• ГЛАВА I Детские фотографии Вселенной
  • ГЛАВА 2 Парадоксальная вселенная
  • ГЛАВА 3 Большой Взрыв
  • ГЛАВА 4 Расширение и параллельные вселенные
  • ЧАСТЬ 1

    Вселенная

    ГЛАВА I

    Детские фотографии Вселенной

    Поэт лишь желает подняться головой к небесам. Логик же пытается затолкать небеса к себе в голову. Его-то голова и раскалывается.

    Г.К. Честертон

    В детстве я испытывал внутренний дискомфорт, связанный с тем, что я и мои родители исповедовали разные религии. Родители были воспитаны в буддийских традициях. Я же каждую неделю ходил в воскресную школу, где с увлечением слушал библейские сказания о китах, ковчегах, соляных столпах, ребрах и яблоках. Я был очарован этими притчами Ветхого Завета, в воскресной школе мне нравились именно они. Эти притчи о великих потопах, пылающих кустах и расступающихся пучинах увлекали меня гораздо сильнее буддийских песнопений и медитаций. По сути, эти древние сказания о героизме и вселенской трагедии ярко иллюстрировали глубокие моральные принципы; уроки этики, вынесенные из них, остались со мной на всю жизнь.

    Тогда мы как раз изучали Книгу Бытия. Читать о Боге, громогласно вещающем с небес «Да будет Свет!», было намного интереснее, чем безмолвно медитировать, погрузившись в размышления о грядущей Нирване. Из наивного любопытства я спросил нашу учительницу: «А была ли у Бога мать?» Обычно она отвечала на вопросы без малейшей запинки, у нее всегда имелась под рукой притча с глубокой моралью. Однако на этот раз оказалось, что я захватил ее врасплох.

    — Нет, — ответила она с ноткой сомнения. — Наверное, у Бога не было матери.

    — Но тогда откуда же взялся сам Бог? — спросил я.

    Она смущенно пробормотала, что проконсультируется по этому вопросу со священником.

    Мне и невдомек было, что я случайно коснулся одного из труднейших вопросов теологии. Я был озадачен, потому что в буддизме Бога-Творца просто не существует, есть лишь вечная Вселенная без начала и без конца. Какое-то время спустя, начав изучать великие мифологии мира, я узнал о существовании двух космологических концепций. Первая основывалась на представлении о том, что Бог создал Вселенную за одно мгновение, вторая же утверждала, что Вселенная была и пребудет вечно.

    «Не может же и то, и другое быть верным», — думал я.

    Позднее я обнаружил, что сходные мотивы пронизывают предания и в других культурах. Например, в китайской мифологии вначале было космическое яйцо. Бог-ребенок Пань-гу чуть ли не целую вечность находился внутри яйца, которое покачивалось на волнах безграничного моря Хаоса. Когда же наконец Пань-гу вылупился из яйца, он стал стремительно расти, прибавляя в росте более трех метров в день, так что верхняя половинка яичной скорлупы стала небесным сводом, нижняя же — земной твердью. Через 18 тысяч лет Пань-гу умер, дав начало нашему миру: кровь его стала реками, глаза — Солнцем и Луной, а голос — громом.

    В мифе о Пань-гу повторяется идея, встречающаяся во многих других религиях и древних мифологиях, — о том, что Вселенная начала свое существование creatio ex nihilo (будучи сотворенной из ничего). В греческой мифологии Вселенная возникла из Хаоса (в сущности, само слово «хаос» происходит от греческого слова, означающего «бездна»). Эта пустота, лишенная каких-либо четких черт, часто представляется как некий Океан, например в вавилонской и японской мифологиях. Тот же мотив прослеживается в древнеегипетской мифологии, где бог солнца Ра появляется из яйца, покачивающегося на волнах Океана. В полинезийских мифах вместо космического яйца фигурирует скорлупа кокоса. В верованиях майя эта история подавалась в варианте, где Вселенная однажды возникла, но через каждые пять тысяч лет она умирает, чтобы возрождаться вновь и вновь, повторяя бесконечный цикл рождений и разрушений.

    Эти мифы creatio ex nihilo представляют собой ярко выраженный контраст с космологией буддизма и некоторых форм индуизма. В мифологиях этих религий Вселенная вечна, она не имеет ни начала, ни конца. Есть различные уровни существования, высшим из которых является Нирвана, уровень вечный, достичь которого можно лишь при помощи медитации. В индуистской Махапуране написано: «Если Бог создал мир, то где же Он был до Создания?… Знайте, что мир не был создан, равно как не было создано время, они не имеют ни начала, ни конца».

    Эти мифологии противоречат друг другу, не находя компромисса. Они взаимоисключающи: либо у Вселенной было начало, либо его не было. Очевидно, что здесь отсутствует возможная точка соприкосновения.

    Однако сегодня, кажется, зарождается некое разрешение этого спора, приходящее из совершенно нового мира — мира науки. Его предлагают последние поколения мощных научных приборов и аппаратов, способных летать в открытом Космосе. Объясняя происхождение мира, древняя мифология основывалась лишь на мудрости рассказчика. Сегодня ученые, активно используя космические спутники, лазеры, детекторы гравитационных волн, интерферометры, высокоскоростные суперкомпьютеры, а также Интернет, совершили мощный прорыв в науке. Тем самым они революционизировали наше понимание Вселенной и представили нам самую убедительную из когда-либо существовавших точку зрения на ее возникновение.

    Таким образом, на основе полученных новых данных постепенно происходит великий синтез двух противостоящих мифологий. Возможно, предполагают ученые, мир рождается многократно в вечном Океане Нирваны. В свете нынешних представлений нашу Вселенную можно сравнить с пузырьком воздуха, свободно плавающим во вселенском «океане», где постоянно образуются новые пузырьки. Согласно этой теории, вселенные образуются непрерывно, словно пузырьки при кипении воды, и разлетаются по бесконечному пространству, гиперкосмической нирване, обладающей одиннадцатью измерениями. Все больше физиков полагает, что наша Вселенная действительно появилась в результате огненного катаклизма, Большого Взрыва, сосуществуя в вечном Океане с другими вселенными. Если это так, то Большие Взрывы происходят даже сейчас, когда вы читаете это предложение.

    Физики и астрономы во всем мире строят гипотезы о том, как могут выглядеть эти параллельные миры, какие законы в них действуют, откуда они произошли и как в конце концов погибнут. Возможно, параллельные миры пустынны и не содержат неких жизненно важных компонентов. А возможно, они практически не отличаются от нашей Вселенной и отделены от нее всего одним существенным событием снизошедшим или не произошедшим), которое и стало причиной их различия. По предположениям некоторых физиков, если когда-нибудь жизнь в существующей ныне Вселенной станет невозможной из-за ее старения и остывания, может так случиться, что нам придется ее покинуть и искать прибежища в другой вселенной.

    Основанием для этих новых теорий служит огромный приток данных с космических спутников, по мере того как они фотографируют останки самого творения. Примечательно, что ученые сейчас сосредоточиваются на том, что произошло всего лишь через 380 ООО лет после Большого Взрыва, когда «зарево» создания впервые полностью осветило Вселенную. Возможно, наиболее подробная картина творения была получена с помощью нового аппарата, который называется WMAP — зонд микроволновой анизотропии Уилкинсона.

    Зонд микроволновой анизотропии Уилкинсона

    «Невероятно!», «Новая веха!» — так восклицали в феврале 2003 года обычно сдержанные астрофизики, описывая драгоценные данные, полученные с последнего спутника. Зонд микроволновой анизотропии Уилкинсона (спутник WMAP), названный в честь крупнейшего астрофизика Дэвида Уилкинсона и запущенный в 2001 году, представил ученым беспрецедентно точную и детальную картину ранней Вселенной, возраст которой не превышал 380 000 лет. Колоссальная энергия, которая вырвалась из первоначального огненного облака, давшего начало звездам и галактикам, продолжает циркулировать в нашей Вселенной уже миллиарды лет. И вот ее засняли на пленку в мельчайших деталях с помощью микроволнового анизотропного зонда Уилкинсона. Эта съемка принесла нам невиданную доселе карту поразительно четкую фотографию неба, на которой можно увидеть микроволновое излучение — результат того самого Большого Взрыва. Журнал «Times» назвал это излучение «эхом творения». И теперь астрономы всегда будут видеть небо в новом свете.

    Джон Бакал из Принстонского института передовых исследований назвал открытия спутника WMAP своеобразным «ритуалом, сопровождающим переход космологии от предположений к точной науке». Впервые данные о раннем периоде истории Вселенной позволили космологам точно ответить на древнейший из когда-либо заданных вопросов — на вопрос, который озадачивал и интриговал человечество с тех самых пор, как мы впервые подняли глаза и увидели неземную красоту ночного неба. Каков возраст Вселенной? Каковы ее параметры? Какая судьба ее ждет?

    В 1992 году предыдущий спутник, СОВЕ (космический аппарат для изучения реликтового излучения), предоставил в наше распоряжение первые размытые снимки реликтового излучения, пронизывающего небеса. Полученные беспрецедентные результаты вызвали и определенное разочарование, поскольку представленная картина ранней Вселенной была несфокусированной. Это не помешало прессе возбужденно окрестить фотографию излучения «ликом Божиим». Но правильнее было бы сказать, что размытые снимки со спутника СОВЕ представляли «младенческую фотографию» Вселенной. Если посчитать сегодняшнюю Вселенную восьмидесятилетним старцем, то снимки, сделанные спутником СОВЕ (а позднее — зондом микроволновой анизотропии Уилкинсона), фиксируют ее «новорожденной», когда ей и дня еще не исполнилось.

    Почему же зонд Уилкинсона смог предоставить нам беспрецедентные снимки зарождающейся Вселенной? Да потому, что ночное небо подобно машине времени. Поскольку свет распространяется с конечной скоростью, мы видим звезды в небе такими, какими они были когда-то, а не такими, каковы они сейчас. Расстояние от Луны до Земли свет проходит не мгновенно — ему для этого требуется секунда с небольшим; поэтому, когда мы смотрим на Луну, в действительности мы видим ее такой, какой она была секунду назад — На расстояние от Солнца до Земли световой луч затрачивает около восьми секунд. Многие из известных нам звезд настолько далеки от нас, что их световому лучу требуется от десяти до ста лет, чтобы достичь пределов нашей видимости. (Иными словами, они находятся на расстоянии от десяти до ста световых лет от Земли. Световой год чуть меньше десяти триллионов километров — именно такое расстояние свет проходит за год.) Световые лучи из отдаленных галактик достигают Земли за сотни миллионов, а то и миллиарды световых лет. Таким образом, они являются источниками «ископаемого» света, при этом некоторые из них испустили его еще до появления динозавров. Среди самых отдаленных объектов, которые мы можем наблюдать с помощью телескопов, есть так называемые квазары, гигантские «космические маяки», генерирующие невероятные количества энергии на окраинах видимой Вселенной. Они находятся на расстоянии 12–13 млрд световых лет от Земли. И вот сегодня зонд Уилкинсона зафиксировал еще более древнее излучение, «зарево» первоначального Взрыва, в результате которого возникла наша Вселенная.

    Иногда космологи для описания Вселенной используют для иллюстрации Эмпайр Стейт Билдинг, возносящийся над Манхэттеном более чем на сто этажей. С крыши небоскреба тротуары можно различить с большим трудом. Условимся, что основание небоскреба представляет собой зону Большого Взрыва. Тогда, если считать, что мы смотрим с крыши, отдаленные галактики будут находиться на десятом этаже. Квазары, которые еще можно рассмотреть с Земли в телескопы, будут на уровне седьмого этажа. А реликтовое космическое излучение, измеренное зондом Уилкинсона, поднято над уровнем тротуара на высоту всего лишь около полутора сантиметров. Таким образом, зонд Уилкинсона предоставил нам возможность вычислить возраст Вселенной поразительно точно — с погрешностью всего лишь в 1 %: 13,7 млрд лет.

    Запуск зонда Уилкинсона стал результатом более чем десятилетней напряженной работы астрофизиков. Концепция спутника с зондом Уилкинсона на борту была впервые предложена НАСА в 1995 году и одобрена через два года. 30 июня 2001 года сотрудники НАСА разместили зонд Уилкинсона на борту ракеты «Дельта II» и вывели ракету на орбиту между Солнцем и Землей. Тщательно рассчитанным пунктом назначения стала вторая точка Лагранжа (или Л2, одна из точек гравитационного равновесия между Землей, Луной и Солнцем), которая обеспечивает наилучший обзор. В поле обзора спутника не попадают ни Солнце, ни Земля, ни Луна, благодаря чему зонд Уилкинсона всегда транслирует четкую картину Вселенной. Спутник полностью сканирует небо с периодичностью в шесть месяцев.

    Спутник оснащен самой современной аппаратурой. С помощью встроенных мощных сенсоров он может уловить слабое микроволновое излучение, оставшееся после Большого Взрыва. Это излучение омывает всю Вселенную, но наша атмосфера его в значительной мере поглощает. Спутник сделан из алюминиевого сплава. Его размеры — 3,8 х 5 м, вес — 840 кг. Спутник снабжен двумя телескопами, которые фокусируют микроволновое излучение из окружающего неба, а затем полученные данные передаются на Землю. Для работы спутнику необходима мощность всего лишь в 419 ватт (что равняется мощности четырех-пяти стандартных электрических лампочек). Зонд Уилкинсона располагается на расстоянии 1,5 млн км от Земли, оставляя далеко за собой все атмосферные колебания, которые скрывают слабое микроволновое излучение. Именно благодаря такому расположению спутник может непрерывно сканировать небо.

    Свое первое сканирование неба спутник завершил в апреле 2002 года. Через полгода было завершено и второе полное сканирование. На сегодняшний день зонд Уилкинсона предоставил нам наиболее полную и точную из всех когда-либо существовавших карту микроволнового излучения. Существование реликтового микроволнового излучения, обнаруженного и зафиксированного зондом Уилкинсона, впервые предсказал Георгий (Джордж) Гамов со своими сотрудниками в 1 948 году; они также обращали внимание на то, что это излучение должно иметь собственную температуру. Зонд Уилкинсона измерил эту температуру, зафиксировав ее на уровне чуть выше абсолютного нуля, между 2,7249° и 2,725 Г по шкале Кельвина.

    Невооруженному глазу карта неба, отсканированная зондом Уилкинсона, не покажется интересной: мы увидим лишь беспорядочное скопление точек. Однако некоторые астрономы чуть не рыдали над этим скоплением точек, поскольку они представляют из себя флуктуации, или неравномерности, первоначального огненного катаклизма — Большого Взрыва — сразу после возникновения Вселенной. Эти крошечные флуктуации подобны «семенам», которые буйно разрослись, когда распустился «бутон» Вселенной.

    Сегодня из этих крошечных семян «расцвели пышным цветом» галактические скопления и галактики, сверкающие на небесах. Иными словами, наша Галактика Млечный Путь и все скопления галактик вокруг были когда-то этими крошечными флуктуациями. Измерив распределение этих флуктуации, мы поймем происхождение галактических скоплений из этих точек, вытканных на гобелене ночного неба.

    Эта фотография, сделанная спутником WMAIJ представляет «Вселенную в детстве», то есть такую, какой она была всего лишь через 380 ООО лет после своего возникновения. Каждая точка весьма правдоподобно представляет крошечную квантовую флуктуацию, неравномерность взареве творения. Все они в результате расширения превратились в галактики и галактические скопления, которые мы наблюдаем сегодня.


    Сегодня ученые в выдвижении новых теорий не поспевают за потопом поступающих астрономических данных. В общем, я бы не согласился с тем, что наступает золотой век космологии. (Как ни впечатляет зонд Уилкинсона, достижения его покажутся не такими уж значительными по сравнению со спутником «Планк», который европейцы собираются запустить в 2007 году. «Планк», как надеются астрономы, даст нам еще более точные картины микроволнового реликтового излучения.) Однако мы вполне можем сказать, что космология наконец вступает в период зрелости. После многолетнего прозябания в болоте предположений и фантастических гипотез она выходит из тени точных наук. Исторически так сложилось, что космологи пользовались несколько подмоченной репутацией. Ошеломляющая страстность, с которой они излагали свои грандиозные теории о возникновении Вселенной, была сравнима со столь же ошеломляющей бедностью их данных. Недаром нобелевский лауреат Лев Ландау саркастически отмечал, что «космологи часто ужасаются, но никогда не сомневаются». Среди ученых-естественников популярна старая поговорка: «Есть предположения, дальше идут предположения о предположениях, а еще дальше — космология».

    В бытность мою студентом-физиком в Гарварде в конце 1960-х годов я некоторое время лелеял мысль заняться космологией — меня с детства волновал вопрос о происхождении Вселенной. Однако знакомство с этой наукой показало ее постыдную примитивность. Это была вовсе не та экспериментальная наука, где можно проверять гипотезы при помощи точных приборов, а скорее груда неопределенных и в высшей степени недоказательных теорий. Космологи вели жаркие дискуссии о том, возникла ли Вселенная в результате космического взрыва или же она всегда пребывала в устойчивом состоянии. Но теорий у них всегда было намного больше, чем данных. Так оно всегда: чем меньше данных, тем жарче споры.

    На протяжении всей истории космологии эта нехватка достоверных данных приводила к жестоким войнам между астрономами, затягивавшимся иногда на десятилетия. (В частности, на некоем научном форуме непосредственно перед тем, как Аллан Сэндидж из обсерватории Маунт Уилсон должен был выступить с докладом о возрасте Вселенной, предыдущий оратор объявил с сарказмом: «Все, что вы сейчас услышите, — вранье». А сам Сэндидж, прослышав о том, что группа ученых-соперников добилась определенного успеха, прорычал: «Это все полная чушь. Война так война!»)

    Возраст Вселенной

    Особенно интересовал астрономов вопрос, каков же истинный возраст Вселенной. На протяжении столетий ученые, философы и теологи пытались определить его хотя бы приблизительно, пользуясь единственным доступным им методом — генеалогией человечества со времен Адама и Евы. В прошлом веке геологи использовали реликтовое излучение, которое наблюдается в скалах, для получения наиболее точных данных о возрасте Земли. В свою очередь, зонд микроволновой анизотропии Уилкинсона измерил сегодня эхо самого Большого Взрыва, дав нам наиболее надежные данные о возрасте Вселенной. Данные зонда Уилкинсона показывают, что Вселенная возникла в результате Взрыва, который произошел 13,7 млрд лет тому назад.

    (В течение многих лет одним из наиболее скользких моментов, неотступно преследующим космологию, было то, что вычисленный возраст Вселенной часто оказывался меньше возраста отдельных планет и звезд. Причиной тому были ошибки в исходных данных. Предыдущие расчеты возраста Вселенной давали ей от 1 до 2 млрд лет, что противоречило принятому возрасту Земли (4–5 млрд лет) и «старейших» звезд (12 млрд лет). Теперь эти противоречия устранены.)

    Данные зонда Уилкинсона стали причиной крутого поворота в споре о том, из чего состоит Вселенная, в вопросе, которым задавались еще греки более двух тысячелетий тому назад. На протяжении всего XX века считалось, что ответ на этот вопрос известен. Проведя тысячи скрупулезных экспериментов, ученые пришли к выводу, что Вселенная в основном состоит примерно из сотни различных элементов, выстроенных в аккуратную периодическую таблицу, начинающуюся с водорода. Эта таблица — основа современной химии, и, фактически, ее изучают в каждой средней школе. Зонд Уилкинсона разрушил эти представления.

    Подтверждая ранее проведенные эксперименты, зонд Уилкинсона показал, что вся видимая материя вокруг нас (включая горы, планеты, звезды и галактики) составляет ничтожную часть (4 %) всей материи и энергии во Вселенной. (Большую часть этих 4 % составляют водород и гелий, и только где-то около 0,03 % — тяжелые элементы.) Но подавляющая часть Вселенной состоит из загадочного невидимого вещества абсолютно неизвестного происхождения. Известные элементы, из которых состоит наш мир, составляют во Вселенной лишь 0,03 %. В каком-то смысле наука отброшена на века назад, во времена, когда еще не было атомической гипотезы, поскольку физики споткнулись на факте, что во Вселенной преобладают принципиально новые, неизвестные науке формы материи и энергии.

    Согласно данным зонда Уилкинсона, Вселенная на 23 % состоит из неизвестной, неопределенной субстанции, так называемой «темной материи». Она обладает весом и окружает галактики гигантским ореолом, который нам невидим. «Темная материя» настолько вездесуща и ее так много, что в нашей Галактике Млечный Путь она весит в 10 раз больше, чем все звезды вместе взятые. Несмотря на невидимость этой неизвестной материи, ученые, используя метод непрямого наблюдения, смогли ее «увидеть»: «темная материя» искривляет звездный свет подобно стеклу, и поэтому ее можно обнаружить по степени создаваемого оптического искажения.

    По поводу удивительных результатов, полученных со спутника WMAP, астроном из Принстона Джон Бакал заявил: «Мы живем в невероятной, просто сумасшедшей Вселенной, но теперь нам известны ее определяющие характеристики».

    Однако, наверное, самым большим сюрпризом из данных, полученных спутником WMAP и потрясших все научное сообщество, стал факт, что 73 % Вселенной, ее большая часть, состоит из абсолютно неизвестной формы энергии, называемой «темной энергией», или невидимой энергией, таящейся в вакуумном пространстве. Введенное самим Эйнштейном в 1917 году, а затем отброшенное (великий физик назвал его своей «величайшей ошибкой») понятие «темная энергия», она же энергия пустоты, пустого космоса, теперь снова выходит на авансцену как движущая сила Вселенной. Ученые считают, что «темная энергия» создает антигравитационное поле, которое тянет галактики в разные стороны, и конечная судьба Вселенной будет определяться именно «темной энергией».

    На данный момент никто и представить не может, откуда взялась эта «энергия пустоты».

    «Откровенно говоря, мы этого просто не понимаем. Нам известно ее воздействие, но у нас нет ключа к разгадке… ни у кого нет ни единого ключа», — признает Крейг Хоган, астроном из Университета им. Дж. Вашингтона в Сиэтле.

    Если взять новейшую теорию субатомных частиц и попытаться вычислить значение этой «темной энергии», мы получим число, которое отклоняется от нормы на 10120 (это единица, за которой следуют 120 нулей). Такое расхождение между теорией и экспериментом — величайший за всю историю пробел в науке. Это одно из наших непреодолимых (по крайней мере, в настоящее время) препятствий — даже с помощью лучшей из наших теорий мы не можем вычислить значение величайшего источника энергии во всей Вселенной. Безусловно, целая куча Нобелевских премий ожидает предприимчивых ученых, которые смогут раскрыть тайны «темной энергии» и «темной материи».

    Расширение

    Астрономы до сих пор пытаются справиться с лавиной данных, принесенных спутником WMAP. По мере того как эта лавина сметает устаревшие концепции Вселенной, в космологии вырисовывается новая картинка.

    «Мы заложили фундамент единой, непротиворечивой теории космоса», — заявляет Чарльз Л. Беннетт, руководитель международной команды, принимавшей участие в обработке и анализе данных со спутника WMAP.

    На данный момент ведущей теорией является «инфляционная теория Вселенной», то есть усовершенствованная теория Большого Взрыва, впервые предложенная Аланом Гутом[1] из Массачусетского технологического института. По инфляционной теории, в первую триллионную долю секунды загадочная антигравитационная сила вынудила Вселенную расширяться намного быстрее, чем считалось раньше. Инфляционный период был невообразимо взрывным, при этом Вселенная расширялась со скоростью, намного превышающей скорость света. (Это не противоречит заявлению Эйнштейна, что «ничто» может перемещаться быстрее света,[2] поскольку расширяется пустое пространство. Что же касается материальных объектов, то они не могут перескочить световой барьер.) Итак, за ничтожную долю секунды Вселенная невообразимо расширилась — в 1080 раз.

    Чтобы вообразить себе интенсивность инфляционного периода (или инфляционной эпохи), представьте себе воздушный шарик с нарисованными на его поверхности галактиками, который быстро надувают. Видимая Вселенная, заполненная звездами и галактиками, лежит на поверхности воздушного шарика, а не внутри его. Теперь поставьте на шарике микроскопическую точку. Эта точка и есть видимая Вселенная, то есть все, что мы можем наблюдать при помощи наших телескопов. (Для сравнения: если бы видимая Вселенная была размером с субатомную частицу, то вся Вселенная была бы намного больше той реальной видимой Вселенной, которую мы наблюдаем.) Иными словами, инфляционное расширение было настолько интенсивным, что теперь существуют целые области Вселенной вне нашей видимой, которые так навсегда и останутся для нас за пределами видимости.

