теории, поскольку ничто не решит вопрос настолько радикально, как наблюдение струны в телескоп». Брайан Грин перечисляет пять вероятных примеров экспериментальных данных, которые могли бы подтвердить струнную теорию или, по крайней мере, придать ей правдоподобие: 1. Крошечная масса неуловимого призрачного нейтралино может быть определена экспериментальным путем, и струнная теория могла бы объяснить ее. 2. Могут быть обнаружены незначительные нарушения Стандартной модели, которые противоречат физике точечных частиц, — такие, как распад определенных субатомных частиц. 3. Экспериментальным путем могут быть обнаружены новые силы дальнего действия (помимо гравитации и электромагнетизма), которые будут сигналом в пользу выбора определенного многообразия Калаби-Яу. 4. В лаборатории могут быть обнаружены частицы темного вещества. Их можно будет сопоставить с прогнозами струнной теории. 5. Струнная теория могла бы вычислить количество темного вещества во вселенной. Моя собственная точка зрения состоит в том, что верификация струнной теории может осуществиться скорее благодаря чистейшей математике, нежели экспериментальным путем. Поскольку предполагается, что струнная теория — это теория всего, она должна быть также теорией повседневных энергий, равно как и космических. Таким образом, если мы в конце концов найдем решение этой теории, то, вероятно, сможем вычислить свойства обычных объектов, а не только экзотических, которые обнаруживаются в открытом космосе. Для примера, если струнная теория сможет вычислить массы протона, нейтрона и электрона исходя из первых принципов! то это стало бы достижением первой величины. Во всех физических моделях (за исключением струнной теории) массы этих известных частиц подставляются вручную. В некотором смысле, нам не нужен Большой адронный коллайдер для подтверждения этой теории, поскольку мы уже знаем массы огромного количества субатомных частиц, и все они должны быть определены струнной теорией без всяких настраиваемых параметров. Как сказал Эйнштейн: «Я убежден, что посредством чисто математических построений мы можем определить концепции и законы… которые дадут нам ключ к пониманию естественных явлений. Опыт может подсказать нам нужные математические концепции, но они не могут быть выведены из него… Таким образом, в некотором смысле, я верю в то, что чистая мысль может охватить реальность, о чем мечтали древние». Если М-теория (или любая другая теория, которая в конечном счете приведет нас к квантовой теории гравитации) окажется верной, то она сделает возможным последнее путешествие для всей разумной жизни во вселенной, побег из нашей умирающей вселенной в новый дом через триллионы и триллионы лет. Примечания:6 Когда физики пытаются найти решение сложной теории, они часто используют «теорию возмущений», пытаясь сначала найти решение для более простой теории, а затем проанализировать небольшие отклонения от нее. Эти небольшие отклонения в свою очередь дают нам бесконечное множество небольших поправочных коэффициентов к оригинальной идеализированной теории. Каждая такая поправка обычно называется диаграммой Фейнмана и может быть графически описана при помощи диаграмм, представляющих все возможные варианты столкновения частиц друг с другом. 7 В конце 1960-х, когда физики впервые занялись поисками симметрии, которая включала бы в себя все природные частицы, гравитацию в эти поиски преднамеренно не включили. Объясняется это тем, что существует два типа симметрии. Одни относятся к физике частиц — они позволяют менять частицы местами между собой. Но существует также и другой тип симметрии, который превращает пространство во время, и эти пространственно-временные симметрии связываются с гравитацией. Теория гравитации основана не на симметриях меняющихся местами точечных частиц, а на симметриях вращений в четырех измерениях: группа Лоренца в четырех измерениях 0(3,1). 8 Космическое фоновое излучение, измеренное спуником WMAP, датируется в 379 ООО лет после Большого Взрыва, поскольку именно тогда атомы начали конденсироваться впервые после первоначального взрыва. Однако гравитационные волны, которые могла бы уловить LISA, могут восходить к тому времени, когда гравитация начала отщепляться от остальных взаимодействий, что произошло незадолго после Большого Взрыва. Отсюда следует, что некоторые физики считают, что LISA сможет подтвердить или опровергнуть многие из теорий, предлагаемых сегодня, в том числе и струнную теорию. 9 В последние дни слушаний по поводу дальнейшей судьбы Сверхпроводящего суперколлайдера один из конгрессменов задал вопрос: «Что мы обнаружим с помощью этого устройства?» К несчастью, в ответ прозвучал бозон Хиггса. Практически можно было слышать, как челюсти ударились об пол: 11 миллиардов всего лишь за еще одну частицу? Один из последних вопросов задал конгрессмен Хэррис У Фоэлл (Иллинойс), который спросил: «Поможет ли нам это [устройство] обнаружить Бога?» Конгрессмен Дон Риттер (Пенсильвания) добавил: «Если это устройство поможет, то я поддержу этот проект». К сожалению, физики не дали конгрессменам четкого и убедительного ответа. |
|
||