    Расширение Вселенной было таким интенсивным, что при взгляде на описанный шарик с близкого расстояния он кажется плоским. Этот факт был экспериментально проверен спутником WMAP. Как и Земля кажется нам плоской, потому что мы очень малы по сравнению с ее радиусом, так и Вселенная кажется нам плоской лишь потому, что она изогнута в гораздо большем масштабе.

    Допустив раннее инфляционное расширение, можно без особых усилий объяснить многие загадки Вселенной, как, например, то, что она кажется плоской и однородной. Характеризуя инфляционную теорию, физик Джоэл Примак сказал: «Из таких прекрасных теорий еще ни одна не оказывалась ошибочной».

    Мультивселенная

    Несмотря на то что инфляционная теория согласуется с данными зонда Уилкинсона, она все же не отвечает на вопрос: что стало причиной расширения? Что побудило к действию антигравитационную силу, которая «раздула» всю Вселенную? Существует более 50 теорий о том, что стало причиной начала и окончания расширения Вселенной, в результате чего и возникла наша Вселенная. Но единого мнения не существует. Большинство физиков соглашается с основной идеей о стремительном инфляционном периоде, но решающего ответа на вопрос о механизме расширения Вселенной пока не существует.

    Поскольку никто точно не знает, почему началось расширение, вполне вероятно, что подобное событие может снова иметь место — то есть, что инфляционные взрывы могут повторяться. Эта теория была предложена русским физиком Андреем Линде из Стэнфордского университета. Она утверждает, что, какой бы механизм ни послужил причиной внезапного расширения Вселенной, он постоянно находится в действии, заставляя беспорядочно расширяться другие, отдаленные области Вселенной.

    И тогда крошечный участок Вселенной может внезапно расшириться и «образовать почку», пустить побег «дочерней» вселенной, от которой, в свою очередь, может отпочковаться новая дочерняя вселенная; при этом процесс «почкования» продолжается беспрерывно. Представьте, что вы пускаете мыльные пузыри. Если дуть достаточно сильно, то можно увидеть, как некоторые из них делятся, образуя новые, «дочерние» пузыри. Подобным образом одни вселенные могут постоянно давать начало другим вселенным. Согласно этому сценарию, Большие Взрывы происходили все время, происходят и сейчас. Если это верно, то, возможно, мы плаваем в море таких вселенных, словно пузырек, покачивающийся в океане среди других пузырьков. По сути, более подходящим словом будет не «Вселенная» (Универсум), а «Мультивселенная» (Мультиверсум).

    Линде называет свою теорию вечным, самовоспроизводящимся расширением, или «хаотическим расширением», поскольку он подразумевает непрекращающийся процесс постоянного расширения параллельных вселенных.

    «Расширение заставляет нас предполагать существование многочисленных вселенных», — говорит Алан Гут, впервые предложивший инфляционную теорию.

    Эта теория также предполагает, что от нашей Вселенной, возможно, когда-нибудь отпочкуется собственная дочерняя вселенная. Возможно, и наша собственная Вселенная обрела свое существование, отпочковавшись от более древней, более ранней вселенной.

    По словам главы Королевского астрономического общества Великобритании сэра Мартина Риса, «то, что традиционно называлось «Вселенная», может быть лишь частью целого ансамбля. Может существовать бесконечное множество других областей Вселенной, где действуют иные законы. Вселенная, в которой мы появились, принадлежит к необычному подмножеству, которое позволяет развиваться сложным формам и сознанию».

    Исследования в области Мультивселенной вызвали дискуссии о том, как выглядят другие вселенные, обитаемы ли они и даже возможен ли с ними контакт. Ученые Калифорнийского технологического института, Массачусетского технологического университета, Принстонского университета, а также других научных центров сделали расчеты для решения вопроса, не противоречит ли законам физики множественность Вселенных и возможность их достижения.

    Появляется все больше теоретических доказательств в поддержку существования Мультивселенной, где целые вселенные могут отпочковываться или «распускать бутоны» из других Вселенных. Если теория подтвердится, то она объединит две величайшие религиозные мифологии: возникновение мира и Нирвану. Тогда возникновение мира происходило бы непрерывно в безвременной Нирване.

    М-теория и 11-е измерение

    Сама идея параллельных вселенных когда-то рассматривалась учеными с изрядной долей подозрения и считалась областью деятельности мистиков, шарлатанов и больших оригиналов. Каждый ученый, осмеливавшийся работать в области изучения параллельных вселенных, подвергался насмешкам, даже рисковал своей карьерой, поскольку вплоть до сегодняшнего дня не существует экспериментального подтверждения существования параллельных вселенных.

    Но в последнее время произошел серьезный прорыв в исследованиях, и теперь лучшие умы планеты интенсивно работают именно в этом направлении. Причиной столь внезапного поворота стало появление новой струнной теории и ее последней версии, М-теории, которая не только сулит раскрыть природу Мультивселенной, но также обещает возможность воочию «увидеть Божий замысел», как когда-то красноречиво выразился Эйнштейн. Если теория окажется верной, то это будет главным достижением науки за последние 2000 лет, с тех самых пор, как древние греки начали поиски единой связной и целостной теории Вселенной.

    Количество опубликованных работ в области струнной теории, М-теории, впечатляет — они исчисляются десятками тысяч. Этой теме были посвящены сотни международных конференций. В каждом университете мира либо есть группа, занимающаяся разработкой струнной теории, либо делаются отчаянные попытки ее изучения. Хотя теорию и не проверить при помощи наших несовершенных современных приборов, она вызвала живейший интерес математиков, физиков-теоретиков и даже экспериментаторов, которые надеются протестировать периферию Вселенной (конечно, в будущем) при помощи тонких детекторов гравитационных волн открытого космоса и мощных ускорителей частиц.

    В конечном счете эта теория, возможно, ответит на вопрос, который волновал космологов с тех самых пор, как впервые была высказана идея Большого Взрыва: а что произошло после Большого Взрыва?

    Для решения такой задачи нам потребуется весь потенциал наших знаний в области физики, анализ всех физических открытий, накопленных за века исследований. Иными словами, нам нужна «теория всего», единая теория всех физических сил, действующих во Вселенной. Эйнштейн потратил последние тридцать лет своей жизни, пытаясь создать эту теорию, но ему это не удалось.

    На сегодняшний день главной (и, собственно, единственной) теорией, которая может объяснить все многообразие сил, организующих Вселенную, является струнная теория, особенно ее последнее воплощение — М-теория. («М» означает «мембрана», но может также означать «загадка» (от англ. mystery — тайна, загадка, головоломка), «магия» и даже «мать». Хотя, по существу, струнная теория и М-теория идентичны, М-теория представляет собой более загадочную и значительно более сложную структуру, объединяющую различные «струнные теории».)

    Еще древнегреческие философы предполагали, что все во Вселенной может состоять из крошечных частиц, называемых атомами. Сегодня же, используя мощные ускорители заряженных частиц, мы можем расщепить атом на электроны и ядро, которые, в свою очередь, могут быть расщеплены на еще более мелкие субатомные частицы. Но вместо открытия стройной и простой системы ученые стали свидетелями угнетающего факта: из ускорителей вылетают сотни субатомных частиц со странными названиями, такими, как нейтрино, кварки, мезоны, лептоны, адроны, глюоны, бозоны и прочие. Трудно поверить, что природа на уровне выстраивания фундамента смогла создать целые джунгли странных атомных частиц, среди которых можно просто заблудиться.

    В основе струнной теории и М-теории лежит идея о том, что удивительное разнообразие субатомных частиц, составляющих Вселенную, подобно нотам, по которым можно сыграть мелодию на скрипичной струне, или на мембране, натянутой, скажем, как кожа барабана. (Это не совсем обычные струны и мембраны; они существуют в десяти — и одиннадцатимерном гипер пространств е.)

    Традиционно физики рассматривали электроны как бесконечно малые точечные частицы. Это означало, что им приходилось вводить свою точку для каждой из обнаруженных субатомных частиц, что очень сбивало с толку. Но струнная теория говорит, что, если бы у нас был супермикроскоп, который позволял бы заглянуть вглубь электрона, мы бы увидели, что это никакая не точечная частица, а крошечная вибрирующая струна. Она лишь кажется нам точечной частицей, поскольку наши приборы слишком несовершенны.

    Эта струна вибрирует с различной частотой и различным резонансом. Если бы мы задели струну, то частота ее вибраций изменилась бы и она превратилась бы в другую субатомную частицу, например в кварк. Тронь ее опять, и она превращается в нейтрино. Таким образом, мы можем объяснить «метель» субатомных частиц различными по высоте звуками вибрирующей струны. И теперь мы можем считать сотни субатомных частиц, наблюдаемых в лаборатории, одним объектом — струной.

    В такой терминологии законы физики, тщательно обоснованные тысячелетними экспериментами, являются не чем иным, как законами гармонии, которые справедливы для струн и мембран. Законы химии — это мелодии, которые можно сыграть на этих струнах. Вся Вселенная представляет из себя божественную симфонию для «струнного оркестра». А «Замысел Божий», о котором столь красноречиво говорил Эйнштейн, — это космическая музыка, резонирующая сквозь гипер пространство. (Возникает вопрос: если Вселенная — это симфония для струнного оркестра, то кто ее автор? Я вернусь к этому вопросу в главе 12.)

    Конец Вселенной

    Зонд Уилкинсона не только дал возможность увидеть подробнейший портрет юной Вселенной, он также открыл нам впечатляющую картину того, как наша Вселенная умрет. Та же самая загадочная антигравитационная сила, оттолкнувшая (растащившая) галактики друг от друга в начале времен, теперь толкает Вселенную навстречу судьбе. Раньше астрономы считали, что расширение Вселенной постепенно замедляется. Теперь мы понимаем, что на самом деле движение Вселенной ускоряется и галактики мчатся от нас прочь со все возрастающими скоростями. «Вселенная ведет себя, как водитель, притормаживающий на красный сигнал светофора и затем газующий на зеленый», — утверждает Адам Рис из Института космического телескопа.

    Если какой-либо катаклизм не обратит процесс расширения вспять, то через 150 млрд лет наша Галактика Млечный Путь окажется довольно одинокой: 99,999 % близлежащих галактик «улетят» за пределы видимой Вселенной. Знакомые галактики, которые мы можем наблюдать в ночном небе, умчатся прочь с такой скоростью, что их свет никогда не достигнет нас тогдашних. Сами галактики не исчезнут, но окажутся слишком далеко, чтобы мы могли наблюдать их в свои телескопы. Хотя сейчас в видимой Вселенной содержится около 100 млрд галактик, «всего» через 150 млрд лет видимыми останутся лишь несколько тысяч в близлежащем скоплении галактик. Еще через некоторое время вся видимая Вселенная будет ограничена группой, состоящей из 36 галактик, в то время как миллиарды и миллиарды других галактик исчезнут за «горизонтом». Такой вариант развития событий объясняется тем, что гравитация в пределах этой местной группы достаточно сильна для того, чтобы преодолеть силы разбега-ния. Ирония состоит в том, что, когда отдаленные галактики исчезнут из поля зрения, любой астроном из будущей «темной эпохи» будет не в состоянии вообще заметить расширение Вселенной, поскольку местная группа галактик не расширяется. Астрономы сверхдалекого будущего — если такие будут и займутся исследованием ночного неба — вряд ли поймут, что Вселенная расширяется; скорее они придут к заключению, что Вселенная статична и состоит всего лишь из 36 галактик.

    Если эти силы антигравитации будут и дальше действовать в том же духе, то Вселенная в конце концов погибнет от холода. Вся разумная жизнь на планете, замерзая, будет биться в мучительной агонии, поскольку температура дальнего космоса близка к абсолютному нулю, а при такой температуре даже молекулы еле «шевелятся». В какой-то момент, спустя триллионы триллионов лет, звезды перестанут испускать свет, ихядерный реактор погаснет, израсходовав все топливо, и Вселенная погрузится в вечную ночь. Космическое расширение приведет к тому, что останется лишь холодная мертвая Вселенная, состоящая из черных звезд-карликов, нейтронных звезд и черных дыр. А в еще более далеком будущем даже черные дыры отдадут всю свою энергию, останется лишь безжизненная холодная туманность парящих элементарных частиц. В такой блеклой холодной Вселенной разумная жизнь физически невозможна в принципе. Железные законы термодинамики пресекут любую передачу информации в этой ледяной среде, и вся жизнь, вне всяких сомнений, прекратится.

    В XVIII веке люди впервые осознали, что Вселенная может погибнуть от холода. Комментируя гнетущую концепцию о том, что законы физики, по-видимому, обрекают на смерть всю разумную жизнь, Чарльз Дарвин писал: «Та вера, которую я питаю в то, что человек в далеком будущем будет намного более совершенным существом, делает невыносимой даже саму мысль о том, что он и все сознательные существа обречены на полное вымирание после такого продолжительного медленного прогресса». К несчастью, последние данные спутника WMAP, видимо, подтверждают самые худшие опасения Дарвина.

    Побег в гиперпространство

    Существует закон физики, согласно которому разумная жизнь во Вселенной в конце концов непременно погибнет. Но существует и закон эволюции, согласно которому при изменении окружающей среды жизнь должна либо покинуть ее, либо адаптироваться к ней, либо погибнуть. Поскольку адаптироваться ко Вселенной, несущей ледяную смерть, невозможно, то остаются лишь два варианта — либо умереть, либо покинуть эту Вселенную. Возможно ли, что, столкнувшись лицом клипу с неотвратимой смертью Вселенной, цивилизации, отстоящие от нас на триллионы лет, достигнут успеха в разработке технологий, которые позволят покинуть нашу Вселенную и на суперкосмической «спасательной шлюпке» отправиться в другую вселенную, намного более молодую и «горячую»? Или же они используют свои высочайшие технологии для построения «временного кольца» и отправятся в свое прошлое, в котором температура на планетах была намного выше?

    Некоторые физики, привлекая новейшие достижения науки, построили несколько правдоподобных, хотя и в высшей степени гипотетических схем, которые должны подтвердить реальность создания космических порталов или ворот в другую вселенную. Доски физических аудиторий по всему миру испещрены абстрактными уравнениями: физики вычисляют, возможно ли использование «экзотической энергии» и черных дыр для поисков туннеля, ведущего в другую вселенную. Может ли развитая цивилизация, по технологическим разработкам обгоняющая нашу на миллионы и миллиарды лет, воспользоваться известными законами физики для перехода в другую вселенную?

    Космолог Стивен Хокинг из Кембриджского университета однажды пошутил: «Если бы пространственно-временные туннели существовали, они были бы идеальным средством быстрого перемещения в Космосе. Можно было бы с утра пройти таким туннелем в другой конец галактики и вернуться к обеду».

    Если же пространственно-временные туннели и порталы окажутся слишком тесными для массового переселения в другую вселенную, то есть еще один вариант: свести все информационное содержание развитой разумной цивилизации до молекулярного уровня и пропустить через туннель, а там оно снова организуется в самое себя. Таким образом, целая цивилизация сможет перенести свои «семена» через этот коридор и на новой почве снова расцвести во всей своей красе. Гиперпространство перестанет быть игрушкой в руках физиков-теоретиков и вполне сможет стать единственным спасением для разумной жизни, оказавшейся в умирающей вселенной.

    Но для того, чтобы полностью разобраться в последствиях подобного шага, для начала необходимо понять, как мучительно космологи и физики шли к этим поразительным выводам. В книге «Параллельные миры» мы рассмотрим историю космологии, уделяя особое внимание парадоксам, веками наводнявшим эту область науки. В конце концов они породили инфляционную теорию, которая, не противореча никаким экспериментальным данным, заставляет нас поддержать концепцию существования многочисленных вселенных.

    ГЛАВА 2

    Парадоксальная вселенная

    Черт бы побрал эту Солнечную систему! Плохое освещение, планеты слишком далеко, полно комет, задумка слабовата. Я бы сотворил [Вселенную] получше.

    Лорд Джеффри

    Присутствуй я при сотворении мира, дал бы пару советов, как получше обустроить Вселенную.

    Альфонс Мудрый

    В пьесе «Как вам это понравится» Шекспир написал бессмертные слова:

    Весь мир — лишь сцена,
    Где женщины, мужчины — лишь актеры.
    У них свои есть выходы, уходы[3]

    В Средние века мир был поистине сценой, но сценой маленькой, статичной, состоящей из крошечной плоской Земли, вокруг которой небесные тела следовали по своим совершенным орбитам. На кометы смотрели как на недобрые знамения, предвещающие смерть королей. Когда в 1066 году яркая комета появилась над Англией, она привела в ужас саксонскую армию короля Гарольда, и саксы стремительно отступили, проиграв сражение наступающей победоносной армии Вильгельма Завоевателя, тем самым подготовив сцену и все декорации для становления современной Англии.

    Та же комета проплыла над Англией во второй раз в 1682 году, вновь став причиной восторга и ужаса в Европе. Казалось, каждый человек, от короля до крестьянина, был зачарован этой нежданной небесной гостьей, пронесшейся в небесах. Откуда появилась комета? Куда она направлялась и предвестием каких событий служила?

    Один богатый джентльмен, астроном-любитель Эдмунд Галлей, был настолько заинтригован кометой, что решил поинтересоваться мнением одного из величайших ученых того времени, сэра Исаака Ньютона. Когда он спросил Ньютона, какая сила управляет движением кометы, ученый спокойно ответил, что комета двигалась по эллипсообразной орбите согласно закону обратных квадратов (то есть сила притяжения, действующая на комету, менялась обратно пропорционально квадрату ее расстояния от Солнца). Ньютон объяснил, что на самом деле он давно наблюдал за кометой при помощи изобретенного им телескопа (того самого телескопа-рефлектора, которым в наше время пользуются астрономы всего мира) и та двигалась в полном соответствии с законом всемирного тяготения, который он, Ньютон, открыл еще 20 лет назад.

    Галлей был невероятно поражен.

    — Откуда вам это известно?

    — Я вычислил это, — ответил Ньютон.

    Галлей даже не подозревал, что тайну небесных тел, волновавшую еще первых людей, обративших взор к небесам, можно разъяснить с помощью нового закона всемирного тяготения.

    Пораженный значительностью этого монументального прорыва, Галлей предложил щедро финансировать публикацию новой теории. В 1687 году с помощью Галлея и при его финансовой поддержке Ньютон опубликовал свою грандиозную работу «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematical). Эта работа была провозглашена тогда (и признается сейчас) одной из самых важных из когда-либо опубликованных в мире. Разом все ученые, не имеющие понятия о других законах Солнечной системы, оказались в состоянии самостоятельно предсказывать с величайшей точностью траекторию движения небесных тел.

    «Начала» стали настолько популярны в салонах и при королевских дворах Европы, что поэт Александр Поуп писал: Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон.

    (Галлей понял, что, поскольку орбита кометы представляет собой эллипс, то можно вычислить, когда она снова появится над Лондоном. Просмотрев старые записи, он обнаружил, что кометы 1531,1607 и 1682 годов были на самом деле одной и тойже кометой. Комету, оказавшую столь сильное влияние на становление современной Англии в 1066 году, на протяжении всей истории видели многие люди, в том числе Юлий Цезарь. Галлей предсказал, что комета вновь вернется в 1758 году. Когда же комета уже через годы после кончины Галлея и Ньютона действительно вернулась в предсказанный год на Рождество, ее назвали кометой Галлея.)

    Ньютон открыл закон всемирного тяготения тогда, когда в связи с эпидемией чумы закрылся Кембриджский университет и ученый был вынужден уехать в свое поместье в Вульсторп. Ньютон с нежностью вспоминал прогулку в тамошнем парке, когда увидел, как упало яблоко. Тут он задал себе вопрос, которому в конечном счете суждено было изменить ход человеческой истории: если падает яблоко, падает ли также и Луна? В момент гениального озарения Ньютон понял, что яблоки, Луна, вообще все планеты подчиняются одному и тому же закону всемирного тяготения, что их падение (точнее, их движение) связано с законом обратных квадратов. Когда Ньютон обнаружилА что математика XVII века слишком примитивна, чтобы описать этот закон, он изобрел новое направление в математике — вычислительную математику, — чтобы определить скорость падения яблок и лун.

    В «Началах» Ньютон изложил также законы механики, которые определяют траектории всех земных и небесных тел. Эти «Начала» легли в основу теории конструирования машин, использования энергии пара, а также создания локомотивов, которые, в свою очередь, способствовали промышленной революции и развитию современной цивилизации. В наши дни все небоскребы, мосты и ракеты строятся с учетом ньютоновских законов механики.

    Ньютон не только дал нам вечные законы механики; он также перевернул наше видение мира, представил совершенно новую картину Вселенной, где таинственные законы, управляющие движением небесных тел, были идентичны законам, действующим на Земле. Сцена жизни отныне уже не была окружена наводящими ужас небесными знамениями; актеры подчинялись тем же законам, что и декорации.

    Парадокс Бентли

    Поскольку «Начала» были работой революционной, они вызвали к жизни первые парадоксы в теориях о строении Вселенной. Если весь мир — сцена, то насколько она велика? Конечен мир или бесконечен? Это извечный вопрос, которым задавался еще римский философ Лукреций Кар. «Вселенная не ограничена ни в одном направлении, — говорил он. — Ведь совершенно ясно, что вещь может иметь предел лишь в том случае, если вне ее существует что-либо. Поэтому во всех измерениях, будь то вперед или назад, вверх или вниз, Вселенной нет конца».

    Но теория Ньютона раскрыла и парадоксы, присущие любой теории конечной или бесконечной Вселенной. Простейшие вопросы ведут к целой бездне противоречий. Еще греясь в лучах славы, которую принесла ему публикация «Начал», Ньютон обнаружил, что его теория гравитации изобилует парадоксами. В 1692 году священник, преподобный отец Ричард Бентли, написал обезоруживающе простое, но огорчительное для Ньютона письмо. Тот факт, что гравитация всегда притягивала и никогда не отталкивала, написал Бентли, означает, что звезды, входящие в какое-либо скопление, естественным образом столкнутся друг с другом. Если Вселенная конечна, то ночное небо вместо того, чтобы быть неизменным и статичным, должно было бы представлять собой сцену невероятного побоища, поскольку звезды при столкновении друг с другом сливались бы в огненные суперзвезды. Но Бентли также обратил внимание на то, что если бы Вселенная была бесконечна, то сила, действующая на любой предмет, также была бы бесконечной и тянула бы и вправо, и влево, что стало бы причиной того, что звезды разорвало бы в клочья в результате огненных катаклизмов.

    Поначалу казалось, что Бентли разгромил теорию Ньютона в пух и прах. Либо Вселенная конечна (и слилась в огненный шар), либо она бесконечна (в таком случае все звезды должны разлететься в стороны). Оба варианта разрушали новую теорию Ньютона. Эта проблема впервые в истории обнаружила едва различимые внутренние парадоксы, свойственные любой теории гравитации при применении ее ко всей Вселенной.

    Поразмыслив, Ньютон написал Бентли, что обнаружил слабое место в его аргументации. Ученый писал, что считает Вселенную бесконечной, но совершенно однородной. Таким образом, если звезду тянет в какую-то сторону бесконечное количество звезд, то эту силу уравновешивает тяготение в противоположном направлении другого бесконечного количества звезд. Все силы во всех направлениях сбалансированы, и это создает статичную Вселенную. Таким образом, если сила гравитации всегда только притягивает, то единственным решением парадокса Бентли будет существование однородной бесконечной Вселенной.

    Ньютон действительно нашел слабое место в аргументации Бентли. Однако он был достаточно умен, чтобы сознавать неубедительность своего ответа. Он признал в письме, что предлагаемое им решение, несмотря на техническую правильность, было нестабильным внутренне. Однородная, но бесконечная Вселенная Ньютона была похожа на карточный домик: на вид устойчивая, она могла рассыпаться, стоило ее чуть потревожить. Можно рассчитать, что, даже если одна-единственная звезда чуть-чуть качнется, это станет началом цепной реакции и скопления звезд начнут разрушаться. Своим ответом Ньютон отсылал к «божественной силе», которая якобы не дает развалиться его карточному домику.

    «Необходимо воздействие непрерывного чуда, чтобы Солнце и звезды, находящиеся в покое, не устремились друг к другу под действием силы тяготения», — писал он.

    Ньютону Вселенная представлялась как гигантские часы, запущенные Господом в начале времен и идущие с тех пор, повинуясь трем законам механики и не требуя божественного вмешательства. Но временами Господу все же приходилось вмешиваться и слегка настраивать механизм Вселенной, чтобы она не разрушилась. (Иными словами, иногда Господу приходилось вмешиваться, чтобы декорации на сцене творения не развалились и не рухнули на головы актеров.)

    Парадокс Ольберса

    Кроме парадокса Бентли, существовал еще более интересный парадокс, который не могла обойти ни одна теория бесконечной Вселенной. Ольберс задался вопросом, почему ночное небо черное. Еще во времена Иоганна Кеплера астрономы знали, что если бы Вселенная была однородной и бесконечной, то, куда бы мы ни бросили взгляд, мы видели бы небо, освещенное бесконечным количеством звезд. В какую бы точку ночного неба ни был устремлен наш взгляд, он в конце концов натыкался бы на бесконечное количество звезд и мы видели бы небо, залитое бесконечным количеством звездного света. Тот факт, Что ночное небо — черное, а не яркое, веками считался глубоким космическим парадоксом.

    Парадокс Ольберса, подобно парадоксу Бентли, обманчиво прост, но он терзал душу многим поколениям философов и астрономов. И один парадокс, и второй опираются на наблюдении, что в бесконечной Вселенной гравитационные силы и световое излучение могут слагаться, что приведет к бесконечным значениям и того, и другого. За сотни лет было предложено множество неверных объяснений. Кеплер был настолько обеспокоен этим парадоксом, что просто постулировал: Вселенная конечна, находится в оболочке, а потому лишь ограниченное количество звездного света достигает наших глаз.

    Замешательство, вызванное этим парадоксом, было столь массовым (если массой считать ученое сообщество), что, согласно результатам исследования, проведенного в 1987 году, 70 % учебников по астрономии давали неверный ответ на этот вопрос, 30.% от ответа воздержались.

    Можно было попытаться решить парадокс Ольберса, предположив, что звездный свет поглощается пылевыми облаками. Именно такой ответ в 1823 году дал сам Генрих Вильгельм Ольберс, когда впервые точно сформулировал парадокс. Ольберс написал: «Очень удачно, что Земля не получает свет из каждой точки небесного свода! Однако при такой невообразимой яркости и температуре, которые в 90 ООО раз выше тех, каким мы подвергаемся сейчас, Всевышний легко мог создать организмы, способные адаптироваться и к таким экстремальным условиям». В объяснение того "факта, что Землю не заливает «свет столь же яркий, как и солнечный диск», Ольберс предположил, что, должно быть, пылевые облака поглощают сильный жар, делая жизнь на Земле возможной. Например, огненный центр нашей Галактики Млечный Путь, который по справедливости должен «сжигать» все небо, в действительности скрыт пылевыми облаками. Если мы посмотрим в направлении созвездия Стрельца, где находится центр Млечного Пути, вместо ослепительного огненного шара нашим глазам предстанет лишь темное пятно.

    Но и пылевые облака не могут служить убедительным объяснением парадокса Ольберса. За достаточно длительное (чтобы не сказать — бесконечное) время пылевые облака поглотят свет бесконечного количества звезд и в конце концов засверкают сами подобно звездной поверхности. Таким образом, даже пылевые облака должны бы сиять в ночном небе.

    По этой логике можно предположить, что чем дальше находится звезда, тем слабее ее свет. Факт по сути своей верен, но он не может служить ответом. Если мы взглянем на участок ночного неба, то увидим, что самые далекие звезды действительно тусклые, но чем дальше мы устремляем взгляд, тем больше звезд мы видим. Такого в однородной Вселенной не должно было бы быть — там небо казалось бы белым. (Это объясняется тем, что интенсивность звездного света, обратно пропорциональная квадрату расстояния до звезды, компенсировалась бы количеством звезд, прямо пропорциональным квадрату расстояния.)

    Как ни странно, первым в истории человеком, решившим парадокс Ольберса, стал американский автор детективов Эдгар Аллан По, который увлекался астрономией. Перед самой смертью он опубликовал многие из своих наблюдений в неоднозначной философской поэме под названием «Эврика: Прозаическая поэма». Вот замечательный отрывок: Будь множество звезд бесконечным, небесный свод был бы полностью залит светом, таким же, как мы видим в Галактике, — поскольку не было бы ни единой точки на всем этом фоне, где не было бы звезды. Единственным способом, с помощью которого мы могли бы объяснить пустоты, которые в большом количестве наблюдаем при помощи телескопов, было бы предположение, что расстояние до невидимой части небесного свода настолько велико, что еще ни один луч света оттуда не был в состоянии достичь нас.

    В заключение По писал о том, что эта мысль «слишком прекрасна, чтобы не содержать в себе Истину как неотъемлемую свою составляющую».

    Это и есть ключ к верному ответу. Возраст Вселенной не бесконечен. Рождение мира было. Нашему взгляду доступна лишь некая часть звездного света. Свету наиболее отдаленных от нас звезд не хватило времени, чтобы достичь наших взоров. Космолог Эдвард Харрисон, впервые обнаруживший, что По разрешил парадокс Ольберса, написал: «Когда я впервые прочел слова По, я был поражен: как мог поэт, в лучшем случае ученый-любитель, 140 лет назад уловить верное объяснение, в то время как в наших колледжах до сих пор преподают объяснение неправильное?»

    В 1901 году шотландский физик лорд Кельвин также нашел верное решение. Он осознал, что, глядя на ночное небо, мы видим его в прошлом, а не таким, каково оно сейчас, поскольку скорость света, хоть и гигантская по земным меркам (299 792458 м/с), все же конечна и свету отдаленных звезд необходимо время, чтобы достичь Земли. По подсчетам Кельвина, для того, чтобы ночное небо 6ь1ло белым, Вселенная должна бы растянуться на сотни триллионов световых лет. Но поскольку Вселенной не триллионы лет, небо будет только черным. (Существует также второй фактор, который способствует решению вопроса, почему ночное небо черное; и этот фактор — конечный жизненный цикл звезд, измеряющийся миллиардами лет.)

    Недавно появилась возможность экспериментально проверить правильность этого решения при помощи таких спутников, как космический телескоп Хаббла. Эти телескопы, в свою очередь, позволяют нам ответить на вопрос, который задают даже дети: «Как далеко от нас самая далекая звезда? И что лежит за самой далекой звездой?» Чтобы ответить на эти вопросы, астрономы запрограммировали космический телескоп Хаббла для решения исторической задачи — заснять самую отдаленную точку Вселенной. Для того чтобы уловить чрезвычайно слабые сигналы из отдаленнейших уголков Космоса, телескопу предстояло выполнить беспрецедентную работу: быть направленным в одну и ту же точку в небе рядом с созвездием Ориона на протяжении нескольких сотен часов, что требовало точнейшей настройки телескопа на протяжении четырех сотен оборотов Земли. Проект был столь сложен, что его выполнение растянулось более чем на четыре месяца.

    В 2004 году на первых полосах газет всего мира была опубликована ошеломляющая фотография. На ней — скопление десяти тысяч ранних галактик, возникших из хаоса Большого Взрыва. «Возможно, нам довелось увидеть конец начала», — заявил Антон Коукемоур из Научного института космического телескопа. На фотографии изображено беспорядочное скопление рождающихся галактик на расстоянии более 13 млрд световых лет от Земли — то есть понадобилось более 13 млрд световых лет для того, чтобы их свет достиг Земли. Поскольку самой Вселенной лишь 13,7 млрд лет, это означает, что галактики сформировались примерно через полмиллиарда лет после возникновения Вселенной, когда первые звезды и галактики рождались из «кипящего бульона» газов, оставшихся после Большого Взрыва. «Хаббл переносит нас на расстояние, откуда камнем докинуть до Большого Взрыва», — заявил астроном Массимо Стивавелли из того же института.

    Но тут возникает вопрос: что лежит за пределами самой далекой галактики? При внимательном рассмотрении этой замечательной фотографии становится понятно, что между галактиками — лишь тьма. Именно эта тьма является причиной того, что ночное небо — черное. Это последняя граница, за которой мы не видим света дальних звезд. Однако эта «тьма» и сама является реликтовым микроволновым излучением. Таким образом, окончательный ответ на вопрос, почему ночное небо черное, таков: на самом деле ночное небо совсем не черное. (Если бы наши глаза каким-то образом могли воспринимать микроволновое излучение, а не только видимый спектр, мы бы увидели излучение, порожденное Большим Взрывом и наполняющее ночное небо. В каком-то смысле, излучение Большого Взрыва появляется каждую ночь. Если бы наши глаза могли улавливать микроволны, мы бы увидели, что за самой далекой звездой обретается само творение.)

    Эйнштейн-мятежник

    Законы, открытые Ньютоном, так хорошо объясняли мир, что науке понадобилось более двухсот лет, чтобы сделать очередной серьезный шаг. Этот шаг был связан с работой Альберта Эйнштейна. Начало его карьеры никак не предвещало такой революции в науке. Получив степень бакалавра в Политехническом институте в Цюрихе (Швейцария), в 1900 году, Эйнштейн обнаружил, что получить работу нет никакой надежды. Его карьеру разрушили его же преподаватели, не любившие самонадеянного дерзкого студента, который часто срывал занятия. Тоскливые безысходные письма свидетельствуют о тяжелой депрессии. Альберт считал себя неудачником и тяжелой обузой для родителей. В одном горьком письме он признавался, что даже собирался свести счеты с жизнью: «Несчастье моих бедных родителей, у которых за столько лет не было ни единой минуты счастья, тяжелее всего давит на мои плечи… Я лишь обуза для родственников… Наверняка было бы лучше, если бы я вообще не жил», — с горечью писал он.

    В отчаянии Альберт подумывает о том, чтобы бросить науку и поступить в страховую компанию. Он даже взялся за частные уроки, но поспорил с работодателем и его уволили. Когда подруга Эйнштейна Милева Марик неожиданно забеременела, он сознавал, что ребенок останется незаконнорожденным, потому что на женитьбу у него нет средств. (Никто не знает, что в конце концов стало с его незаконнорожденной дочерью Лизераль.) Глубокое потрясение, которое испытал Эйнштейн, когда внезапно умер его отец, оставило в душе незаживающую рану, от которой он так никогда и не излечился. Ученый всегда помнил, что отец умер, считая сына неудачником.

    Хотя 1901–1902 годы были самым трудным периодом в жизни Эйнштейна, от забвения его спасла рекомендация сокурсника, Марселя Гроссмана, который, потянув «за кое-какие ниточки», обеспечил Эйнштейну работу скромного клерка в Швейцарском патентном бюро в Берне.

    Парадоксы относительности

    На первый взгляд, патентное бюро было не самым перспективным местом, где могла начаться величайшая со времен Ньютона революция в физике. Но были у этой службы и свои преимущества. Быстро разделавшись с заявками на патенты, загромождавшими его стол, Эйнштейн откидывался на стуле и погружался в детские воспоминания. В молодости он прочел «Естественнонаучные книги для народа» Аарона Бернштейна, «работу, которую я прочел, затаив дыхание», вспоминал Альберт. Бернштейн предлагал читателю представить, что тот следует параллельно с электрическим током, когда тот передается по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы похож луч света, если бы его можно было догнать? Он вспоминал: «Такой принцип родился из парадокса, на который я натолкнулся в 16 лет: если я гонюсь за лучом света со скоростью с (скорость света в вакууме), я должен наблюдать такой луч света как пространственно колеблющееся электромагнитное поле в состоянии покоя. Однако, кажется, такой вещи не может существовать — так говорит опыт, и так говорят уравнения Максвелла». В детстве Эйнштейн считал, что если двигаться параллельно лучу света со скоростью света, то свет будет казаться замерзшим, подобно застывшей волне. Однако никто не видел замерзшего света, так что тут явно что-то было не так.

    В начале нового века существовали в физике два столпа, на которых покоилось все: ньютоновская теория механики и гравитации и теория света Максвелла. В 1860-е годы шотландский физик Джеймс Кларк Максвелл доказал, что свет состоит из пульсирующих электрических и магнитных полей, постоянно переходящих друг в друга. Эйнштейну же предстояло открыть, к его великому потрясению, что эти два столпа противоречат друг другу, и одному из них предстояло рухнуть.

    В уравнениях Максвелла он обнаружил решение загадки, которая преследовала его на протяжении 10 лет. Эйнштейн нашел в них то, что упустил сам Максвелл: уравнения доказывали, что свет перемещается с постоянной скоростью, при этом было совершенно неважно, с какой скоростью вы пытались догнать его. Скорость света с была одинаковой во всех инерциальных системах отсчета (то есть системах отсчета, двигающихся с постоянной скоростью). Стояли ли вы на месте, ехали ли на поезде или примостились на мчащейся комете, вы бы обязательно увидели луч света, несущийся впереди вас с постоянной скоростью. Неважно, насколько быстро вы двигались бы сами, — обогнать свет вам не под силу.

    Такое положение дел быстро привело к появлению множества парадоксов. Представьте на миг астронавта, пытающегося догнать луч света. Астронавт стартует на космическом корабле, и вот он несется голова в голову с лучом света. Наблюдатель на Земле, ставший свидетелем этой гипотетической погони, заявил бы, что астронавт и луч света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а именно: луч света уносился от него вперед, как если бы космический корабль находился в состоянии покоя.

    Вопрос, вставший перед Эйнштейном, заключался в следующем: как могут два человека настолько по-разному интерпретировать одно и то же событие? По теории Ньютона, луч света всегда можно догнать; в мире Максвелла это было невозможно. Эйнштейна внезапно озарило, что уже в фундаментальных основах физики таился фундаментальный же изъян. Эйнштейн вспоминал, что весной 1905 года «в моей голове разразился шторм». Он наконец нашел решение: время движется с различными скоростями в зависимости от скорости движения По сути, чем быстрее двигаться, тем медленнее движется время. Время не абсолютно, как когда-то считал Ньютон. По Ньютону, время однородно во всей Вселенной и длительность одной секунды на Земле будет идентична одной секунде на Юпитере или Марсе. Часы абсолютно синхронизированы со всей Вселенной. Однако, по Эйнштейну, различные часы во Вселенной идут с различными скоростями.

    Эйнштейн понял, что если бы время могло меняться в зависимости от скорости,[4] то другие величины, такие, как длина, масса и энергия, также должны меняться. Он обнаружил, что чем быстрее тело двигается, тем более оно сокращается в направлении движения (что иногда называют «сокращением Лоренца-Фицджеральда»). Подобным образом, чем быстрее вы двигаетесь, тем тяжелее вы становитесь. (По сути, когда вы приблизитесь к скорости света, время замедлится до полной остановки, ваши размеры сократятся до полного нуля, а ваша масса возрастет до бесконечности — все это полный абсурд. Это причина того, что нельзя превысить световой барьер, который является скоростным пределом во Вселенной.)

    Это странное искажение пространства-времени склонило некоего поэта написать следующее:

    Жил-был парень по имени Фиск, Фехтуя, он был крайне быстр,
    И так был он быстр во владении,
    Что Фицджёральдово сокращение
    Превратило рапиру в диск.

    Подобно тому как прорыв Ньютона объединил земную и небесную физику, Эйнштейн объединил время и пространство. Но он также показал, что материя и энергия взаимосвязаны и потому могут переходить друг в друга. Если объект становится тем тяжелее, чем быстрее он движется, это означает, что энергия движения трансформируется в материю. Обратное также Справедливо — материя может быть преобразована в энергию. Эйнштейн подсчитал, сколько энергии будет преобразовано в материю, и вывел формулу Е = тс2, то есть даже крошечное количество материи m умножается на огромное число (квадрат скорости света) при превращении в энергию Е. Таким образом, был обнаружен таинственный источник энергии звезд — им оказалось преобразование материи в энергию согласно уравнению, которое справедливо для всей Вселенной. Тайну звезд оказалось возможным раскрыть благодаря простому утверждению, что скорость света одинакова во всех инерциальных системах отсчета.

    Так, как когда-то Ньютон, Эйнштейн изменил наш взгляд на подмостки жизни. В мире Ньютона все актеры точно знали, который час и как измеряется расстояние. Ход времени и размеры сцены никогда не менялись. Но относительность принесла нам причудливое понимание пространства и времени. Во Вселенной Эйнштейна наручные часы каждого актера показывают свое время. Это означает, что сверить все часы, тикающие на сцене, невозможно. На репетицию, назначенную в полдень, разные актеры явятся в разное время. И вообще, когда актеры бегают по сцене, происходят вещи необыкновенные. Чем быстрее они двигаются, тем медленнее тикают их часы и тем более тяжелыми и плоскими становятся их тела.

    Потребовались годы, чтобы широкое научное сообщество приняло взгляды Эйнштейна. Но сам Эйнштейн не стоял на месте; он хотел применить свою новую теорию относительности к самой гравитации. Он осознавал всю сложность своего предприятия — в одиночку заниматься самой прогрессивной и «тяжеленной» теорией своего времени, точнее, опережающей свое время. Макс Планк, создатель квантовой теории, предостерегал Эйнштейна: «Как старший друг я должен предупредить тебя, чтобы ты не делал этого, ибо, во-первых, ты не добьешься успеха, а даже если и добьешься, никто тебе не поверит».

    Эйнштейн понимал, что его новая теория относительности разрушала теорию гравитации Ньютона. По Ньютону, гравитация распространялась во Вселенной мгновенно. Но тут возникает вопрос, который иногда задают даже дети: «Что будет, если Солнце исчезнет?» По Ньютону, вся Вселенная тут же станет свидетельницей исчезновения Солнца. Но по теории относительности это невозможно, поскольку информация об исчезновении звезды ограничена скоростью овета. Согласно теории относительности, внезапное исчезновение Солнца вызвало бы сферическую ударную волну гравитации, распространяющуюся во все стороны со скоростью света. Наблюдатели, находящиеся с внешней стороны ударной взрывной волны, сказали бы, что Солнце продолжает светить, поскольку гравитация еще не успела достичь их. Но наблюдатель внутри волны сказал бы, что Солнце исчезло. Для разрешения этой проблемы Эйнштейн ввел совершенно новые понятия пространства и времени.

    Сила как искривление пространства

    Ньютон понимал пространство и время как огромную пустую арену, где события происходят в соответствии с его законами механики. Когда-то сцена была полна чудес и тайн, но, по существу, оставалась инертной и неподвижной, лишь пассивной свидетельницей ритуального танца природы. Однако Эйнштейн перевернул это представление. Для Эйнштейна сама сцена становится важной составляющей жизни. Во Вселенной Эйнштейна пространство и время уже не были статичной сценой, как предполагал (и предписывал) Ньютон, — они приобрели динамичность, изгибались и извивались причудливым образом. Представьте, что сцену жизни заменил батут, на котором все актеры мягко проседают под собственным весом. При таком положении дел мы увидим, что сцена становится столь же важной, как и актеры.

    Представьте, что на кровать положили шар для игры в боулинг и он мягко утопает в матрасе. Теперь подтолкните небольшой шарик по искривленной поверхности матраса. Шарик будет двигаться. Ньютонианец, увидев с большого расстояния шарик, огибающий большой шар, пришел бы к выводу, что существует некая таинственная сила, с которой шар для игры в боулинг воздействует на маленький шарик. Он сказал бы, что шар для боулинга мгновенно воздействует на маленький шарик, притягивая его к центру.

    Для релятивиста, который наблюдает движение шарика с близкого расстояния, совершенно ясно, что никакой силы не существует вообще. Есть лишь искривление матраса, которое и заставляет шарик двигаться по кривой. Он говорит: «При чем тут притяжение? Есть лишь давление, которое оказывает матрас на маленький шарик. Теперь возьмем вместо шарика Землю, вместо большого шара — Солнце, а вместо матраса — Космос, и мы поймем, что Земля движется вокруг Солнца не из-за гравитационного притяжения, а потому, что Солнце искажает космическое пространство вокруг Земли и тем создает давление, заставляющее Землю двигаться по окружности.

    Таким образом, Эйнштейн пришел к выводу, что гравитация больше похожа на материю, нежели на невидимую силу, действующую мгновенно в пределах всей Вселенной. Если быстро встряхивать материю, то образовавшиеся волны побегут по ее поверхности с определенной скоростью. Это разрешает парадокс исчезнувшего Солнца. Если гравитация — побочный продукт искривления материи пространства-времени, то исчезновение Солнца можно сравнить (вернемся к матрасу) с резким подскоком с постели шара для игры в боулинг. Когда матрас резко возвращает себе первоначальную форму, по поверхности простыни бегут волны, двигающиеся с определенной скоростью. Таким образом, сведя гравитацию к искривлению пространства и времени, Эйнштейн смог примирить ее с теорией относительности.

    Представьте себе муравья, пытающегося бежать по смятому листу бумаги. Он будет передвигаться, раскачиваясь, будто пьяный матрос, влево и вправо. Муравей горячо возразил бы, что он не пьян, утверждая, что его качает таинственная сила, дергая то влево, то вправо.

    Для муравья это ничем не заполненное пространство полно таинственных сил, мешающих ему идти прямо. Однако, глядя на муравья с близкого расстояния, мы видим, что никакая сила его не тянет. Его «толкают» складки мятого листа бумаги. Силы, воздействующие на муравья, — это всего лишь иллюзия, вызванная искривлением пространства. Воздействие силы — на самом деле лишь «толчок», когда он перешагивает через складку бумаги. Другими словами, не гравитация притягивает, а пространство отталкивает.

    В 1915 году Эйнштейну наконец удалось завершить то, что он назвал общей теорией относительности, и это стало фундаментом, на котором покоится вся космология. В этой удивительной картине мира гравитация выступает не как независимая сила, заполняющая Вселенную, а как видимый эффект искривления материи пространства-времени. Теория Эйнштейна была так всеобъемлюща, что подытожить ее ему пришлось в длиннющем уравнении. В этой блестящей новой теории степень искривления пространства и времени определялась количеством материи и энергии, содержащихся в них. Представьте, что в пруд бросили камень. По поверхности пруда пойдет рябь, вызванная падением камня. Чем больше камень, тем более неровной станет поверхность пруда. Похожим образом, чем больше звезда, тем сильнее искривление пространства-времени, окружающего звезду.

    Рождение космологии

    Эйнштейн попытался использовать подобный принцип для описания Вселенной как целостного образования. Его ожидало столкновение с парадоксом Бентли. В 1920-е годы большинство астрономов верило в то, что Вселенная однородна и статична. Поэтому Эйнштейн отталкивался от предположения, что Вселенная однородно заполнена пылью и звездами. В одной из моделей Вселенная сравнивается с большим воздушным шаром или мыльным пузырем. Мы живем на его поверхности. Звезды и галактики, которые мы видим вокруг себя, можно сравнить с точками, нарисованными на поверхности воздушного шарика.

    К своему удивлению, всякий раз, когда Эйнштейн пытался решить собственные уравнения, он приходил к выводу, что Вселенная динамична. Ученый столкнулся с той самой проблемой, которую сформулировал Бентли более чем за два столетия до того. Поскольку гравитация всегда притягивает и никогда не отталкивает, ограниченное количество звезд должно взорваться в огненном катаклизме. Однако это противоречило господствующему в начале XX века мнению, гласившему, что Вселенная как раз статична и однородна.

    Несмотря на всю свою революционность, Эйнштейн не мог поверить, что Вселенная может двигаться. Подобно Ньютону и множеству остальных ученых, Эйнштейн верил в статичную Вселенную. Так, в 1917 году Эйнштейн был вынужден ввести в свои уравнения новый член, некий «поправочный множитель», он вводил в свою теорию новую, «антигравитационную» силу, которая толкала звезды прочь друг от друга. Эйнштейн назвал ее «космологической константой», и она выглядела «гадким утенком», запоздалым дополнением к его теории. Эйнштейн без достаточных на то оснований, чтобы полностью нейтрализовать силы гравитации, ввел антигравитацию, создавая тем самым статичную Вселенную. Другими словами, Вселенная стала статичной просто по воле Эйнштейна: внутреннее сокращение Вселенной благодаря гравитации нейтрализовалось внешней силой темной энергии. (На протяжении 70 лет эта антигравитационная сила считалась в физике чем-то вроде сироты, вплоть до открытий последних лет.)

    В 1917 году голландский физик Биллем де Ситтер предложил еще одно решение для уравнений Эйнштейна, где Вселенная была бесконечной и полностью лишенной всякой материи. По сути, Вселенная состояла только из энергии, содержащейся в вакууме, — космологической константы. Этой чистой антигравитационной силы было достаточно, чтобы вызвать стремительное экспоненциальное расширение Вселенной. Даже без всякой материи эта темная энергия могла создать расширяющуюся Вселенную.

    Теперь перед физиками встала дилемма. Во Вселенной Эйнштейна существовала материя, но не было движения. Во Вселенной де Ситтера было движение, но не существовало материи. Во Вселенной Эйнштейна космологическая константа оказалась необходимой для нейтрализации гравитационного притяжения и создания статичной Вселенной. Во Вселенной де Ситтера одной космологической константы было достаточно для создания расширяющейся Вселенной.

    В 1919 году две команды ученых подтвердили предсказание Эйнштейна, что свет далекой звезды будет искривляться, проходя вблизи Солнца. Таким образом, будет казаться, что звезда несколько изменила свое положение в пространстве, притягиваемая Солнцем. Это происходит потому, что Солнце искривляет пространство-время, окружающее его.


    Таким образом, гравитация не «притягивает». Это пространство звездного света, проходящего вблизи Солнца. Величину искривления звездного света можно было точно подсчитать, подобно тому как можно вычислить, насколько стекло искривляет свет. Но поскольку днем сияние Солнца скрывает все звезды, для проведения решающего эксперимента ученым пришлось ждать наступления солнечного затмения.

    Группа, возглавляемая британским астрофизиком Артуром Эддиштоном, отправилась на остров Принсипи в Гвинейском заливе (у побережья Западной Африки), чтобы запечатлеть искривление света звезд вокруг Солнца во время будущего солнечного затмения. Другая команда под руководством Эндрю Кроммелина отправилась в деревню Собраль в Северной Бразилии. Собранные ими данные свидетельствовали, что средняя величина отклонения звездного света равняется 1,79 секунды дуги, что вполне соотносилось с предсказанной Эйнштейном 1,74 дуговой секунды (неточность объяснялась погрешностью измерений в ходе эксперимента). Иными словами, сеет действительно искривлялся вблизи Солнца. Позднее Эддингтон заявил, что проверка теории Эйнштейна стала одним из величайших моментов его жизни.

    б ноября 1919 года на совместном заседании Королевского общества и Королевского астрономического общества в Лондоне нобелевский лауреат и президент Королевского общества Дж. Дж. Томсон торжественно объявил, что это «одно из величайших достижений в истории человеческой мысли. Это открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие в области гравитации с тех пор, как Ньютон сформулировал свои законы».

    (По легенде, позднее некий репортер спросил Эддингтона: «Ходят слухи, что во всем мире лишь трое понимают теорию Эйнштейна. Вы, должно быть, один из них». Эддингтон стоял, ни говоря ни слова, и репортер добавил: «Не скромничайте, Эддингтон». Эддингтон пожал плечами и ответил: «Я вовсе не скромничаю. Я просто задумался, кто же может быть третьим».)

    На следующий день лондонская «Тайме» вышла с сенсационным заголовком: «Научная революция — Новая теория Вселенной — Идеи Ньютона низвергнуты». Этот заголовок определил момент, когда Эйнштейн стал фигурой мирового значения, посланцем звезд.

    Заявление было настолько ошеломляющим, а отход Эйнштейна от идей Ньютона настолько радикален, что в обществе возникла негативная реакция — даже выдающиеся физики и астрономы осудили эту теорию. В Колумбийском университете Чарльз Лейн Пуэр, преподаватель астрономии, возглавил кампанию по критике теории относительности. Он объявил: «Я чувствую себя так, будто прогулялся с Алисой по стране чудес и побывал на чаепитии у Безумного Шляпника».

    Причина, по которой теория относительности противоречит здравому смыслу, заключается не в том, что теория относительности неверна, а в том, что наш здравый смысл не в состоянии представить реальность. Мы — странноватое произведение природы. Мы заселяем необычный объект недвижимости, где температура, плотность и скорости довольно умеренны. Однако в «настоящей Вселенной» температуры могут быть невероятно высокими в центре звезды или чрезвычайно низкими в открытом космосе, а субатомные частицы проносятся в космическом пространстве со скоростью, близкой к скорости света. Другими словами, наш здравый смысл сформировался в крайне необычной темной части Вселенной, на Земле, а потому неудивительно, что наш рассудок не может постичь истинные размеры Вселенной. Проблема не в теории относительности, а в нашем убеждении, что наш рассудок в состоянии объяснить реальность.

    Будущее Вселенной

    Хотя теория Эйнштейна успешно объясняла такие астрономические явления, как искривление звездного света вокруг Солнца и легкое смещение орбиты Меркурия, все же космологические прогнозы были не совсем ясны. Положение вещей в значительной степени прояснил русский физик Александр Фридман, открывший самые общие и реалистичные решения уравнений Эйнштейна. И в наши дни эти решения изучаются в курсе общей теории относительности. (Он открыл их в 1922 году, умер через три года, и о его работе вспомнили лишь спустя много лет.)

    Теория Эйнштейна в общем случае описывается рядом чрезвычайно сложных уравнений, для решения которых зачастую необходим компьютер. Однако Фридман предположил, что Вселенная динамична, а затем привел два упрощающих допущения (называемые «космологическим принципом»): Вселенная изотропна (она выглядит одинаково вне зависимости от того, в каком направлении мы смотрим из данной точки) и гомогенна (она однородна, в какой бы точке Вселенной мы ни находились).

    Если применить эти упрощающие допущения, видно, что уравнения обретают решения. (По сути, и решение Эйнштейна, и решение де Ситтера представляли собой лишь частные случаи более общего решения Фридмана.) Примечательно, что его решения зависели лишь от трех параметров:

    1. Н, определяющая скорость расширения Вселенной (сегодня ее называют постоянной Хаббла в честь астронома, который действительно измерил расширение Вселенной).

    2. ? (омега), которая определяет среднюю плотность материи во Вселенной.

    3. ? (лямбда), энергия пустого космоса, или темная энергия.

    Многие космологи всю свою профессиональную жизнь провели в попытках определить точное значение этих трех величин. Неуловимое взаимодействие между этими тремя постоянными определяет будущее развитие нашей Вселенной. Например, поскольку гравитация выражается силами притяжения, то плотность Вселенной О) действует в качестве некоего тормоза, замедляющего расширение Вселенной. Представьте, что вы подбросили камень. В обычных условиях гравитация достаточно велика, чтобы изменить движение камня, который падает обратно на Землю. Однако если подбросить камень с достаточной силой, то он преодолеет действие гравитации и навсегда вырвется в открытый космос. Подобно камню, Вселенная первоначально расширилась в результате Большого Взрыва, но материя, V), действует на расширение Вселенной как тормоз, точно также, как земная гравитация воздействует в качестве тормоза на подброшенный камень.

    Теперь допустим, что X, энергия пустого космоса, равна нулю. Пусть ? — плотность Вселенной, разделенная на критическую плотность. (Критическая плотность Вселенной равна приблизительно, 10 атомам водорода на кубический метр. Она в среднем соответствует одному атому водорода в объеме трех баскетбольных мячей — настолько пустынна Вселенная.)

    Ученые считают, что если величина СО меньше единицы, то во Вселенной недостаточно материи, чтобы обратить вспять первоначальное расширение, вызванное Большим Взрывом. (Подобно примеру с подброшенным камнем: если масса Земли недостаточно велика, то камень преодолеет земную гравитацию и улетит прочь.) В результате Вселенная будетрасширяться вечно, погружаясь вледеня-щий холод — температуры ее приблизятся к абсолютному нулю. (Это принцип работы холодильника или кондиционера. Расширяясь, газ охлаждается. Например, газ, циркулирующий в трубке вашего кондиционера, расширяется, охлаждая трубку и вашу комнату.)

    Если величина СО больше 1, то во Вселенной достаточно материи и гравитации, чтобы в конце концов изменить направление космического расширения. В результате расширение Вселенной прекратится, а затем она начнет сжиматься. (Так же как в случае с подброшенным камнем: если масса Земли достаточно велика, то камень в конце концов достигнет наивысшей точки, а затем снова упадет на Землю.) Когда звезды и галактики устремятся навстречу друг другу, температуры начнут расти. (Каждый, кто хоть раз накачивал велосипедную шину, знает, что при сжатии газ нагревается.

    Существует три варианта возможного развития Вселенной. Если СО меньше 1 (а У. равна 0), то Вселенная будет продолжать расширяться вечно вплоть до Большого Охлаждения. Если СО больше 1, то Вселенная придет к Большому Сжатию. Если СО равна 1, то Вселенная — плоская и будет продолжать расширяться вечно. (Данные со спутника WMAP показывают, что О) и %. в сумме дают единицу, а это означает, что Вселенная плоская.


    Механическая работа накачивания воздуха преобразует энергию гравитации в тепловую энергию.) В конце концов температуры станут настолько высокими, что всякая жизнь исчезнет, а во Вселенной начнется процесс «Большого Сжатия». (Астроном Кен Кросвелл называет этот процесс «от создания к сжиганию».)

    Третий вариант заключается в том, что О) равняется 1. Иными словами, плотность Вселенной равна критической плотности. В таком случае Вселенная балансирует на грани между двумя крайностями, но при этом она будет продолжать расширяться вечно. (Как мы увидим, этот сценарий развития вписывается в инфляционную картину.)

    Если ? меньше 1 (а %. равна 0), то Вселенная открыта, а ее кривизна отрицательна, как кривизна седла. Параллельные линии никогда не сходятся, а внутренние углы треугольника в сумме дают меньше 180 градусов.


    И наконец, существует возможность, что Вселенная после Большого Сжатия снова возникнет при очередном Большом Взрыве. Эту теорию называют теорией пульсирующей Вселенной.

    Фридман доказал, что каждый из описанных сценариев развития определяет кривизну пространства-времени. В случае, если О) меньше 1 и Вселенная расширяется вечно, то, по Фридману, бесконечно не только время, но и пространство. Такую Вселенную называют «открытой», то есть бесконечной во времени и в пространстве. Когда Фридман подсчитал кривизну такой Вселенной, он обнаружил, что она отрицательна. (Это похоже на поверхность седла или изогнутой трубы. Если бы жучок жил на этой поверхности, он бы обнаружил, что параллельные линии никогда не пересекаются, а внутренние углы треугольника в сумме дают меньше 180 градусов.)

    Если СО больше 1, то Вселенная в конце концов придет к Большому Сжатию. Время и пространство конечны. Фридман открыл, что кривизна такой Вселенной положительна (она похожа на сферу). И, наконец, если СО равняется 1, то пространство плоское, а время и пространство границ не имеют.

    Если СО больше 1, то Вселенная замкнута и ее кривизна положительна, как в сфере. Параллельные линии всегда сходятся, а внутренние углы треугольника в сумме дают больше 180 градусов.

    Фридман не только первым применил комплексный подход к космологическим уравнениям Эйнштейна, он также представил наиболее реалистичную версию Судного Дня, конца Вселенной: исчезнет ли она в леденящем холоде, сгорит ли в Большом Сжатии или же будет продолжать пульсировать вечно. Ответ определяется ключевыми параметрами: плотностью Вселенной и энергией вакуума.

    Но в картине, нарисованной Фридманом, зияет дыра. Если Вселенная расширяется, это означает, что у нее должно было быть начало. Теория Эйнштейна ничего не сообщает о моменте этого начала. Отсутствовал именно момент создания — Большой Взрыв. И вот в конце концов трое ученых представили нам убедительнейнгую картину Большого Взрыва.

    ГЛАВА 3

    Большой Взрыв

    Вселенная не просто удивительнее, чем мы предполагаем; она удивительнее, чем мы можем предположить.

    Дж. Б. С. Холдейн

    Что мы, люди, ищем в истории создания, — так это способ познания мира, который откроет нам нечто, выходящее за пределы данных опыта, что дает нам знания и одновременно формирует нас в своих пределах. Вот что нужно людям. Вот чего просит душа.

    Джозеф Кэмпбелл

    Данные, полученные с помощью космического телескопа Хаббла, явно указывали на то, что Вселенная моложе, чем ее старейшая звезда, а это с научной точки зрения невозможно. Данные показывали, что возраст Вселенной от 8 до 12 млрд лет, в то время как некоторые ученые придерживались мнения о том, что старейшие звезды насчитывают 14 млрд лет. «Вы не можете быть старше вашей мамочки», — прокомментировал этот факт Кристофер Импей из Аризонского университета.

    Но раз уж вы прочитали заголовок, выделенный жирным шрифтом, то вы понимаете, что теория Большого Взрыва пребывает в добром здравии. Доказательства, оспаривающие теорию Большого Взрыва, основывались на данных одной-единственной галактики Ml 00, а такой метод научных исследований весьма сомнителен. В статье утверждалось, что бреши в теории «столь велики, что сквозь них легко прошел бы космический корабль «Энтерпрайз» из телесериала "Стар Трек"». С опорой на необработанные данные космического телескопа Хаббла возраст Вселенной можно было вычислить не точнее, чем с 10-20-процентной погрешностью.

    Я считаю, что теория Большого Взрыва основывается не на догадках, а на результатах обработки сотен данных из нескольких источников, которые все вместе подтверждают единую непротиворечивую теорию. (В науке не все теории равнозначны. Каждый может предложить свою версию создания Вселенной, но при этом необходимо, чтобы такая теория могла объяснить результаты обработки множества собранных данных, которые легко вписываются в теорию Большого Взрыва.)

    Три великих «доказательства» теории Большого Взрыва основаны на работе троих невероятно талантливых ученых, каждый из которых занимал ведущее положение в той области науки, которой занимался. Это Эдвин Хаббл, Георгий Гамов и Фред Хойл.

    Эдвин Хаббл, астроном-аристократ

    Теоретические основы космологии были заложены Эйнштейном, что же касается современной экспериментальной космологии, то своим созданием она практически полностью обязана Эдвину Хабблу — возможно, величайшему астроному XX столетия.

    Хаббл родился в глухом местечке Маршфилд (штат Миссури). У скромного деревенского парня были тем не менее большие амбиции. Отец, адвокат и страховой агент, убеждал его заняться юриспруденцией. Однако Эдвин был покорен романами Жюля Верна и… очарован звездами. Он жадно глотал классические произведения научной фантастики, такие, как «Двадцать тысяч лье под водой» и «Из пушки на Луну». Он прекрасно боксировал, тренеры уговаривали юношу профессионально заниматься боксом, чтобы со временем выйти на поединок с чемпионом мира в тяжелом весе Джеком Джонсоном.

    Хаббл сумел получить престижную стипендию имени Родса для изучения юриспруденции в Оксфорде, где начал осваивать манеры британской аристократической элиты. (Он стал носить твидовые костюмы, курить трубку, добиваться безукоризненного британского выговора и рассказывать о дуэльных шрамах, хоть и поговаривали, что он нанес их себе сам.)

    Однако счастья Хаббл не испытывал. Его не вдохновляли гражданские правонарушения и судебные процессы — сердце его с детства принадлежало звездам. Он набрался храбрости и круто изменил жизнь, отправившись из Чикагского университета в обсерваторию Маунт Уилсон в Калифорнии, где находился самый большой в мире телескоп со 100-дюймовым зеркалом. Начав карьеру так поздно, Хаббл очень торопился. Наверстывая упущенное время, он стремился как можно быстрее найти ответы на глубочайшие и древнейшие вопросы в астрономии.

    В 1920-е годы Вселенная была удобным местечком. Люди верили, что она состоит лишь из Галактики Млечный Путь, туманной полосы света в ночном небе, напоминающей разлитое молоко. (Вообще, слово «галактика» происходит от греческого слова, обозначающего молоко.) В 1920 году состоялся «Великий спор» между астрономами Харлоу Шейпли и Хебером Кертисом из Ликской обсерватории. Спор шел на тему «Размер Вселенной» и касался размеров Галактики Млечный Путь и всей Вселенной в целом. Шейпли отстаивал точку зрения, что Млечный Путь — это и есть вся Вселенная. Кертис считал, что за пределами Млечного Пути находятся «спиральные туманности», странные, но очень красивые образования вращающейся туманной материи. (Еще в XVIII в. Иммануил Кант высказывал предположение, что эти туманности являются «островными Вселенными».)

    Хаббл заинтересовался этим спором. Основной проблемой было то, что определение расстояния до звезд (и до сегодняшнего дня) является для астрономов дьявольски сложной задачей. Яркая, но очень далекая звезда может выглядеть точно так же, как тусклая, но ближняя звездочка. Эта путаница послужила источником многих серьезных споров и противоречий в астрономии. Для решения проблемы Хабблу требовалась так называемая «стандартная свеча», объект, который испускает одно и то же количество света в любой точке Вселенной. (Вообще, значительная часть усилий в современной астрономии направлена именно на поиск и калибровку таких «стандартныхсвечей». Многие споры в астрономии ведутся именно о том, насколько в действительности надежны эти «свечи».) Если бы действительно существовала такая свеча, которая горит однородно и с одинаковой интенсивностью в любой точке Вселенной, то звезда, скажем, в четыре раза менее яркая, чем стандартная, просто находилась бы вдвое дальше от Земли.

    Однажды вечером, когда Хаббл анализировал фотографию спиральной туманности Андромеды, у него наступил момент озарения. Он обнаружил в пределах туманности Андромеды разновидность переменной звезды (цефеиду), их изучением ранее занималась Генриетта Ливитт. Было известно, что цефеиды постоянно «разгорались» и меркли через определенные промежутки времени, при этом время одного полного цикла зависело от яркости звезды. Чем она ярче, тем дольше цикл пульсации. Таким образом, измерив продолжительность этого цикла, можно определить яркость звезды и вычислить расстояние до нее. Хаббл подсчитал, что период изменения блеска звезды составляет 31,4 дня, что, к его большому удивлению, соответствовало расстоянию в миллион световых лет, а значит, звезда находилась далеко за пределами Галактики Млечный Путь. (Светящийся диск Млечного Пути насчитывает лишь 100 ООО световых лет в поперечнике. Дальнейшие подсчеты показали, что Хаббл даже недооценил действительное расстояние до Андромеды, которое приближается к двум миллионам световых лет.)

    Проведя такой эксперимент с другими спиральными туманностями, Хаббл обнаружил, что они тоже находятся далеко за пределами Галактики Млечный Путь. Иначе говоря, ему стало ясно, что спиральные туманности представляют собой полноправные «островные вселенные», а Млечный Путь — лишь одна из многих галактик на небесном своде.

    Размер Вселенной вырос буквально на глазах. Оказалось, что она вовсе не состоит из одной галактики, а заполнена миллионами, а возможно, и миллиардами сестер-галактик. Вместо 100 ООО световых лет в поперечнике Вселенная вдруг стала измеряться миллионами, а возможно, и миллиардами световых лет.

    Уже одно это открытие обеспечило бы Хабблу законное место в пантеоне великих астрономов. Но ему самому этого было мало. Хаббл намеревался не просто определить расстояние до галактик, но и вычислить, насколько быстро они движутся.

    Эффект Допплера и расширяющаяся Вселенная

    Хаббл знал, что простейшим способом вычислить скорость отдаленных объектов является анализ изменений в звуке или свете, который они испускают, так называемого эффекта Допплера. Машины издают звук, проносясь по шоссе. Полицейские пользуются эффектом Допплера для вычисления скорости, с которой вы едете. Они направляют на вашу машину луч лазера, который отражается обратно к полицейской машине. Проанализировав изменение частоты света лазера, полицейские могут вычислить скорость вашего движения.

    Скажем, если звезда движется по направлению к вам, то световые волны, которые она испускает, складываются подобно мехам аккордеона. В результате длина волн испускаемого ею света становится короче. Желтая звезда будет казаться слегка синеватой (потому что волны синего цвета короче, чем желтого). Подобным образом, если звезда удаляется от вас, то ее световые волны растягиваются, становятся длиннее, и желтая звезда будет казаться уже красноватой. Чем больше искажение, тем больше скорость звезды. Таким образом, если мы знаем смещение частоты звездного света, мы можем определить скорость звезды.

    В 1912 году астроном В. Слайфер обнаружил, что галактики удаляются от Земли с огромной скоростью. Вселенная не просто была изначально намного больше, чем ранее предполагалось, она еще и расширялась с огромной скоростью. Он обнаружил, что галактики имеют красное смещение, а не синее, что вызвано удалением галактик от нас. Открытие Слайфера показало, что Вселенная действительно динамична, а не статична, как предполагали Ньютон и Эйнштейн.

    В те столетия, что ученые изучали парадоксы Бентли и Ольберса, никто не принимал всерьез тезис, что Вселенная расширяется.

    В 1928 году Хаббл совершил, можно сказать, судьбоносную поездку в Голландию, где встретился с Виллемом де Ситтером. Хаббла заинтересовало предположение де Ситтера, что чем дальше находится галактика, тем с большей скоростью она должна двигаться. Представьте воздушный шарик, на поверхности которого нарисованы галактики. По мере увеличения шарика в объеме «галактики», расположенные недалеко друг от друга, разносятся (разлетаются) в стороны сравнительно медленно. Чем ближе они друг к другу, тем медленнее они взаимно удаляются. Но галактики, находящиеся далеко друг от друга, разлетаются значительно быстрее.

    Де Ситтер посоветовал Хабблу найти подтверждение этого явления в собранных им данных, что могло быть достигнуто анализом красного смещения галактик. Чем значительнее красное смещение галактики, тем быстрее она уносится прочь, а значит, тем дальше находится. (По теории Эйнштейна, красное смещение было вызвано не удалением галактики от Земли, а, напротив, расширением пространства между галактикой и Землей. Происхождение красного смещения он объяснял тем, что световые волны, испускаемые далекой галактикой, удлиняются в связи с расширением пространства, а потому сдвигаются в красную сторону спектра.)

    Закон Хаббла

    Вернувшись в Калифорнию, Хаббл последовал совету де Ситтера и приступил к поискам доказательств этого положения. Проанализировав 24 галактики, он обнаружил, что чем дальше находится галактика, тем быстрее она отдаляется от Земли, как и доказал Эйнштейн своими расчетами. Соотношение скорости и расстояния было приблизительно постоянным. Эта величина известна как постоянная Хаббла, или Н. Возможно, постоянная Хаббла является важнейшим космическим критерием, поскольку она выражает скорость расширения Вселенной.

    Ученые задумались над тем, что если Вселенная расширяется, то у нее непременно должно было быть начало. Величина, обратная постоянной Хаббла, позволяет нам определить приблизительный возраст Вселенной. Представьте, что вы смотрите видеозапись взрыва. Вы видите осколки, улетающие прочь от места взрыва, и можете примерно вычислить скорость расширения. Но это также означает, что можно отмотать пленку назад, до того момента, когда все осколки еще составляют единое целое. Зная скорость расширения Вселенной, мы можем перенестись назад и вычислить примерно время, когда произошел Большой Взрыв.

    (По первоначальной оценке Хаббла, возраст Вселенной — около 1,8 млрд лет, что добавило головной боли целым поколениям космологов, поскольку эта цифра меньше, чем предполагаемый возраст Земли и звезд. Годы спустя астрономы поняли, что ошибки, допущенные при измерении света от переменных цефеид в туманности Андромеды, стали причиной неверного вычисления значения постоянной Хаббла. По сути, «Хаббловы войны» по поводу уточненного значения постоянной Хаббла бушевали на протяжении последних 70 лет. На сегодняшний день наиболее точную цифру дают данные, полученные спутником WMAP.)

    В 1931 году в ходе триумфального посещения Эйнштейном обсерватории Маунт Уилсон он впервые встретился с Хабблом. Признавая, что Вселенная действительно расширяется, Эйнштейн назвал космологическую константу своей «величайшей ошибкой». (Однако ошибка Эйнштейна способна поколебать до основания всю космологию, в чем мы убедимся в дальнейшем, когда будем говорить о данных, полученных со спутника WMAP.) Когда жена Эйнштейна осматривала огромную обсерваторию Маунт Уилсон, ей сказали, что благодаря этому гигантскому телескопу можно определить первоначальный вид Вселенной. Миссис Эйнштейн весело ответила: «Мой муж делает это на обороте старого конверта».

    Большой Взрыв

    Бельгийский священник Жорж Леметр, узнавший о теории Эйнштейна, был очарован идеей, что из этой теории логически вытекает вывод о расширяющейся, имеющей начало Вселенной. Он понял, что, поскольку газы нагреваются при сжатии, Вселенная «начала времен» должна была быть невероятно горячей. В 1927 году Леметр заявил, что Вселенная, должно быть, возникла из невероятно горячего и сверхплотного «первоатома», который внезапно взорвался, дав начало расширяющейся Вселенной Хаббла. Он писал: «Эволюцию мира можно сравнить с только что закончившимся фейерверком: несколько огненных облаков, пепел и дым. Стоя на остывшей золе, мы видим, как медленно угасают солнца, и пытаемся воссоздать исчезнувшее сияние начала миров».[5]

    Леметр посещал физические конференции и донимал ученых своей теорией. Они благодушно выслушивали его, а затем спокойно отвергали его теорию. Артур Эддингтон, один из ведущих физиков своего времени, сказал: «Как ученый, я просто не верю в то, что существующий порядок вещей произошел из Взрыва… Понятие «внезапного начала» для существующего порядка в Природе мне противно».

    Но настойчивость Леметра постепенно преодолела сопротивление физического сообщества. Ученый, которому предстояло стать важнейшим представителем и популяризатором теории Большого Взрыва, в конце концов представил самое убедительное доказательство этой теории.

    Георгий Гамов, космический шутник

    Работу Хаббла, утонченного аристократа от астрономии, продолжил не менее талантливый ученый, Георгий (Джордж) Гамов. Во многом Гамов являл собой противоположность Хабблу: шутник, карикатурист, прославившийся розыгрышами и двадцатью занимательными научными книгами, многие из которых были предназначены для молодежи. Несколько поколений физиков (включая и меня) было воспитано на его занимательных и содержательных книгах по физике и космологии. В то время, когда теория относительности и квантовая теория производили переворот в науке и обществе, книги Гамова занимали особое место, потому что они были достоверным источником информации в вопросах передовой науки, вполне доступным даже подросткам.

    Ученые менее крупные часто бывают не слишком богаты идеями, они довольствуются разработкой чужих. Гамов же был одним из самых плодовитых гениев своего времени, эрудитом, стремительно выдававшим на-гора идеи, изменившие ход развития ядерной физики, космологии и даже исследований ДНК. Возможно, не случайно автобиография Джеймса Уотсона, который вместе с Фрэнсисом Криком раскрыл тайну молекулы ДНК, называется «Гены, Гамов и девушки». Коллега-физик Эдвард Теллер вспоминал: «90 % теорий Гамова были неправильны, очень легко было понять, что они неправильны. Но он никогда не возражал. Он был одним из тех, кто не испытывает особой гордости за свои открытия. Он выдавал последнюю идею, а затем рассматривал ее как шутку». Но оставшиеся 10 % его теорий продолжали развиваться, изменяя всю мировую науку.

    Гамов родился в Одессе (Россия) в 1904 году, когда страна стояла на пороге социального переворота. Он вспоминал, что «уроки часто отменяли во время стрельбы или штыковых атак греческих, французских или британских экспедиционных войск на главных улицах города против красных, белых или даже зеленых или когда русские разных цветов сражались друг против друга».

    Решающий момент в жизни Гамова наступил в тот день, когда он пошел в церковь и после службы тайком унес домой кусочек просфоры. Глядя в микроскоп, он не смог разглядеть разницы между хлебом причастия, символизирующим тело Христово, и обычным хлебом. Он заключил: «Я считаю, что именно этот эксперимент сделал меня ученым».

    Гамов получил образование в Ленинградском университете, где физику преподавал Александр Фридман. Позднее в Копенгагенском университете он встретился со светилами науки, такими, как Нильс Бор. (В 1932 году он и его жена совершили неудачную попытку оставить Советский Союз, отплыв на плоту из Крыма в Турцию. Позднее ему удалось покинуть страну благодаря поездке на конференцию по физике в Брюссель, что обеспечило ему смертный приговор в Советском Союзе.) Гамов прославился тем, что посылал шуточные стишки своим друзьям. Большинство из них непечатные, в одном описывается беспокойство космологов, когда они встречаются лицом к лицу с огромностью астрономических чисел и глядят в лицо бесконечности:

    Жил-был парень в прекрасном Манчестере,
    Взял он корень из бесконечности,
    От количества знаков
    Чуть не умер от страха,
    Бросил числа, стал думать о Вечности.

    В 1920-е годы в России Гамов впервые добился большого успеха, разрешив загадку радиоактивного распада. Благодаря работам мадам Кюри и других ученых стало известно, что атом урана нестабилен и излучает радиацию в виде альфа-лучей (ядро атома гелия). Но согласно механике Ньютона загадочная ядерная сила сцепления, сохраняющая ядро целым, должна была предотвращать расщепление атома. Как же это было возможно?

    Гамов (а независимо от него — Р. Герни и Э. Кондон) понял, что радиоактивный распад стал возможен потому, что принцип неопределенности в квантовой механике гласит: нельзя одновременно узнать точное местоположение и скорость частицы; следовательно, существовала ничтожно малая вероятность того, что она может «туннелировать», или проникать сквозь барьер. (Сегодня теория «квантового туннелирования» частиц занимает центральное место в физике и используется для объяснения свойств электронных устройств, черных дыр и Большого Взрыва. Сама Вселенная могла быть создана подобным туннелированием.)

    Проводя аналогию, Гамов говорил об узнике, который заточен в темницу, окруженную высокими тюремными стенами. В классическом мире Ньютона побег невозможен. Но в мире квантовой теории вы не знаете точно, где находится узник в любой момент времени, так же, как не знаете и скорость его перемещения. Если узник станет биться о стены с достаточной частотой, возникнет некоторая вероятность того, что однажды он пройдет сквозь них, хотя это будет прямым противоречием здравому смыслу и ньютоновской механике. Существует конечная, поддающаяся вычислению вероятность того, что узник окажется за пределами тюремных стен. В случае с объектом «узник», имеющим большие размеры и малую энергию, для такого чуда может понадобиться время, превышающее время жизни всей Вселенной. Но с альфа-частицами и субатомными частицами так происходит почти все время, потому что они часто бьются о стены ядра, используя огромные энергии. Многие считали, что эта работа Гамова заслуживает Нобелевской премии.

    В 1940-е годы интересы Гамова от теории относительности переместились в сторону космологии, которую он рассматривал как неизведанную ранее сферу деятельности. Что было известно в то время? То, что небо черное, а Вселенная расширяется. Гамов руководствовался единственной целью: найти любые свидетельства, или «окаменелости», доказывающие, что миллиарды лет тому назад произошел Большой Взрыв. Это было бесперспективно, поскольку космология не экспериментальная наука в истинном смысле этого слова. Не существует таких экспериментов, которые бы доказали Большой Взрыв. Космология больше похожа на криминальную дедукцию — науку, основанную на наблюдениях, где нужно искать «следы» или «свидетельства» на месте преступления, — чем на науку, где можно ставить точные эксперименты.

    Ядерная кухня Вселенной

    Очерёдным вкладом Гамова в физическую науку стало открытие ядерных реакций, в результате которых образуются легчайшие элементы, существующие ныне во Вселенной. Ему нравилось называть это «доисторической кухней Вселенной», в которой все элементы изначально возникли из жаркого пламени Большого Взрыва. Сегодня этот процесс носит название «нуклеосинтез», или установление относительного содержания элементов во Вселенной. Суть теории Гамова в том, что существует нерушимая цепочка элементов, начинающаяся с водорода, которая может быть построена путем последовательного добавления частиц к атому водорода. Гамов утверждал, что вся периодическая таблица элементов Менделеева могла быть создана в пекле Большого Взрыва.

    Гамов и его последователи доказывали, что в момент творения Вселенная представляла собой невообразимо горячее скопление протонов и нейтронов; затем, видимо, произошло слияние — атомы водорода образовали атомы гелия. Подобное происходит в водородной бомбе или звезде: температуры настолько велики, что протоны — ядра водорода — с огромной скоростью сталкиваются друг с другом и сливаются, превращаясь в ядро гелия. По этому сценарию последующие столкновения водорода с гелием рождают набор следующих элементов, включая литий и бериллий. Гамов предположил, что элементы более высокого порядка могут быть образованы последовательно путем добавления все большего количества субатомных частиц к ядру, — иначе говоря, он предположил, что сотня или более того элементов, составляющих всю видимую Вселенную, были «испечены» в огненном жару Большого Взрыва.

    В свойственной ему манере Гамов в общих чертах нарисовал свою претенциозную идею и предоставил своему аспиранту Ральфу Альферу доработать детали. Когда работа была закончена, Гамов не смог удержаться от розыгрыша. Он поставил имя физика Ганса Бете на титуле своей работы без его ведома, и она стала известна как «альфа-бета-гамма» теория.

    Гамов обнаружил, что Большой Взрыв был действительно настолько мощным, что его жара хватило для образования гелия, который составляет около 25 % массы Вселенной. Работая в другом направлении, «доказательство» теории Большого Взрыва можно обнаружить лишь при взгляде на многочисленные звезды и галактики нашего времени — мы понимаем, что они состоят примерно на 75 % из водорода, а на 25 % — из гелия и некоторых других микроэлементов. (Как сказал астрофизик Дэвид Спергель из Принстона: «Каждый раз, покупая воздушный шарик, наполненный гелием, вы покупаете атомы, многие из которых образовались в первые несколько минут после Большого Взрыва».)

    Однако у Гамова появились проблемы с расчетами. Его теория была абсолютно верна лишь для очень легких элементов. Но элементы с 5 и 8 нейтронами и протонами чрезвычайно неустойчивы, а потому не могут служить «мостом» для создания элементов с большим количеством нейтронов и протонов. Мост смыло на пяти и восьми частицах. Поскольку Вселенная состоит из тяжелых элементов с гораздо большим количеством частиц, чем 5 и 8 протонов и нейтронов, то как же они образовались при взрыве, осталось космической тайной. Неудача Гамова в попытках преодолеть разрыв на пяти и восьми частицах на долгие годы поставила перед физиками нерешенную проблему, отрезая путь его идее о том, что все элементы Вселенной возникли в момент Большого Взрыва.

    Микроволновое реликтовое излучение

    В то же время Гамовым овладела другая идея: если Большой Взрыв был так невообразимо горяч, то, возможно, часть его остаточного «жара» все еще циркулирует во Вселенной. Если так, то этот жар предоставил бы «ископаемую запись» о Большом Взрыве. Возможно, интенсивность Большого Взрыва была настолько невообразимой, что Вселенная до сих пор наполнена однородной туманностью его излучения.

    В 1946 году Гамов предположил, что Большой Взрыв — это взрыв сверхгорячего ядра нейтронов. То было вполне разумное предположение, поскольку о других субатомных частицах (помимо электрона, протона и нейтрона) известно было очень мало. Гамов понял, что если бы он смог оценить температуру нейтронного шара, то смог бы подсчитать количество и природу излучения, которое тот испускал. Через два года Гамов доказал, что излучение этого сверхгорячего ядра действовало бы как «излучение абсолютно черного тела». Это совершенно особый вид излучения, отдаваемого горячим объектом: свет, падающий на него, объект поглощает полностью, испуская излучение особым образом. Например, Солнце, расплавленная лава, горячие угли в огне и горячая глина в печи светятся желто-красным и испускают излучение «абсолютно черного тела». (Излучение абсолютно черного тела было впервые открыто известным фабрикантом фарфора Томасом Веджвудом в 1792 году. Он заметил, что при обжиге в печи свежеизготовленных изделий они меняют свой цвет от красного к желтому, затем к белому по мере того, как повышается температура.)

    Это важный момент, поскольку, зная цвет горячего объекта, примерно знаешь его температуру, и наоборот. Точная формула, связывающая температуру горячего объекта и испускаемого им излучения, была впервые получена Максом Планком в 1900 году, что привело к рождению квантовой теории. (Это, по сути, одна из теорий, при помощи которой ученые определяют температуру Солнца. Солнце излучает в основном желтый цвет, что соответствует температуре абсолютно черного тела в 6000°К. Таким образом, нам известна температура внешних слоев атмосферы Солнца. Подобным образом рассчитывалась температура поверхности красной звезды-гиганта Бетельгейзе — 3000°К, — температура абсолютно черного тела, соответствующая красному излучению: такую температуру имеет раскаленный кусок угля.)

    В своей работе 1948 года Гамов впервые предположил, что излучение Большого Взрыва может иметь характерную особенность — это излучение абсолютно черного тела. Важнейшей характерной особенностью излучения абсолютно черного тела является его температура. Теперь Гамову необходимо было вычислить температуру излучения абсолютно черного тела.

    Аспирант Гамова Ральф Альфер и другой ученик, Роберт Херман, попытались завершить расчеты Гамова, вычислив точную температуру излучения. Гамов написал: «Экстраполируя от первых дней Вселенной до настоящего времени, мы обнаружили, что за прошедшие эпохи Вселенная должна была охладиться до температуры 5 градусов выше абсолютного нуля».

    В 1948 году Альфер и Херман опубликовали работу, где были представлены аргументы в пользу того, что температура излучения, сохранившегося после Большого Взрыва, сегодня должна составлять 5 градусов выше абсолютного нуля (их оценка была поразительно близка к той цифре, которая известна нам сейчас — 2,7 градуса Кельвина). Они постулировали, что излучение, которое они определили как излучение микроволнового диапазона, должно до сих пор циркулировать по Вселенной, наполняя космос однородным «послесвечением».

    (Аргументация следующая. В течение многих лет после Большого Взрыва температура Вселенной была настолько высока, что всякий раз, когда образовывался атом, его снова разрывало на части; поэтому образовалось множество свободных электронов, которые и могут рассеивать свет. Таким образом, Вселенная была темной, не прозрачной. Любой луч света, двигающийся в этой сверхгорячей Вселенной, поглощался, пройдя короткое расстояние, поэтому Вселенная выглядела облачной. Однако через 380 ООО лет температура упала до 3000 градусов. При более низкой температуре атомы уже, сталкиваясь, больше не разрывались. В результате стало возможным формирование устойчивых атомов, а лучи света смогли перемещаться в течение световых лет, не будучи поглощенными. Таким образом, впервые пустое пространство стало прозрачным. Излучение же, которое больше не поглощалось сразу же, как только возникло, продолжает циркулировать во Вселенной и в наши дни.)

    Когда Альфер и Херман показали Гамову свои окончательные расчеты температуры Вселенной, их учитель был разочарован. Температуру настолько низкую измерить было чрезвычайно трудно. Гамову понадобился целый год, чтобы в конце концов согласиться с тем, что их расчеты верны. Но он отчаялся когда-либо измерить столь слабое поле излучения. Приборами 1940-х годов безнадежно было измерять слабое эхо Большого Взрыва. (В более поздних вычислениях, отталкиваясь от неверного предположения, Гамов поднял температуру излучения до 50 градусов.)

    Они прочитали цикл лекций для популяризации своей теории. Но, к несчастью, их пророческие выводы были проигнорированы. Альфер писал: «Мы потратили уйму энергии на лекции о нашей работе. Никто не клюнул; никто не сказал, что температура может быть измерена… И вот где-то в период с 1948 по 1955 год мы, наверное, сдались».

    Непоколебимый Гамов благодаря своим лекциям и книгам стал ведущей фигурой в области теории Большого Взрыва. Но он встретил достойного соперника — яростного противника его взглядов. Гамов был способен очаровать слушателей шутками и остротами, зато Фред Хойл мог потрясти слушателей ослепительным блеском своего красноречия и агрессивной дерзостью.

    Фред Хойл, оппонент

    Микроволновое реликтовое излучение — это второе «доказательство» Большого Взрыва. Но то, что третье серьезное доказательство Большого Взрыва (через нуклеосинтез) даст Фред Хойл, трудно было себе представить: по иронии судьбы, в течение всей своей профессиональной карьеры он пытался оспорить теорию Большого Взрыва.

    Хойла можно было бы назвать олицетворением человека, не способного к научной деятельности. Он был блестящим оппонентом, и ему ничего не стоило в несколько агрессивной манере отрицать традиционную мудрость. В то время как Хаббл был изысканным аристократом с манерами оксфордского преподавателя, а Гамов — остроумным шутником и эрудитом, привлекающим слушателей остротами, стишками и шутками, Хойл напоминал неотесанного деревенского бульдога; он казался странным образом не на своем месте в древних стенах Кембриджского университета, старинной альма-матер Исаака Ньютона.

    Фред Хойл родился в 1915 году в Северной Англии. Он жил в районе, где суконная промышленность занимала ведущее место, был сыном торговца тканями. С детства в нем проснулся интерес к науке. В те времена радио еще только-только появилось в сельской местности. Хойл вспоминал, что человек 20–30 с большим энтузиазмом установили у себя дома радиоприемники. Но поворотный момент наступил в его жизни, когда родители подарили ему телескоп.

    Воинственный стиль Хойла сформировался в глубоком детстве. В возрасте трех лет он знал таблицу умножения, а затем учитель показал ему римские цифры. «Как может быть кто-то настолько глуп, чтобы писать VIII вместо 8?» — вспоминал он с презрением. Но когда ему сказали, что закон требует от него посещения школы, Хойл написал: «Я сделал вывод, что, к несчастью, я родился в мире, где господствует яростное чудовище, называемое «закон», всесильное и безмерно тупое».

    Пренебрежению Хойла к авторитетам способствовала стычка с учительницей, которая сказала всему классу, что у цветка (назвала его) пять лепестков. Как доказательство ее неправоты Фред принес в класс именно этот цветок, но с шестью лепестками. За эту дерзость она сильно ударила его по левому уху. (Позднее Хойл на это ухо оглох.)

    Теория стационарной Вселенной

    В 1940-е годы Хойл не принял теорию Большого Взрыва. Одним из недостатков этой теории было то, что из-за ошибок в измерении интенсивности излучения далеких галактик Хаббл неправильно рассчитал возраст Вселенной — 1,8 млрд лет. Геологи же утверждали, что Земля и Солнечная система, вполне возможно, насчитывают миллиарды лет. Как же могла Вселенная быть моложе собственных планет?

    Вместе с коллегами, Томасом Голдом и Германом Бонли, Хойл начал работу над созданием собственной теории. По легенде, их теория стационарной Вселенной была навеяна триллером «Глубокой ночью» с Майклом Редгрейвом в главной роли. Фильм состоит из нескольких рассказов о страшных историях, но в последней сцене происходит неожидаемый виток: фильм заканчивается точно так же, как и начался. Таким образом, события замыкаются в круг, не имея ни начала, ни конца. Как утверждают, именно фильм вдохновил трех ученых на разработку теории Вселенной, у которой также не было ни начала, ни конца. (Позднее Голд внес немного ясности в эту историю. Он вспоминал: «Кажется, несколькими месяцами ранее мы смотрели фильм, и когда я предложил рассмотреть теорию устойчивой Вселенной, я сказал: «А не напоминает ли это фильм "Глубокой ночью"?»)

    По этой теории части Вселенной действительно расширялись, но новая материя постоянно создавалась из ничего, так что плотность Вселенной оставалась неизменной. Хотя Хойл не мог объяснить, каким же именно таинственным образом эта материя появлялась ниоткуда, теория незамедлительно привлекла сторонников, которые вступили в борьбу с приверженцами теории Большого Взрыва. Хойлу казалось нелогичным, что огненный катаклизм возник ниоткуда, став причиной того, что галактики разлетелись во все стороны. Он предпочитал спокойное создание вещества из ничего. Иными словами, такая Вселенная была бы безвременной. У нее не было ни начала, ни конца. Она просто была всегда.

    (Противостояние «Стационарная Вселенная — Большой Взрыв» походило на противостояния разных теорий в геологии и других науках. В геологии существовал затянувшийся спор между теорией однородности (мнение о том, что Земля приобрела свою теперешнюю форму в результате постепенных изменений в прошлом) и теорией катастроф (которая постулировала, что изменения произошли в результате ужасных катаклизмов). Несмотря на то что теория однородности и до сих пор объясняет многие из геологических и экологических особенностей Земли, никто не станет отрицать влияния комет и астероидов, которые становились причинами массовых вымираний или разрушения и смещения континентов в результате тектонических сдвигов.)

    Лекции Би-Би-Си

    Хойл всегда любил хорошую драку. В 1949 году его и Гамова пригласила Британская радиовещательная корпорация (Би-Би-Си) для проведения дискуссии о происхождении Вселенной. Во время этих передач Хойл, оспаривая теорию Большого Взрыва, и далей, собственно, такое название. Он сказал следующее: «Эти теории основывались на гипотезе о том, что вся материя во Вселенной была создана в результате одного Большого Взрыва, происшедшего в определенное время в далеком прошлом». Это название пристало. Теория Гамова отныне была официально названа теорией Большого Взрыва, и название это придумал ее величайший враг. (Позднее Хойл заявил, что не имел в виду унизить противника. «Я ни в коем случае не выдумал это название для уничижения. Оно было выбрано в качестве аргумента в споре», — признался он.)

    (В течение многих лет сторонники теории Большого Взрыва героически пытались это название изменить. Они недовольны этой, почти вульгарной коннотацией названия теории, а также тем фактом, что его изобрел основной ее противник. Языковых пуристов особенно раздражало то, что название и по сути-то абсолютно неверно. Во-первых, Большой Взрыв не был большим (поскольку это был взрыв некоего крошечного образования, намного меньшего, чем атом), а во-вторых, взрыва как такового не было (поскольку в открытом космосе не было воздуха). В августе 1993 года журнал «Небо и Телескоп» объявил конкурс на новое название теории Большого Взрыва. На конкурс было представлено тринадцать тысяч предложений, но жюри не смогло выбрать из них вариант лучше первоначального.)

    Чем Хойл поистине прославился в народе, так это своими знаменитыми радиолекциями на Би-Би-Си, посвященными науке. В 1950-х годах Би-Би-Си планировала транслировать научные лекции в субботу вечером. Однако, когда изначально приглашенный гость отказался прийти, продюсеры вынуждены были искать замену. Они связались с Хойлом, и тот согласился. И только потом они проверили досье ученого, где было написано: «Этого человека мы опасаемся приглашать».

    К счастью, они проигнорировали неприятное предостережение предыдущего продюсера, и Хойл прочитал миру пять захватывающих лекций. Эти классические передачи Би-Би-Си очаровали всю нацию и даже вдохновили молодое поколение будущих астрономов. Астроном Уоллес Сарджент вспоминает, что эти передачи оказали на него сильное воздействие: «Когда мне было пятнадцать, я послушал лекции Фреда Хойла по Би-Би-Си под названием «Природа Вселенной». Сама мысль о том, что вы знаете, какова температура и плотность в центре Солнца, чудовищно шокировала. В пятнадцатилетнем возрасте казалось, что такие вещи лежат за пределами возможного знания. Шокировали не просто сами цифры, а тот факт, что их вообще можно узнать».

    Звездный синтез

    Хойл, который презирал праздные размышления, взялся за проверку своей теории. Он был в восторге от идеи, что элементы Вселенной испеклись не в топке Большого Взрыва, как считал Гамов, а в звездном ядре. Если около сотни химических элементов возникло в ядре звезд, то потребность в существовании Большого Взрыва вообще отпадала.

    В ряде работ, содержащих плодотворные идеи и опубликованных в 1940-е — 1950-е годы, Хойл и его коллеги описали в подробностях, как ядерные реакции в ядре звезд, а не в пламени Большого Взрыва присоединяли все больше и больше протонов и нейтронов к ядрам водорода и гелия до тех пор, пока не были созданы все тяжелые элементы, во всяком случае до железа. (Они решили загадку, как создать элементы с массовым числом выше 5, которая поставила в тупик Гамова. В гениальном озарении Хойл понял, что если существовала ранее незамеченная неустойчивая форма углерода, состоящая из трех ядер гелия, то она могла бы просуществовать достаточно долго, чтобы послужить «мостом» для создания элементов высшего порядка. В ядрах звезд эта новая неустойчивая форма углерода могла продержаться достаточно долго для того, чтобы можно было путем последовательного добавления все большего количества нейтронов и протонов создать элементы с массовым числом выше 5 и 8. Когда эта неустойчивая форма углерода действительно была обнаружена, это открытие блестяще продемонстрировало, что нуклеосинтез происходит в ядрах звезд, а не при Большом Взрыве. Хойл даже создал большую компьютерную программу, определяющую почти с первых шагов относительное содержание элементов во Вселенной.)

    Но даже сильного жара внутри звезд недостаточно, чтобы «ис печь» такие элементы, как медь, никель, цинк и уран. (Извлекать энергию при слиянии элементов тяжелее железа чрезвычайно сложно в силу различных причин, в том числе отталкивания протонов в ядре и нехватки связующей энергии.) Для тяжелых элементов понадобилась бы печка побольше — взрыв массивных, или сверхновых звезд. При грандиозном взрыве гигантской звезды температура ее предсмертной агонии может достигать триллионов градусов, и эта энергия оказывается достаточной для «приготовления» элементов тяжелее железа. По сути, это означает, что большинство элементов тяжелее железа — результат взрыва сверхновых звезд.

    В 1957 году Хойл в соавторстве с Маргарети Джефри Бербиджами и Уильямом Фаулером опубликовал, возможно наиболее значительную, работу, где в подробностях были представлены все этапы, необходимые для создания элементов во Вселенной и для определения их распространенности. Аргументы авторов были так точны, вески и убедительны, что даже Гамову пришлось признать, что Хойл представил убедительнейшую картину нуклеосинтеза. Гамов, в присущей ему манере, даже сочинил следующий экспромт в библейском стиле:

    В самом начале, когда Бог создавал элементы, волнуясь при счете, Он не назвал массу пять, а потому, естественно, не могли образоваться тяжелые элементы. Бог был очень разочарован и поначалу хотел снова взорвать Вселенную, а затем начать все сначала. Но это было бы слишком просто. Тогда всемогущий Бог решил исправить свою ошибку самым невероятным образом. И сказал Бог: Да будет Хойл. И появился Хойл. И посмотрел Бог на Хойла… И велел ему сотворить тяжелые элементы так, как ему вздумается. И Хойл решил сотворить тяжелые элементы в ядрах звезд и распространять их по Вселенной с помощью взрывов сверхновых.

    Аргументы против теории стационарной Вселенной

    Однако в течение десятилетий во всех направлениях науки накапливалось все больше доказательств, опровергающих «теорию стационарной Вселенной». Хойл обнаружил, что его борьба обречена на верный проигрыш. По его теории, поскольку Вселенная не эволюционировала, а постоянно создавала новую материю, ранняя Вселенная должна была выглядеть очень похожей на Вселенную наших дней. Видимые нам сегодня галактики тоже должны были походить на те галактики, что существовали миллиарды лет назад. Теория стационарной Вселенной могла быть опровергнута, если бы были обнаружены признаки значительных эволюционных изменений Вселенной на протяжении миллиардов лет.

    В 1960-е годы в космическом пространстве обнаружили загадочные источники невероятной энергии, названные «квазарами», или квазизвездными объектами. (Название было таким броским, что позднее его использовали в качестве марки телевизора.) Квазары генерировали невероятные количества энергии и характеризовались красным смещением огромной величины, что означало, что они находятся на расстоянии миллиардов световых лет от нас, а также что они освещали Вселенную еще в раннем ее детстве (сегодня астрономы считают, что квазары — это гигантские молодые галактики, ведомые энергией огромных черных дыр). У нас нет доказательства существования каких-либо квазаров сегодня, хотя согласно теории стационарной Вселенной они должны существовать. За миллиарды лет они исчезли.

    В теории Хойла крылась еще одна проблема. Ученые доказали, что во Вселенной слишком много гелия, чтобы это вписывалось в теорию стационарной Вселенной. Гелий, известный как газ, используемый для надувания воздушных шаров и небольших дирижаблей, в действительности довольно редок на Земле, но он является вторым по относительному содержанию элементом во Вселенной после водорода. Вообще, он настолько редок, что впервые был обнаружен не на Земле, а на Солнце. (В 1868 году ученые анализировали свет Солнца, проходящий через призму. Преломленный луч света распадался на обычную радугу цветов и спектральных линий, но ученые обнаружили нечеткие спектральные линии, вызванные загадочным элементом, никогда не виденным ранее. Они ошибочно посчитали, что это металл, а названия металлов (в английской терминологии) оканчиваются на Лит, например lithium (литий), uranium (уран). Они дали этому загадочному металлу название helium (гелий) от греческого названия Солнца, «Helios». Когда же в 1895 году гелий был найден на Земле в залежах урана, ученые с большим смущением обнаружили, что это газ, а не металл. Так название гелия, впервые открытого на Солнце, изначально оказалось неправильным.)

    Если первичный гелий в основной своей массе рождался в звездных ядрах, как считал Хойл, он должен был быть довольно редким и находиться в недрах звезд. Но астрономические данные показали, что относительное содержание гелия во Вселенной довольно высоко и составляет 25 % от всей массы атомов во Вселенной. Было обнаружено, что гелий однородно распространен по всей Вселенной (как и предполагал Гамов).

    Сегодня мы знаем, что и в теории Гамова, и в теории Хойла были зерна истины относительно нуклеосинтеза. Гамов считал, что все химические элементы были побочным результатом, или золой, Большого Взрыва. Но его теорию убили провалы на пяти и восьми частицах. Хойл же считал, что смог зачеркнуть теорию Большого Взрыва, показав, что в звездах «пекутся» все элементы — к Большому Взрыву прибегать нет никакой потребности. Но его теории не удалось объяснить огромный процент гелия, существующий, как нам известно, во Вселенной.

    По существу, Гамов и Хойл дали нам взаимодополняющую картину нуклеосинтеза. Очень легкие элементы с массой до 5 и 8 действительно возникли в результате Большого Взрыва, как и предполагал Гамов. Сегодня в результате последних физических открытий стало известно, что во время Большого Взрыва действительно возникла большая часть дейтерия, гелия-3, гелия-4 и лития-7, которые присутствуют в природе. Но более тяжелые элементы были, в основном, созданы в ядрах звезд, как утверждал Хойл. Если мы прибавим элементы тяжелее железа (медь, цинк и золото), которые возникли из обжигающего жара сверхновых звезд, то мы получим завершенную картину, объясняющую соотношение всех элементов во Вселенной. (Любая теория, соперничающая с нынешними взглядами космологов, столкнулась бы с задачей немыслимой сложности: объяснить возникновение более сотни элементов во Вселенной и множества их изотопов.)

    Как рождаются звезды

    Одним из неожиданных результатов жаркого спора по поводу нуклеосинтеза стало довольно полное описание жизненного цикла звезд. Стандартная звезда, такая, как наше Солнце, начинает жизнь как огромный шар разреженного водорода, называемый протозвез-дой; постепенно шар сжимается под воздействием силы гравитации. Начиная сжиматься, этот шар ускоряет вращение (что часто влечет за собой образование двойной звездной системы, где две звезды следуют друг за другом по эллиптическим орбитам, или образование планет в плоскости вращения звезды). Ядро звезды очень сильно разогревается, достигая температуры приблизительно в 10 млн градусов и более, при которой происходит нуклеосинтез водорода с образованием гелия.

    Когда звезда раскаляется, ее называют звездой главной последовательности. Она может гореть около 10 млрд лет, сначала сгорает водород, а потом гелий. Наше Солнце сейчас находится в срединной точке этого процесса. По окончании периода сгорания водорода начинает гореть гелий, вследствие чего звезда невероятно расширяется — до размеров орбиты Марса — и становится «красным гигантом». После того какгелиевое топливо истощается, внешние слои звездного ядра рассеиваются, обнажая ядро — «белый карлик» размером с Землю. Такими-то белыми карликами и встретят свою смерть звезды небольшого размера — вроде нашего Солнца.

    В звездахже, масса которых превосходит массу Солнца в 10–40 раз, процесс нуклеосинтеза протекает намного быстрее. Когда звезда становится красным сверхгигантом, в ее ядре стремительно синтезируются легкие элементы, и поэтому звезда выглядит как некий гибрид: белый карлик внутри красного гиганта. В этом белом карлике могут синтезироваться легкие элементы (с атомным весом ниже железа), составляющие периодическую таблицу элементов. Когда процесс нуклеосинтеза достигает этапа, на котором создается железо как элемент, энергия в процессе нуклеосинтеза больше не вырабатывается, и по прошествии миллиардбв лет ядерные меха наконец прекращают свою работу. В этот момент звезда внезапно коллапсирует, создавая огромные давления, которые фактически вталкивают электроны в ядра. (Создаваемая плотность может в 400 миллиардов раз превосходить плотность воды.) В результате температура подскакивает до триллионов градусов. Энергия гравитации, сконцентрированная в этом крошечном объекте, вызывает взрыв, создавая сверхновую звезду. Высокая температура взрыва снова вызывает нуклеосинтез и синтезируются элементы с атомным весом выше железа по периодической таблице.

    Например, красная звезда-сверхгигант Бетельгейзе, легко различимая в созвездии Ориона, неустойчива; она может в любой момент взорваться как сверхновая, испуская огромные количества гамма-лучей и рентгеновских лучей. Когда это случится, сверхновая будет видна даже днем, а ночью, возможно, затмит Луну. (Когда-то считалось, что колоссальная энергия, освободившаяся при взрыве сверхновой, уничтожила динозавров 65 млн лет тому назад — Вообще, сверхновая, находись она на расстоянии около 10 световых лет от нас, могла бы уничтожить всю жизнь на Земле. К счастью, звезды-кандидаты в сверхновые — Спика и Бетельгейзе — находятся на расстоянии 260 и 430 световых лет соответственно: это слишком далеко от нас, чтобы причинить какие-либо серьезные повреждения Земле, когда они в конце концов взорвутся. Но некоторые ученые считают, что вымирание некоторых морских организмов два миллиона лет тому назад было вызвано именно взрывом сверхновой на расстоянии 120 световых лет от Земли.)

    Это означает, что Солнце не является истинной «матерью» Земли. Хотя многие народы Земли почитали Солнце как бога, сотворившего Землю, такой подход верен лишь отчасти. Хотя изначально Земля произошла от Солнца (будучи частью эклиптической плоскости звездных обломков и пыли, циркулировавших вокруг Солнца 4, 5 млрд лет назад), температура нашего Солнца высока лишь настолько, чтобы был возможен процесс нуклеосинтеза водорода с образованием гелия. Это означает, что нашей истинной «ма-терью»-солнцем была безымянная звезда (или скопление звезд), погибшая миллиарды лет назад при взрыве сверхновой, в результате которого близлежащие туманности оказались насыщены элементами с атомным весом выше железа, из которых состоят наши тела.

    Точнее, наши тела состоят из звездной пыли, из звезд, которые погибли миллиарды лет назад.

    После взрыва сверхновой остается лишь то, что сегодня называется нейтронной звездой, которая состоит из плотного ядерного вещества, сжатого до размеров Манхэттена — почти 30 км. (Впервые существование нейтронных звезд было предсказано в 1933 году Фрицем Цвикки, но это казалось настолько фантастичным, что на протяжении десятилетий ученые не обращали на его слова внимания.) Поскольку нейтронная звезда испускает излучение нерегулярно, а также вращается с огромной скоростью, она похожа на вращающийся маяк, испускающий вспышки света в процессе вращения. При наблюдении с Земли кажется, что нейтронная звезда пульсирует, отсюда и ее название — пульсар.

    Чрезвычайно большие звезды, имеющие массу, возможно, в 40 раз превышающую массу Солнца, взорвавшись в конце концов как сверхновые, могут оставить после себя нейтронную звезду, масса которой больше трех солнечных масс. Гравитация этой нейтронной звезды настолько велика, что она может противодействовать силе отталкивания, возникающей между нейтронами, и звезда совершит свой заключительный коллапс и превратится в самый необычный, скорее всего, объект Вселенной — черную дыру, о которой я поведу речь в пятой главе.

    Птичий помет и Большой Взрыв

    Смертельным ударом в самое сердце теории стационарной Вселенной стало открытие Арно Пензиаса и Роберта Вильсона в 1965 году. Работая с шестиметровым радиотелескопом в лаборатории Белл в городе Холмдел, они, ловя радиосигналы из космоса, поймали странный радиошум. Сначала они решили, что этот шум — результат какого-то отклонения в работе системы, поскольку получалось, что шум поступает равномерно со всех направлений, а не от конкретной звезды или галактики. Чтобы исключить возможное влияние грязи и мусора, они тщательно отчистили рупор телескопа от того, что Пензиас деликатно назвал «слоем белого диэлектрического вещества» (популярное его название у астрономов — «птичий помет»). В результате сила радиошума только возросла. Они и не подозревали, что случайно наткнулись на микроволновое реликтовое излучение, существование которого было предсказано Георгием Гамовым и его коллегами еще в 1948 году.

    Довольно долго история космологии напоминала старые фильмы о кистоунских полицейских, в которых три группы копов пытаются раскрыть преступление, даже не подозревая о существовании друг друга. С одной стороны, Гамов, Альфер и Херман заложили основы теории микроволнового реликтового излучения в 1948 году; они предсказали, что температура этого излучения составляет 5 градусов выше абсолютного нуля. Идею об измерении микроволнового космического излучения они оставили, поскольку приборы, имевшиеся тогда в их распоряжении, не обладали достаточной чувствительностью даже для того, чтобы его обнаружить. В 1965 году Пензиас и Вильсон все-таки обнаружили излучение абсолютно черного тела, но не поняли этого. В то же время третья группа под руководством Роберта Дикке из Принстонского университета вновь обратилась к теории Гамова и его коллег и теперь активно занималась вопросом улавливания микроволнового реликтового излучения, но существовавшее оборудование было до прискорбия примитивным, чтобы его уловить.

    Эта комическая ситуация нашла свое завершение, когда астроном Бернард Берк, общий друг Пензиаса и Дикке, рассказал первому о работе второго. Когда две группы исследователей наконец объединились, стало ясно, что Пензиас и Вильсон уловили сигналы, оставшиеся после того самого Большого Взрыва. За это важное открытие Пензиас и Вильсон в 1978 году были удостоены Нобелевской премии.

    Оглядываясь на прошлое, можно вспомнить, как Хойл и Гамов, два самых знаменитых автора противоречащих друг другу теорий, встретились в 1956 году в «кадиллаке»: эта судьбоносная встреча могла изменить весь ход развития космологии. «Я помню, как Георгий возил меня в белом кадиллаке», — вспоминал Хойл. Гамов тогда напомнил Хойлу о своем утверждении, что после Большого Взрыва осталось излучение, которое можно увидеть даже сегодня. Однако, согласно последним расчетам Гамова, температура этого излучения была около 50 градусов. Тогда Хойл поделился с Гамовым информацией, которая стала для последнего шокирующим открытием. Хойлу была известна не нашедшая признания работа, написанная в 1941 году Эндрю Маккеларом, в которой автор утверждал, что температура открытого космоса не может превышать трех градусов по Кельвину. При более высоких температурах происходили бы новые реакции, которые создали бы соединения углерода с водородом (CN) и азотом (СН) в возбужденном состоянии в открытом космосе. Измерив спектр этих химических элементов, можно было определить температуру открытого космоса. По сути, он выяснил, что плотность молекул CN, обнаруженных им в космосе, указывает на температуру в 2,3° К. Другими словами, микроволновое излучение с температурой в 2,7°К уже было как бы открыто в 1941 году, о чем Гамов не имел понятия.

    Хойл вспоминал: «Случилось ли это потому, что «кадиллак» был слишком удобен, или потому, что Георгий настаивал на температуре выше 3°, а я — на равной нулю, мы упустили свой шанс сделать открытие, которое девятью годами позже сделали Арно Пензиас и Боб Вильсон». Если бы группа Гамова не сделала ошибку в расчетах и пришла к более низкой температуре или если бы Хойл не относился столь враждебно к теории Большого Взрыва, то история космологии, возможно, оказалась бы иной.

    Большой Взрыв и психология

    Открытие микроволнового фона Пензиасом и Вильсоном решающим образом повлияло на карьеру Гамова и Хойла. Хойла их работа чуть не вогнала в гроб. В конце концов в 1965 году на страницах журнала «Нэйчер» (Nature) Хойл официально признал свое поражение, приводя в качестве аргументов отказа от теории стационарной Вселенной микроволновое реликтовое излучение и относительное содержание гелия. Но что его действительно беспокоило, так это тот факт, что теория стационарной Вселенной потеряла свою прогностическую силу: «Всем известно, что существование микроволнового реликтового излучения убило космологию "стационарной Вселенной", но что действительно убило теорию "стационарной Вселенной" — так это психология… Здесь, в микроволновом излучении, заключалось важное явление, которого она не предсказала за многие годы, и это сбило с меня спесь». (Позднее Хойл вернулся на прежние позиции, безуспешно пытаясь работать с другими версиями теории стационарной Вселенной, но каждый новый вариант был все менее правдоподобным.)

    К несчастью, вопрос о первенстве открытия оставилв душе Гамова неприятный осадок. Гамов, если читать между строк, был недоволен тем, что его собственная работа, а также работы его сотрудников так мало упоминались, если вообще упоминались. Неизменно вежливый, он помалкивал о своих чувствах, но в личных письмах отмечал несправедливость того, что физики и историки науки полностью проигнорировали их работу.

    Хотя работа Пензиаса и Вильсона нанесла сокрушительный удар по теории стационарной Вселенной и обеспечила твердую экспериментальную основу теории Большого Взрыва, в понимании структуры расширяющейся Вселенной существовали огромные пробелы. Например, в модели Вселенной Фридмана для того, чтобы понять, как эволюционирует Вселенная, необходимо знать значение ы, средней плотности Вселенной. Однако определение ее оказалось довольно проблематичным, когда ученые обнаружили, что Вселенная состоит не только из известных нам атомов и молекул, а еще и из незнакомой новой субстанции, называемой «темным веществом», которая весит в 10 раз больше обычного вещества. И снова блестящие достижения в этой области не были восприняты всерьез астрономическим сообществом.

    Омега и темная материя

    История темной материи, возможно, одна из самых необыкновенных историй космологии. В далекие 1930-е годы независимый швейцарский астроном Фриц Пвикки из Калифорнийского технологического института заметил, что движение галактик в скоплении галактик Кома не соответствовало теории гравитации Ньютона. Он обнаружил, что скорость движения галактик такова, что, по законам движения Ньютона, они должны были разлететься в стороны, а скопление — распасться. Пвикки решил, что единственным возможным объяснением того, что скопление Кома удерживается, а не разлетается в стороны, могло служить лишь то, что в скоплении — в сотни раз больше материи, чем можно было увидеть в телескоп. Либо законы Ньютона действовали как-то неверно на межгалактических расстояниях, либо существовало огромное количество невидимой материи в скоплении Кома, которая не давала ему распасться.

    Это стало первым свидетельством в истории, что чего-то крайне недоставало в отношении распространения материи по Вселенной. К несчастью, астрономы во всем мире либо не заметили пионерскую работу Цвикки, либо дружно отвергли его выводы по нескольким причинам.

    Первая из них заключалась в том, что астрономы не склонны были верить в то, что теория гравитации Ньютона, занимавшая ведущее положение в физике на протяжении нескольких веков, может быть неправильной. Уже существовал прецедент такого кризиса в астрономии. Во время исследования орбиты Урана в ХГХ ст. было обнаружено, что она раскачивается — очень немного, но отклоняясь от уравнений Исаака Ньютона. Так что либо Ньютон ошибался, либо должна была существовать новая планета, чья гравитация воздействовала на Уран. Именно второе предположение оказалось верным, и при первой же попытке, совершенной в 1846 году при анализе предполагаемого положения планеты согласно законам Ньютона, была обнаружена планета Нептун.

    Во-вторых, существовала такая проблема, как личность самого Цвикки и то, как астрономы относились к «аутсайдерам». Цвикки был фантазером, на протяжении жизни над ним часто смеялись или просто не обращали на него внимания. В 1933 году вместе с Вальтером Бааде он придумал термин «сверхновая звезда» и предсказал, что после взрыва останется крошечная нейтронная звезда около 22 км в поперечнике. Эта идея показалась всем настолько абсурдной, что ее 19 января 1943 года даже высмеяли в комиксе на страницах «Лос-Анджелес тайме». Цвикки страшно обозлился на маленькую элитарную группу астрономов, которые, как он думал, отказывали ему в признании, крали его идеи и не давали ему времени для наблюдений на 250-сантиметровом и 500-сантиметровом телескопах. (Незадолго до своей смерти в 1974 году Цвикки на собственные средства опубликовал каталог галактик. Каталог открывался заголовком «Напоминание корифеям американской астрономии и их подхалимам». В очерке была яростная критика узкой, закоренелой в своих традиционных взглядах элиты астрономов, которые стремились изо всех сил препятствовать работе таких независимых астрономов, как он сам. «Сегодняшние подхалимы и самые настоящие воры, особенно в Американском астрономическом обществе, кажется, совершенно свободно присваивают открытия и изобретения, сделанные волками-одиночками и инакомыслящими», — писал он. Пвикки назвал этих людей «сферическими ублюдками», потому что «они ублюдки, с какой стороны на них ни глянь». Он был разъярен, потому что его обошли вниманием и Нобелевскую премию за открытие нейтронной звезды дали кому-то другому.)

    В 1962 году астроном Вера Рубин заново открыла любопытную проблему галактического движения. Она изучала вращение Галактики Млечный Путь и столкнулась с той же самой проблемой: астрономическое сообщество не приняло ее выводы. Обычно, чем дальше от Солнца находится планета, тем медленнее она вращается. Чем ближе, тем быстрее она вращается. Именно поэтому Меркурий назван по имени бога скорости — он располагается очень близко к Солнцу, и именно поэтому скорость Плутона в 10 раз меньше скорости Меркурия — Плутон располагается дальше всех планет от Солнца. Однако когда Вера Рубин внимательно изучила голубые звезды нашей Галактики, она обнаружила, что звезды вращаются с неизменной скоростью, вне зависимости от расстояния до центра Галактики (плоского вращающегося диска), тем самым нарушая принципы механики Ньютона. По сути, она обнаружила, что Галактика Млечный Путь вращалась настолько быстро, что, по справедливости, ее звезды должны бы были разлететься в разные стороны. Но Галактика пребывала во вполне устойчивом состоянии на протяжении приблизительно 10 млрд лет; оставалось загадкой, почему ее вращающийся диск плоский. Чтобы — не развалиться, она должна бы быть в 10 раз тяжелее, чем считали ученые в то время. Было очевидно, что не учтено 90 % массы всей Галактики!

    Работу Веры Рубин проигнорировали, может быть, потому, что автором ее была женщина. С некоторой болью Рубин вспоминала, что, когда она поступала в колледж на специальность «естественные науки» и случайно обмолвилась преподавателю в приемной комиссии, что ей нравится рисовать, тот спросил: «А вы никогда не рассматривали возможность сделать карьеру, делая зарисовки астрономических объектов?» Она писала: «Это стало ключевой фразой у нас в семье: на протяжении многих лет, когда что-то у кого-то из родственников шло не так, мы говорили: 'А вы никогда не рассматривали возможность сделать карьеру, делая зарисовки астрономических объектов?" Когда Вера сказала своему школьному преподавателю физики, что ее приняли в Вассарский колледж, тот ответил: «У тебя все получится, только держись подальше от науки». Позднее она вспоминала: «Необходима невероятно высокая самооценка, чтобы выслушивать подобные вещи и не сломаться».

    По окончании учебы Рубин подала заявление о принятии ее на вакантную должность преподавателя в Гарвард, и ее приняли, но она отказалась, потому что вышла замуж и уехала вместе с мужем-химиком в Корнелл. (Она получила ответ из Гарварда, где внизу были от руки приписаны следующие слова: «Черт побери этих женщин! Каждый раз, как я нахожу то, что нужно, они уезжают и выходят замуж».) Недавно она приняла участие в астрономической конференции в Японии, где была единственной женщиной. «Я, правда, долгое время не могла об этом рассказывать без слез, потому что, конечно, за одно поколение… немногое изменилось», — признавалась Вера Рубин.

    Тем не менее несомненная значимость ее работы, а также работы других ученых постепенно начали убеждать астрономическое сообщество в существовании проблемы «отсутствующей» массы. К 1978 году Вера Рубин и ее коллеги тщательно изучили вращение 11 галактик; все они вращались слишком быстро, чтобы законы Ньютона позволили им оставаться единым целым. В том же году голландский радиоастроном Альберт Бозма опубликовал самый подробный анализ десятков спиральных галактик: почти все они демонстрировали то же самое аномальное поведение. Казалось, что это наконец убедило астрономическое сообщество в существовании темного вещества.

    Простейшим решением этой удручающей проблемы было предположение, что галактики окружены невидимым ореолом, который содержит в себе в 10 раз больше вещества, чем звезды. С тех пор появились более совершенные приборы для определения наличия этой «темной» материи. Одной из наиболее впечатляющих является возможность измерения искривления звездного света при его прохождении сквозь невидимое вещество. Подобно линзе очков, темная материя может преломлять свет (благодаря своей невероятной массе, а следовательно, и силе гравитации). Недавно при тщательном компьютерном анализе фотографий, сделанных при помощи космического телескопа Хаббла, ученые смогли создать карту распределения темной материи во Вселенной.

    И сейчас продолжаются ожесточенные споры о том, из чего состоит темная материя. Некоторые ученые считают, что она может состоять из обычного вещества, которое просто плохо различимо (то есть из коричневых звезд-карликов, нейтронных звезд, черных дыр и так далее, которые практически невидимы). Такие объекты рассматриваются в целом как «барионное вещество», то есть вещество, состоящее из известных барионов (таких, как нейтроны и протоны). Все вместе они называются МАСНО (сокращение, обозначающее «массивные компактные объекты гало»).

    Другие считают, что, возможно, темная материя состоит из очень горячего небарионного вещества, такого, как нейтрино (его так и называют — горячим темным веществом). Однако нейтрино движутся настолько быстро, что на их счет нельзя списывать все скопление темной материи в галактиках, наблюдаемое в природе. Третьи опускают руки и считают, что темная материя представляет собой принципиально новый вид вещества, называемого «холодное темное вещество», или WIMPS («слабо взаимодействующие массивные частицы»), и, пожалуй, это лучшая «кандидатура» для объяснения темной материи.

    Спутник СОВЕ

    При помощи обычного телескопа, рабочей лошадки астрономии еще со времен Галилея, видимо, невозможно разрешить загадку темной материи. Астрономия продвинулась очень далеко, используя обычные оптические средства, имеющиеся на Земле. Однако в 1990-е годы появилось новое поколение астрономических приборов, сконструированных с использованием новейших спутниковых технологий, лазеров и компьютеров, которые полностью изменили лицо космологии.

    Одним из первых плодов богатого урожая стал спутник СОВЕ (космический аппарат для изучения реликтового излучения), запущенный в ноябре 1989 года. Если работа Пензиаса и Вильсона подтвердила лишь некоторые данные, вписывающиеся в теорию Большого Взрыва, спутник СОВЕ измерил множество параметров, которые в точности соответствовали прогнозам Гамова и его сотрудников, выдвинутым в 1948 году, об излучении абсолютно черных тел.

    В 1998 году на собрании Американского астрономического общества 1500 ученых внезапно вскочили и разразились бурными аплодисментами при виде фотографий, сделанных спутником СОВЕ, которые практически полностью согласовывались с тем фактом, что температура микроволнового реликтового излучения составляет 2,728° К.

    Принстонский астроном Джереми Острайкер заметил: «Когда были обнаружены окаменелости в скалах, это совершенно четко обозначило происхождение видов. Что ж, спутник СОВЕ нашел окаменелости [Вселенной]».

    Однако фотографии, сделанные со спутника СОВЕ, были довольно размытыми. Например, ученые хотели проанализировать «горячие точки», или флуктуации космического фонового излучения, флуктуации, которые должны были составлять около одного градуса в поперечнике. Но оборудование спутника СОВЕ было способно уловить флуктуации только семи и более градусов в поперечнике, оно не было достаточно чувствительным, чтобы обнаружить эти маленькие горячие точки. Ученые были вынуждены ждать результатов работы спутника WMAP, запуск которого ожидался в начале века; они надеялись, что новые данные помогут разрешить массу вопросов и загадок.

    ГЛАВА 4

    Расширение и параллельные вселенные

    Ничего не происходит из ничего.

    Лукреций

    Я допускаю, что наша Вселенная и в самом деле появилась ниоткуда около ю10 лет назад… Я выдвигаю скромное предположение о том, что возникновение нашей Вселенной является одним из тех событий, что происходят время от времени.

    Эдвард Трайон

    Вселенная — это полностью бесплатный ланч.

    Алан Гут

    В классическом научно-фантастическом романе Пола Андерсона «Тау Ноль» космический корабль под названием «Леонора Кристин» запускают в Космос с заданием достичь близлежащих звезд. На борту корабля находятся 50 человек; во время путешествия к новой звездной системе корабль может развивать околосветовую скорость. Что еще более важно, в корабле действует принцип теории относительности, который гласит, что чем быстрее движется корабль, тем больше замедляется время внутри корабля. А потому путешествие к близлежащим звездам, которое заняло бы десятилетия с точки зрения людей на Земле, для астронавтов длится лишь несколько$7

    Корабль представляет собой чудо техники; он приводится в действие прямоточными воздушно-реактивными двигателями, которые черпают водород из космоса, а затем сжигают его, получая неограниченное количество энергии. Корабль движется настолько быстро, что экипаж даже может наблюдать допплеровское смещение звездного света; звезды впереди кажутся голубоватыми, а звезды позади — красноватыми.

    Затем происходит катастрофа. На расстоянии 10 световых лет от Земли корабль проходит сквозь межзвездное пылевое облако и попадает в область турбулентности, в результате чего временно перестает функционировать система торможения. Перепуганный экипаж оказывается в плену на вышедшем из-под контроля корабле, который все сильнее и сильнее разгоняется, приближаясь к скорости света. Члены экипажа беспомощно наблюдают за тем, как неуправляемый корабль за какие-то минуты пересекает целые звездные системы. За год корабль проносится сквозь половину Галактики Млечный Путь. Бесконтрольно ускоряясь, корабль мчится мимо галактик; на это уходят месяцы, в то время как на Земле проходят миллионы лет. Вскоре скорость корабля настолько приближается к световой, «тау ноль», что члены экипажа становятся свидетелями космических катастроф, на их глазах старится сама Вселенная.

    В конце концов они видят, что изначальное расширение Вселенной прекращается и обращается вспять — Вселенная сжимается. Температура резко возрастает, и члены экипажа понимают, что корабль движется навстречу Большому Сжатию. Они молятся про себя, видя, что температура растет, галактики начинают сливаться в единое целое — космический первоатом. Кажется, что они неминуемо встретят свою смерть в огненном катаклизме.

    Их единственная надежда на то, что вещество взорвется и разлетится в пределах ограниченной области, а они на большой скорости проскользнут мимо. Чудом их защита срабатывает, когда они пролетают мимо первоатома и оказываются свидетелями творения новой Вселенной. Когда Вселенная вновь расширяется, их восхищенным взорам предстает картина творения новых звезд и галактик. Им удается отремонтировать корабль, они тщательно рассчитывают курс, направляясь к достаточно взрослой галактике, которая содержит элементы высшего порядка, делающие жизнь в ней возможной. Наконец им удается обнаружить планету, где жизнь возможна, и основывают там колонию, давая начало новому человечеству.

    Эта история была написана в 1967 году, когда среди астрономов бушевали яростные споры о том, какова же конечная судьба Вселенной: погибнет ли она от Большого Сжатия или Большого Охлаждения, будет ли она бесконечно пульсировать или продолжит свое существование в стационарном состоянии бесконечно? С тех пор спор, кажется, нашел свое разрешение, и появилась новая теория — теория инфляции (расширения).

    Рождение теории инфляции

    «Волнующее открытие», — такую запись сделал Алан Гут в своем дневнике в 1979 году. Он был воодушевлен сознанием того, что, возможно, натолкнулся на одну из величайших теорий космологии. Гут впервые за 50 лет подверг основательному пересмотру теорию Большого Взрыва, сделав конструктивное наблюдение: он смог решить некоторые из глубочайших загадок космологии, предположив, что Вселенная подверглась гиперинфляции (ускоренному расширению) в момент своего рождения, расширению гораздо более быстрому, чем считало большинство физиков. Гут обнаружил, что с учетом этого гиперрасширения он может безо всяких усилий разрешить массу глубоких космологических вопросов, которые не поддавались никакому объяснению. Этой теории предстояло произвести революцию в космологии. (Последние космологические данные, включая результаты, полученные со спутника WMAP, согласуются с прогнозами, которые дает эта теория.) Это не только единственная действенная космологическая теория — она же простейшая и наиболее надежная.

    Замечательно, что столь простая теория оказалась в состоянии разрешить так много сложных космологических вопросов. Одной из проблем, которые так элегантно разрешала теория инфляции, была проблема плоскостности Вселенной. Астрономические данные показали, что кривизна Вселенной очень близка к нулю: по сути, она намного ближе к нулю, чем до этого считали многие астрономы. Это могло бы объясняться тем фактом, что Вселенная, подобно шарику, который быстро надувают, стала более плоской за период расширения. Мы подобны муравьям, ползающим по поверхности шарика, — мы слишком малы, чтобы заметить очень маленькую кривизну шарика. Инфляция настолько «вытянула» пространство-время, что оно кажется плоским.

    Историческим в открытии Гута было то, что он применил физику элементарных частиц, занимающуюся анализом мельчайших частиц в природе, к космологии, изучению Вселенной во всей ее целостности, включая происхождение. Теперь мы понимаем, что глубочайшие загадки Вселенной нельзя решить без физики чрезвычайно малого — мира квантовой теории и физики элементарных частиц.

    Поиски объединения

    Гут родился в 1947 году в Нью-Брансуике (штат Нью-Джерси). В отличие от Эйнштейна, Гамова и Хойла, в жизни Гута не было судьбоносного момента, толкнувшего его в мир физики. Ни его отец, ни мать не получили высшего образования и не проявляли интереса к науке. Но по собственному признанию Алана, его всегда восхищала связь математики с законами природы.

    В Массачусетском технологическом институте в 1960-е годы он серьезно рассматривал возможность заняться физикой элементарных частиц. В особенности его восхищало всеобщее возбуждение, причиной которого стало новое течение в физике, поиски объединения всех основных сил. Святым Граалем физики были объединяющие мотивы, которые могли бы объяснить все тонкости строения Вселенной самым простым и связным образом. Целую вечность физики блуждали в поисках этого Грааля. Со времен древних греков ученые считают, что Вселенная, которую мы видим сегодня, представляет собой обломки чего-то гораздо более простого, и наша цель — раскрыть суть этого простого.

    За две тысячи лет исследований природы вещества и энергии физики открыли, что механизм Вселенной приводят в действие всего четыре основные силы. (Ученые пытались и пытаются найти возможную пятую силу, но до сих пор все результаты исследований в этом направлении были отрицательными или неубедительными.)

    Первая сила — гравитационное взаимодействие, которое удерживает Солнечную систему как единое целое и движет планеты по их небесным орбитам в Солнечной системе. Если гравитацию неожиданно «выключить», то звезды в небесахвзорвутся, Земля рассыплется и нас всех выбросит в открытый космос со скоростью около полутора тысяч километров в час.

    Вторая сила — электромагнитное взаимодействие, которое освещает наши города, заполняет мир телевизорами, сотовыми телефонами, радиоприемниками, лазерными лучами и сетью Интернет. Если внезапно выключить электромагнитное взаимодействие, то цивилизацию тут же отбросит на век-другой в прошлое, в темноту и безмолвие. Это наглядно продемонстрировала авария энергосистемы в 2003 году, парализовавшая весь северо-восток США. Если мы рассмотрим электромагнитную силу в микроскоп, то увидим, что она состоит из крошечных частиц, или квантов, называемых фотонами.

    Третья сила — слабое ядерное взаимодействие, отвечающее за радиоактивный распад. Это слишком слабый фактор, чтобы удерживать атом как единое целое, он позволяет ядру разделиться на более мелкие составляющие, или распасться. Радиоактивные приборы в больницах во многом основываются на слабом ядерном взаимодействии. Слабое ядерное взаимодействие также способствует разогреву земного ядра посредством радиоактивных веществ, что становится причиной извержения вулканов. Слабое ядерное взаимодействие, в свою очередь, основывается на взаимодействии электронов и нейтрино (призрачные частицы, практически не имеющие массы и способные проходить сквозь триллионы километров твердого свинца, ни с чем не сталкиваясь). Эти электроны и нейтрино взаимодействуют, обмениваясь частицами, W- и Z-бозонами.

    Сильное ядерное взаимодействие скрепляет ядра атомов. Без этой силы ядра бы разделились на части, атомы бы распались, а вся наша реальность «расползлась» бы. Сильное ядерное взаимодействие отвечает за примерно сотню элементов, которые заполняют Вселенную. Вместе с тем сильное и слабое ядерные взаимодействия отвечают за свет, который испускают звезды согласно уравнению

    Эйнштейна — Е =mc2. Без ядерного взаимодействия Вселенная погрузилась бы во тьму, температура на Земле резко упала бы, а океаны превратились бы в ледники.

    Удивительной чертой этих четырех сил является то, что все они принципиально отличаются друг от друга, обладая различными свойствами и имея свои достоинства. Например, гравитация намного слабее трех остальных сил, она в 1036 раз слабее электромагнитного взаимодействия. Земля весит б триллионов килограммов, и все же огромный вес и гравитация могут быть легко уравновешены с помощью электромагнитной силы. Даже ваша расческа может поднять клочки бумаги с помощью статического электричества, тем самым преодолевая силу гравитации. К тому же гравитация только притягивает свои объекты, электромагнитная же сила может как притягивать, так и отталкивать, в зависимости от заряда частиц.

    Объединение на уровне теории Большого Взрыва

    Один из фундаментальных вопросов, с которым столкнулась физика, таков: почему Вселенная должна приводиться в действие четырьмя различными взаимодействиями? И почему эти четыре взаимодействия должны быть столь непохожими друг на друга, обладать различными качествами, различной физикой и различным образом взаимодействовать?

    Эйнштейн первым поставил перед собой цель объединить эти четыре силы при помощи единой связной теории поля, начав с объединения гравитации с электромагнитным взаимодействием. Он не добился успеха, потому что обогнал свое время: тогда слишком мало было известно о сильном взаимодействии, чтобы создать абсолютно реалистичную объединенную теорию поля. Но пионерская работа Эйнштейна раскрыла глаза целому миру физиков на возможность существования «теории всего».

    Цель объединенной теории поля казалась в высшей степени недостижимой в 1950-е годы, особенно в момент, когда в физике элементарных частиц царил полный хаос: ускоритель атомных частиц расщеплял ядро с целью обнаружить «элементарные составляющие» вещества, а на выходе при эксперименте обнаруживались лишь сотни новых частиц. «Физика элементарных частиц» стала терминологическим противоречием, космической шуткой. Древние греки считали, что при расщеплении субстанции на основные составляющие все упрощается. Но все получилось с точностью до наоборот: физики изо всех сил пытались найти достаточно букв греческого алфавита для обозначения всех новых частиц. Дж. Р. Оппенгеймер пошутил, что Нобелевскую премию по физике должен получить физик, который не открыл в этом году новую частицу. Нобелевский лауреат Стивен Вайнберг начал сомневаться, способен ли человеческий разум вообще постичь секрет ядерного взаимодействия.

    Эта неразбериха несколько улеглась, когда Марри Гелл-Манн и Джордж Цвейг из Калифорнийского технологического института предложили теорию кварков — составляющих протонов и нейтронов. Согласно теории кварков, три кварка составляют протон или нейтрон, а кварк и антикварк составляют мезон (частицу, удерживающую частицы ядра). Это было лишь частным решением (поскольку сегодня нас затопляют различные виды кварков), но тогда это влило новую струю энергии в пребывающую в спячке область науки.

    В 1967 году физики Стивен Вайнберг и Абдус Сапам совершили ошеломляющий прорыв, доказав, что возможно объединение слабого ядерного и электромагнитного взаимодействий. Они создали новую теорию, согласно которой электроны и нейтрино (называемые лептонами) взаимодействуют друг с другом путем обмена новыми частицами, названными W- и Z-бозонами, а также фотонами. Рассматривая W- и Z-бозоны и фотоны на общем основании, они создали теорию, объединяющую обе силы. В 1979 году Стивен Вайнберг, Шелдон Глэшоу и Абдус Сапам получили Нобелевскую премию за совместную работу в области объединения двух из четырех сил — электромагнитного и слабого ядерного взаимодействий, — а также за активные исследования в области сильного ядерного взаимодействия.

    В 1970-е годы физики провели тщательный анализ данных, полученных на ускорителе частиц Стэнфордского центра линейного ускорителя (SLAC), обстреливающем цель мощными зарядами электронов, чтобы исследовать строение протона. Они обнаружили, что сильное ядерное взаимодействие, удерживающее кварки внутри протона, можно объяснить, введя новые частицы (названные глюонами), которые являются квантами сильного ядерного взаимодействия. Природу связующей силы, удерживающей протон от распада, можно было бы объяснить тем, что составляющие его кварки обмениваются между собой глюонами. Это привело к созданию новой теории сильного ядерного взаимодействия, названной квантовой хромодинамикой.

    Итак, к середине 1970-х годов стало возможным объединить три взаимодействия из четырех (кроме гравитации) и получить так называемую Стандартную модель — теорию кварков, электронов и нейтрино, которые взаимодействовали путем обмена глюонами, W- и Z-бозонами и фотонами. Эта модель стала результатом десятилетий мучительной работы и исследований в области физики частиц. В настоящее время Стандартная модель способна структурировать все без исключения экспериментальные данные, имеющие отношение к физике частиц.

    Хотя Стандартная модель — одна из наиболее успешных физических теорий всех времен, она весьма безобразна. Сложно поверить, что на фундаментальном уровне можно оперировать теорией, которая столь топорно описана. Например, в этой теории существует 19 произвольных параметров, которые вписаны эмпирически (т. е. различные массы и силы взаимодействия не определяются теорией, их нужно выводить экспериментальным путем; в идеале же, то есть в подлинно объединяющей теории, эти константы должны определяться самой теорией, а не зависеть от внешних экспериментов).

    Далее, в ней существуют три точные копии элементарных частиц, называемые поколениями. Сложно поверить, что природа на самом фундаментальном уровне будет использовать три точные копии субатомных частиц. Если не считать их массы, то эти частицы точные копии. (Например, такими копиями электрона являются мюон, масса которого в 200 раз больше массы электрона, и тау-частица, с массой в 3500 раз больше.) Наконец, в Стандартной модели нет никакого упоминания о силе гравитации, хотя гравитация, пожалуй, наиболее всепроникающая сила во Вселенной.

    Поскольку Стандартная модель, несмотря на ее потрясающий экспериментальный успех, кажется такой надуманной, физики пытались создать еще одну теорию, или теорию Великого Объединения (ТВО), которая рассматривала бы кварки и лептоны на общем основании. Она также рассматривала глюон, W- и Z-бозоны и фотон на одном уровне. (Однако эта разработка не смогла стать «окончательной теорией», поскольку гравитация в ней подозрительным образом не учитывалась: ее считали слишком сложной для слияния с остальными силами, как мы это увидим.)

    Это субатомные частицы, содержащиеся в Стандартной модели — наиболее успешной теории элементарных частиц. Она построена на кварках, из которых состоят протоны и нейтроны, лептонах, таких, как электрон и нейтрино, и многих других частицах. Обратите внимание, что результатом модели являются три одинаковые копии субатомных частиц. Поскольку Стандартная модель не может объяснить гравитацию (и кажется такой нелепой), физики-теоретики считают, что эта теория не может быть окончательной.


    Программа объединения, в свою очередь, ввела в космологию новую парадигму: Идея была очень простой и изящной: в момент Большого Взрыва все четыре основные силы объединились в единую связанную силу, загадочную «сверхсилу». Четыре силы были равны друг другу по значимости и являлись частью единого связного целого. Однако, когда Вселенная начала стремительно расширяться и остывать, изначальная «сверхсипа» начала «расщепляться» и от нее одна за другой начали «отпадать» различные силы.

    Согласно этой теории, остывание Вселенной после Большого Взрыва аналогично замерзанию воды. Когда вода находится в жидком состоянии, она вполне однородна и поверхность ее гладкая. Однако при замерзании внутри ее объема образуются миллионы крошечных ледяных кристалликов. Когда жидкая вода замерзает, ее изначальная однородность нарушена, поскольку лед содержит трещины, пузырьки и кристаллы.

    Другими словами, сегодня мы видим, что Вселенная ужасно повреждена. Она совсем неоднородна и несимметрична, она состоит из неровных горных цепей, вулканов, ураганов, каменистых астероидов и взрыпающихся звезд; при этом отсутствует всякое единство, — более того, мы видим, что четыре основные силы никак не связаны друг с другом. Но причина того, что Вселенная так искорежена, — это то, что она уже старая и холодная.

    Хотя Вселенная возникла в состоянии совершенного единства, до сегодняшнего дня она прошла много «фазовых переходов», или изменений состояния, при которых вселенские силы одна за другой освобождались от взаимодействия с остальными по мере остывания Вселенной. Физикам предстоит заглянуть в прошлое, воссоздать этапы изначального формирования Вселенной (в состоянии совершенного единства), которые привели к тому повреждению Вселенной, которое мы видим на сегодняшний день.

    Таким образом, чтобы получить ключ к разгадке, необходимо точно понять, как произошли эти «фазовые переходы» с момента создания Вселенной, которые ученые называют «спонтанными нарушениями». Будь то таяние льда, кипение воды, образование дождевых облаков или охлаждение после Большого Взрыва, фазовые переходы могут соединять два совершенно разных состояния вещества. (Чтобы показать, насколько мощными могут быть эти фазовые переходы, художник Боб Миллер загадал загадку: «Как можно подвесить 200 ООО кг воды в воздухе без всякой опоры? Ответ: образовать облако.)

    Ложный вакуум

    Процесс, когда одна сила отделяется от остальных, можно сравнить с прорывом плотины. Реки текут по склонам, потому что вода течет в направлении уменьшения энергии, то есть в сторону уровня моря. Наименьшим энергетическим состоянием является вакуум. Однако существует и необычный, ложный вакуум. Например, если мы соорудим плотину на реке, то будет казаться, что она находится в стабильном состоянии, в то время как в действительности она находится под огромным давлением. Если в плотине появится малейшая трещина, давление может разнести плотину, освободить поток энергии из ложного вакуума (перегороженная плотиной река) и вызвать катастрофический разлив ее в направлении истинного вакуума (уровень моря). Могут быть затоплены целые населенные пункты, если вдруг произойдет спонтанное разрушение плотины и внезапный переход от ложного вакуума к истинному.

    Подобным образом, по теории Великого Объединения, Вселенная изначально возникла в состоянии ложного вакуума, где три силы были объединены в единое целое. Однако целостность эта была нестабильной, она спонтанно разрушилась, и произошел переход из ложного вакуума, где были объединены три силы, к истинному вакууму, где эти силы распались.

    Все это было известно еще до того, как Гут начал анализировать теорию Великого Объединения. Но Гут заметил еще кое-что, что просмотрели другие. В состоянии ложного вакуума Вселенная расширяется экспоненциально, в точности так, как предсказывал де Ситтер в 1917 году. Энергия ложного вакуума является космологической константой, которая заставляет Вселенную расширяться с невероятной скоростью. Гут задался судьбоносным вопросом: может ли это экспоненциальное расширение де Ситтера разрешить некоторые космологические проблемы?

    Проблема монополя

    Одним из прогнозов теорий Великого Объединения было образование в начале времен множества монополей. Монополь — единичный магнитный полюс, северный или южный. В природе монополей не бывает: полюса встречаются только в паре. Если взять молоток и разбить им магнит пополам, то не получится двух монополей; вместо этого у вас окажется два меньших магнита с парой полюсов, северным и южным соответственно.

    Проблемой, однако, стало то, что ученые, веками экспериментируя, не обнаружили убедительных доказательств существования монополя. Алан Гут был озадачен тем фактом, что теории Великого Объединения предсказывали существование большого количества монополей, хотя никто никогда их не видел. «Подобно единорогу, монополь и до сих пор продолжает пленять человеческий разум, несмотря на отсутствие убедительных доказательств его существования», — заметил Гут.

    И тут внезапно ему в голову пришла идея. В мгновение ока все кусочки головоломного пазла встали на свои места. Он понял, что если Вселенная зародилась в состоянии «ложного вакуума», то она могла расширяться экспоненциально, как и предполагал де Ситтер несколько десятков лет тому назад. В этом состоянии ложного вакуума Вселенная могла внезапно инфляционно расшириться до невероятной степени. Если ученые до сих пор и не встречали монополя, то дело обстоит так лишь потому, что монополи были разбросаны по всей Вселенной, которая имела гораздо большие размеры, чем можно было предположить.

    Для Гута это осознание стало источником радости и удивления. Такое простое решение могло бы в момент объяснить проблему монополя. Но Гут понимал, что последствия этого решения для космологии будут гораздо более существенными, чем он сам усматривал в своей идее.

    Проблема плоскостности Вселенной

    Алан Гут увидел, что его теория разрешает еще одну проблему, проблему плоскостности Вселенной, которую мы упоминали ранее. Стандартная картина Большого Взрыва не могла объяснить, почему Вселенная такая плоская. В 1970-е годы считалось, что плотность вещества во Вселенной, называемая to, равнялась приблизительно ОД. Тот факт, что значение было относительно близко к критической плотности 1,0 через столько миллиардов лет после Большого Взрыва, очень беспокоил ученых. По мере того как Вселенная расширялась, со должна была бы со временем измениться. Ее же значение было неуютно близко к значению 1,0, которое описывает полностью плоский космос.

    Уравнения Эйнштейна для любого разумного значения со в начале времен показывают, что в наши дни со должна равняться почти нулю. Потребовалось бы чудо, чтобы со находилась так близко к значению 1 через столько миллиардов лет, прошедших после Большого Взрыва. Это то, что в космологии называют проблемой точной настройки. Бог, или Творец, должен был «выбрать» значение со с фантастической точностью, чтобы в наши дни она равнялась 0,1. Если в наши дни значение со находится в диапазоне от 0,1 до 10, то это подразумевает, что через одну секунду после Большого Взрыва ее значение равнялось 1,00000000000000. Иными словами, в начале времен значение со должно было быть «выбрано» равным единице с точностью до одной стотриллионной, что с трудом укладывается в голове.

    Представьте, что вы стараетесь поставить карандаш на острие. Сколько бы вы ни искали баланс, карандаш все равно падает. По сути, необходима потрясающая точность настройки — сбалансировать карандаш таким образом, чтобы он не упал. А теперь попробуйте сбалансировать карандаш так, чтобы он простоял на острие грифеля не несколько секунд, а несколько лет! Вот также невероятна и точная настройка, необходимая для того, чтобы сегодня со равнялась 0,1. Малейшая ошибка в настройке стала бы причиной нынешнего значения со, намного отличного от единицы. Так почему же плотность столь близка к Первому дню Творения, если, Тю справедливости, ее значение должно бы уйти астрономически далеко?

    Для Гута ответ был очевиден. Вселенная просто-напросто расширилась до такой степени, что стала казаться плоской. Подобно человеку, считающему, что Земля плоская, потому что он не видит горизонта, астрономы заключили, что значение со находится в области 1, потому что инфляция сделала Вселенную плоской.

    Проблема горизонта

    Инфляция не только объясняла факты, свидетельствующие о том, что Вселенная плоская, — она также решила проблему горизонта. Эта проблема основана на простом понимании того, что ночное небо кажется относительно однородным, в какую бы точку вы ни смотрели. Если вы повернете голову на 180°, то увидите, что Вселенная однородна, хотя только что видели сегменты Вселенной, разделенные десятками миллиардов световых лет. Мощнейшие телескопы не могут обнаружить каких-либо заметных отклонений в этой однородности. Наши космические спутники показали, что космическое фоновое микроволновое излучение также распределено чрезвычайно однородно. В какую бы точку космоса мы ни проникли, температура фонового излучения меняется не более чем на одну тысячную градуса.

    Но в этом-то и проблема, поскольку скорость света является конечным скоростным пределом во Вселенной. За время жизни Вселенной свет или информация никоим образом не могли пройти расстояние от одной части ночного неба к другой. Если взять, скажем, микроволновое излучение, видимое в одном направлении, то оно путешествовало более 13 млрд лет с момента Большого Взрыва. Но если мы повернем голову на 180°, то увидим такое же микроволновое излучение, которое тоже пропутешествовало более 13 млрд лет. Поскольку эти излучения имеют одну и ту же температуру, это означает, что они находились в термальном контакте еще в начале времен. Но различные точки в ночном небе, разделенные расстоянием в 26 миллиардов световых лет, с момента Большого Взрыва никоим образом не могли обменяться информацией.

    Ситуация выглядит еще хуже, если взглянуть на небо через 380000 лет после Большого Взрыва, когда впервые образовалось микроволновое фоновое излучение. Если мы взглянем на противоположные точки небесной сферы (не простым глазом, естественно), то увидим, что излучение почти однородно. Но, согласно расчетам в рамках теории Большого Взрыва, между этими противоположными точками лежит расстояние в 90 миллионов световых лет (из-за космического расширения после взрыва). Но свет никак не мог пройти 90 миллионов световых лет за 380 000 лет. Информация должна была бы двигаться со скоростью, намного превышающей скорость света, а это невозможно.

    По справедливости, Вселенная должна бы казаться довольно комковатой, при этом одна ее часть находилась бы слишком далеко от другой, чтобы они могли контактировать между собой. Как может Вселенная казаться настолько однородной, когда у света просто-напросто не было достаточно времени, чтобы перенести и распространить информацию из одной части Вселенной в другую? (Принстонский физик Роберт Дик назвал эту проблему «проблемой горизонта», поскольку горизонт — самая отдаленная точка, которую мы можем видеть, самая отдаленная точка, до которой может распространяться свет.)

    Однако Гут понял, что инфляция дает ключ к разрешению и этой проблемы. Он сделал следующий вывод: наша Вселенная, видимо, была крошечным язычком изначального огненного облака. Температура и плотность этого язычка были однородны. Но инфляция внезапно расширила этот язычок однородного вещества в 1050 раз, со скоростью, намного превышающей скорость света, а потому видимая сегодня Вселенная кажется столь однородной. Так что ночное небо и микроволновое излучение кажутся столь однородными из-за того, что видимая Вселенная была когда-то крошечным, но однородным язычком изначального облака пламени, который внезапно расширился, образовав Вселенную.

    Реакция на инфляцию

    Хотя Гут был уверен в том, что инфляционная теория верна, он несколько нервничал, когда начал читать первые публичные лекции. Когда в 1980 году он представил свою теорию, то признался: «Я все еще беспокоился о том, что некоторые заключения в теории могли быть неверны. И побаивался, что покажусь незрелым космологом». Но его теория была столь изящна и мощна, что физики всего мира незамедлительно уяснили всю ее важность. Нобелевский лауреат Марри Гелл-Манн воскликнул: «Вы решили важнейшую проблему космологии!» Другой нобелевский лауреат Шелдон Глэшоу по секрету сообщил Гуту, что Стивен Вайнберг был «взбешен», когда услышал об «инфляции». Гут взволнованно спросил: «У Стива были какие-то возражения по поводу теории?» Глэшоу ответил: «Нет, просто он жалел, что сам до нее не додумался». Ученые задавались вопросом, как они могли упустить такое простое решение. Теорию Гута восторженно приняли физики-теоретики, пораженные ее размахом.

    Новая теория расширила и перспективы Гута на получение работы. Когда-то из-за большой конкуренции на рынке труда он лицом к лицу столкнулся с безработицей. «Я находился в критической ситуации в смысле трудоустройства», — признавался он. Внезапно на него посыпались предложения из лучших университетов, но

    Массачусетский технологический институт, который он выбрал с самого начала, не прислал ему приглашения. Тогда же Гут прочитал записочку-предсказание, запеченную в печенье, которая гласила: «Если вы не слишком застенчивы, то прямо перед вами находится волнующая возможность». Это предсказание придало ему мужества позвонить в Массачусетский технологический институт и осведомиться о возможности получения работы. Он был ошеломлен, когда через несколько дней ему перезвонили из института и предложили должность профессора. В следующем печенье он обнаружил вот такое предсказание: «Не нужно действовать под влиянием момента». Не обратив внимания на совет, он решил принять предложение МТИ. «В конце концов, что может знать китайское печенье?» — спросил он себя.

    Однако возникли серьезные проблемы. Астрономы были не слишком очарованы теорией Гута, поскольку в ней зияла пробоина; она давала неверный прогноз со. Тот факт, что со относительно близка к 1, мог объясняться теорией инфляции. Однако инфляционная теория шла намного дальше и предсказывала, что со (или со плюс л) должна в точности равняться 1, что соответствовало плоской Вселенной. В следующие годы по мере того, как накапливалось все больше экспериментальных данных о расположении темной материи во Вселенной, значение со несколько сдвинулось, поднявшись с 0,1 до 0,3. Но это значение все еще было потенциально опасным для теории инфляции. Хотя в течение следующего десятилетия физики посвятили теории инфляции более трех тысяч работ, для астрономов она оставалась странной. Им казалось, что имеющиеся у них данные исключают возможность инфляции Вселенной.

    Некоторые астрономы жаловались, что физики, занимающиеся теорией частиц, настолько захвачены красотой теории инфляции, что готовы пренебречь экспериментальными фактами. (Астроном Роберт Киршнер из Гарварда писал: «Эта «инфляционная» теория звучит безумно. Тот факт, что ее серьезно воспринимают люди, которые пользуются заслуженным авторитетом, не превращает ее автоматически в правильную». Роджер Пенроуз из Оксфорда назвал теорию инфляции «модой, которую специалисты, занимающиеся физикой высоких энергий, навязали космологам. Даже муравьеды думают, что их детеныши прекрасны».)

    Сам же Гут верил: рано или поздно подтвердится, что Вселенная плоская. Но его и вправду беспокоил тот факт, что в изначальной картине наблюдался маленький, но очень серьезный недостаток, который и до сих пор не до конца объяснен. Теория инфляции идеально подходила для решения глубоких космологических проблем. Проблема заключалась в том, что Гут не знал, как «выключить» инфляцию.

    Представьте, что вы поставили на огонь чайник и температура воды в нем подходит к точке кипения. Как раз перед тем, как закипеть, она мгновенно переходит в состояние высокой энергии. Она стремится закипеть, но не может, потому что для образования пузырьков ей требуется какая-то неравномерность, инородное тело. Но когда пузырек образуется, он быстро переходит в состояние низкой энергии чистого вакуума, и чайник наполняется пузырьками. В конце концов пузырьки становятся такими большими, что сливаются, пока чайник не наполняется однородным паром. Когда все пузырьки сливаются, фаза перехода воды в пар завершена.

    В изначальной картине Гута каждый пузырек представлял из себя частичку нашей Вселенной, расширяющейся из вакуума. Но когда Гут провел расчеты, он обнаружил, что пузырьки не сливаются должным образом, тем самым оставляя Вселенную невероятно комковатой. Иными словами, по его теории оставался полный чайник пузырьков пара, которые никогда не сольются вместе, чтобы образовать полный чайник однородного пара. Чайник кипящей воды Гута, казалось, никогда не превратится во Вселенную сегодняшнего дня.

    В1981 году Андрей Линде из Института П. Н. Лебедева в России, а также Пол Дж. Штайнхардт и Андреас Альбрехт из Пенсильванского университета нашли способ разрешить эту загадку, поняв, что если одиночный пузырекложного вакуума будет расширяться достаточно долго, то в конце концов он заполнит весь «чайник» и создаст однородную Вселенную. Иными словами, наш мир может быть побочным продуктом одиночного пузырька, который расширился и заполнил Вселенную. Тогда не понадобилось бы большое количество пузырьков, которые должны слиться и заполнить чайник однородным паром. Достаточно было бы одиночного пузырька, при условии, что он расширялся бы достаточно долго.

    Вернемся к аналогии с плотиной и ложным вакуумом. Чем шире плотина, тем больше времени понадобится воде, чтобы ее прорвать. Если стена плотины достаточно толстая, то время, нужное воде, чтобы пройти сквозь плотину, может быть произвольно долгим. Если Вселенная может расшириться в 1050 раз, то у одиночного пузырька достаточно времени решить проблемы горизонта, плоскостной Вселенной и монополя. Иными словами, если процесс туннелиро-вания достаточно замедлен, то Вселенная расширяется достаточно долго, чтобы стать плоской и чтобы по ней распространились моно-поли. Но это все же не решает вопрос: какой механизм может продлить инфляцию такого большого масштаба?

    В конце концов, эта трудная проблема стала известна как «проблема мягкого выхода», то есть как расширять Вселенную достаточно долго, чтобы один-единственный пузырек смог образовать целиком всю Вселенную. За несколько лет было предложено по крайней мере 50 различных способов решения «проблемы мягкого выхода». (Это обманчиво простая задача. Я сам пытался найти несколько решений. Было относительно легко создать расширение умеренных масштабов в ранней Вселенной. Но чрезвычайно трудно заставить Вселенную расшириться в 1050 раз. Конечно, можно просто вписать цифру 1050, но это будет искусственно и натянуто.) Иными словами, общепринятым было мнение, что процесс инфляции решает проблему монополя, горизонта и плоскостности Вселенной, но никто точно не знал, что вызвало инфляцию и что ее остановило.

    Хаотическое расширение и параллельные вселенные

    Физика Андрея Линде нисколько не беспокоил тот факт, что никто не торопился с решением проблемы мягкого выхода. Линде признавался: «У меня было такое чувство, что Бог просто не мог не воспользоваться такой возможностью упростить свою работу».

    В конце концов Линде предложил новый вариант теории инфляции, который, казалось, не содержал некоторых недостатков предыдущих версий. Он представлял Вселенную, в которой в различных временных и пространственных отрезках происходят спонтанные нарушения. В каждой точке, где происходит нарушение, возникает, Вселенная, которая расширяется. Большую часть времени расширение незначительно. Но поскольку процесс беспорядочен, в конце концов возникает пузырек, расширение которого длится достаточно долго для того, чтобы создать нашу Вселенную. Из этого логически вытекает, что расширение является длительным и вечным, большие взрывы случаются постоянно, одни вселенные отпочковываются от других вселенных. Согласно этому сценарию, вселенные могут «распускаться бутонами» других вселенных, создавая тем самым «Мультивселенную».

    Согласно этой теории, спонтанное нарушение может произойти где угодно в нашей Вселенной, став причиной того, что от нашей Вселенной отпочкуется еще одна. Это также означает, что и наша Вселенная могла отпочковаться от другой вселенной. Согласно хаотической инфляционной модели, Мультивселенная вечна, даже если не вечны отдельные вселенные. В некоторых вселенных значение ш может$7

    Оглядываясь назад, можно сказать, что сама идея существования параллельных вселенных буквально навязана нам. Инфляционная теория представляет собой синтез традиционной космологии с достижениями в области физики элементарных частиц. Будучи квантовой теорией, физика частиц утверждает, что существует ограниченная вероятность происхождения маловероятных событий, таких, как создание параллельных вселенных. Таким образом, как только мы признаем возможность создания одной Вселенной, мы тем самым откроем двери возможности создания бесконечного множества параллельных вселенных. К примеру, вспомните о том, как квантовая теория описывает электрон. Вследствие нестабильности электрон не существует ни в одной отдельно взятой точке, а существует во всех возможных точках вокруг ядра. Это электронное «облако», окружающее ядро, представляет электрон, находящийся во многих положениях одновременно. Это основа всей химии, позволяющая электронам связывать молекулы между собой. Наши молекулы не растворяются, потому что вокруг них танцуют электроны, удерживая их в целостности. Подобным образом и наша Вселенная была когда-то меньше электрона. Применяя квантовую теорию ко Вселенной, мы вынуждены признать, что Вселенная существует одновременно во многих состояниях. Иными словами, допустив применение квантовых флуктуации ко Вселенной, мы почти вынуждены признать возможность существования параллельных Вселенных. Похоже, выбор у нас невелик.

    Вселенная из ничего

    Можно, конечно, возражать против понятия Мультивселенной, потому что кажется, что ее существование нарушает известные нам законы, такие, как законы сохранения вещества и энергии. Однако все энергетическое/материальное содержимое. В селенной может в действительности оказаться очень'малым. Материальное содержимое Вселенной, включая звезды, планеты и галактики, огромно и имеет величину положительную. Однако энергия, скрытая в гравитации, может быть отрицательной. Если добавить положительную энергию вещества к отрицательной энергии гравитации, то сумма может оказаться близкой к нулю! В каком-то смысле такие вселенные свободны. Они могут выпрыгнуть из вакуума практически без всяких усилий. (Если Вселенная является вселенной закрытого типа, то все энергетическое содержимое Вселенной должно быть в точности равно нулю.)

    (Чтобы ухватить суть, представьте осла, падающего в глубокую яму, выкопанную в земле. Чтобы вытащить его оттуда, мы должны добавить ему энергии. Когда его вытащат и он снова будет стоять на земле, его энергия будет считаться нулевой. Таким образом, нам необходимо добавить энергии ослу, чтобы привести его в состояние нулевой энергии. Получается, что, пока он был в яме, у него была отрицательная энергия. Подобным образом, для того, чтобы вытащить планету из Солнечной системы, необходимо приложить энергию. Как только планета окажется в открытом космосе, она будет обладать нулевой энергией. Поскольку нам необходимо добавить энергии для того, чтобы извлечь планету из Солнечной системы и достичь состояния нулевой энергии, то, находясь внутри Солнечной системы, планета обладает отрицательной гравитационной энергией.)

    По сути, для того, чтобы создать Вселенную, похожую на нашу, может потребоваться до смешного малое количество вещества — возможно, всего лишь 1 унция (28,3495 г). Как любит повторять Гут, «Вселенная может быть бесплатным завтраком». Эта идея была впервые предложена физиком Эдвардом Трайоном из Хантер-кол-леджа Нью-Йоркского университета, в работе, опубликованной журналом «Нэйчер» (Nature) в 1973 году. Он предположил, что Вселенная — это нечто, «что происходит время от времени» вследствие квантовых флуктуации в вакууме. (Хотя общее количество вещества, необходимого для создания Вселенной, может быть близким к нулю, вещество может быть сжато до невероятной плотности, как мы увидим в главе 12.)

    Подобно мифу о Пань-гу, это является примером космологии creatio ex nihilo. Хотя теория о Вселенной-из-ничего не может быть доказана традиционными методами, она все же помогает ответить на практические вопросы о существовании Вселенной. К примеру, вращается ли Вселенная вокруг своей оси? Все, что мы видим вокруг, вращается — от волчков, ураганов, планет и галактик до квазаров. Кажется, это универсальная характеристика вещества во Вселенной. Но сама Вселенная не вращается. Когда мы смотрим на галактики в небесах, их общее вращение сводится к нулю. (Это довольно удачно, потому что, как мы увидим в главе 5, если бы Вселенная действительно вращалась, то путешествие во времени стало бы делом обычным и запись истории была бы невозможной.) Причиной, по которой наша Вселенная не вращается, может быть то, что она возникла из ничего. Поскольку вакуум не вращается, мы не ждем, что в нашей Вселенной возникнет какое-нибудь суммарное вращение. По сути, все вселенные-пузырьки в Мультивселенной могут иметь нулевое вращение.

    Почему положительный и отрицательный электрические заряды сбалансированы? Обычно, рассуждая о космических силах, управляющих Вселенной, мы больше думаем о гравитации, нежели о силе этого электромагнитного взаимодействия, хотя сила гравитации бесконечно меньше силы электромагнитного взаимодействия. Причиной является совершенный баланс между положительным и отрицательным зарядами. В результате общий заряд Вселенной, видимо, нулевой, и кажется, что во Вселенной преобладает гравитация.

    Хотя мы принимаем это как должное, явление нейтрализации положительных и отрицательных зарядов довольно любопытно и было экспериментально проверено с точностью до 10~21. (Конечно, существует местный дисбаланс зарядов, а потому мы периодически имеем дело с молниями. Но общее количество зарядов, даже для гроз, сводится к нулю.) Если бы разница между положительными и отрицательными зарядами в вашем теле составляла хотя бы 0,00001 %, то вас мгновенно разорвало бы в клочья, а электрическая сила выкинула бы части вашего тела в открытый космос.

    Ответом на эти загадки, в течение долгого времени терзавшие ученых, может служить то, что Вселенная произошла из ничего. Поскольку у вакуума общее вращение и заряд равны нулю, то у любой дочерней Вселенной, выпрыгнувшей из ничего, вращение и заряд также должны быть нулевыми.

    Существует одно бесспорное исключение из этого правила. Этим исключением является тот факт, что Вселенная состоит по большей части из вещества, а не из антивещества. Поскольку вещество и антивещество противоположны (при этом антивещество имеет в точности противоположный веществу заряд), мы могли бы предположить, что при Большом Взрыве возникло равное количество вещества и антивещества. Однако проблема в том, что при контакте вещество и антивещество уничтожат друг друга во взрыве гамма-лучей. Таким образом, мы вообще не должны были бы существовать. Вселенная была бы беспорядочным скоплением гамма-лучей, а не изобиловала бы обычным веществом. Если бы Большой Взрыв был полностью симметричен (или произошел из ничего), то нам следовало бы ожидать образования одинакового количества вещества и антивещества. Так почему же мы все-таки существуем? Решение, предложенное русским физиком Андреем Сахаровым, состоит в том, что Большой Взрыв вовсе не был абсолютно симметричным. Крошечное количество симметрии между веществом и антивеществом было нарушено в момент создания, а потому вещество стало доминировать над антивеществом и это сделало возможным существование Вселенной, которую мы видим вокруг себя. (Симметрия, нарушенная в момент Большого Взрыва, называется СР-симметрией (CP-symmetry), это симметрия равенства противоположных зарядов и равенства частиц вещества и антивещества.) Если Вселенная произошла из «ничего», то, возможно, «ничто» не было совсем пустым, но содержало в себе небольшое количество нарушения симметрии, что объясняет небольшое преобладание вещества над антивеществом в наши дни. Происхождение этого нарушения симметрии и до сих пор неизвестно.

    Как могли бы выглядеть другие вселенные?

    Идея Мультивселенной весьма привлекательна, потому что все, что нам нужно сделать, — это предположить, что спонтанное нарушение происходит беспорядочно. Не нужно делать никаких других предположений. Каждый раз, как какая-либо вселенная выбрасывает бутон другой вселенной, физические постоянные уходят от первоначальных, создавая новые законы физики. Если это действительно так, то в каждой новой вселенной может возникнуть совершенно новая реальность. Но тут возникает потрясающий вопрос: как выглядят эти другие вселенные? Ключом к пониманию физики параллельных вселенных является знание того, как эти вселенные созданы, то есть точное понимание того, как происходит спонтанное нарушение.

    Когда происходит спонтанное нарушение и возникает вселенная, это также нарушает симметрию первоначальной теории. Для физика красота — это симметрия и простота. Если теория совершенна, то это означает, что в ней заложена абсолютная симметрия, которая может объяснить множество данных наиболее сжатым и экономичным путем. Точнее, уравнение считается совершенным, если оно остается неизменным, когда мы меняем его члены местами. Залогом обнаружения скрытой в природе симметрии оказывается то, что явления, кажущиеся различными, по сути своей есть проявлениями одного и того же, связаны между собой симметрией. Например, мы можем показать, что электричество и магнетизм в действительности разные аспекты одного и того же явления, поскольку существует симметрия, которая может сделать их взаимозаменяемыми в рамках уравнений Максвелла. Подобным образом Эйнштейн доказал, что теория относительности может превращать пространство во время и наоборот, поскольку они являются частью целого, материи времени-пространства.

    Представьте снежинку, в которой мы видим совершенную шестикратную симметрию, источник бесконечного восхищения. Суть красоты снежинки состоит в том, что она не изменяется при повороте снежинки на 60 градусов. Это также означает, что любое уравнение, которое мы составим для описания снежинки, должно отражать тот факт, что она остается неизменной при повороте на количество градусов, кратное 60. Математически мы говорим, что снежинка обладает симметрией Сб.

    В симметрии закодирована красота природы. Но в действительности сегодня симметрии нарушены. Четыре фундаментальных взаимодействия Вселенной совсем не похожи друг на друга. По сути, Вселенная полна неравномерностей и дефектов; нас окружают обломки и осколки первоначальной фундаментальной симметрии, вдребезги расколотые Большим Взрывом. Таким образом, ключом к пониманию возможных параллельных Вселенных служит понимание «нарушения симметрии» — то есть того, как эти симметрии могли нарушиться после Большого Взрыва. Как сказал Дэвид Гросс: «Секрет природы — симметрия, но значительная часть мировой структуры является следствием нарушения симметрии».

    Представьте, что красивое зеркало разбивается на тысячи осколков. Первоначальное зеркало обладало совершенной симметрией. Но когда оно разбилось, первоначальная симметрия оказалась утрачена. Определив, как именно нарушена симметрия, можно понять, как разбилось зеркало.

    Нарушение симметрии

    Чтобы понять этот факт, задумайтесь о развитии эмбриона. На ранних стадиях, то есть через несколько дней после зачатия, эмбрион — это совершенная сфера, состоящая из клеток. Каждая клетка ничем не отличается от остальных. Сфера выглядит одинаково, с какой бы стороны мы на нее ни взглянули. Физики утверждают, что в этом случае эмбрион обладает симметрией 0(3), то есть остается неизменным, по какой бы оси вращения вы его ни поворачивали.

    Хотя эмбрион прекрасен и изящен, он довольно бесполезен. Представляя собой совершенную сферу, он не может выполнять какую-либо полезную функцию или взаимодействовать с окружающей средой. Однако со временем эмбрион нарушает эту симметрию: у него развивается крошечная головка и тело, и он становится похожим на кеглю. Хотя изначальная сферическая симметрия нарушена, эмбриону все же присуща остаточная симметрия — он остается неизменным при вращении его вокруг собственной оси. Таким образом, он обладает цилиндрической симметрией. Математически это означает, что первоначальная симметрия 0(3) сферы свелась к симметрии 0(2) цилиндра.

    Однако нарушение симметрии О (3) могло бы происходить иначе. Например, у морской звезды нет ни цилиндрической, ни двусторонней симметрии; вместо этого при нарушении сферической симметрии у нее появляется симметрия С5 (которая остается неизменной при повороте на 72 градуса), что придает ей форму пятиугольной звезды. То есть, то, каким образом нарушается симметрия 0(3), определяет форму организма при рождении.

    Ученые считают, что Вселенная подобным образом зародилась в состоянии идеальной симметрии, где все взаимодействия были объединены в целое. Вселенная была совершенной, симметричной, но довольно бесполезной. Та жизнь, которая нам известна, не могла бы существовать в этом идеальном состоянии. Чтобы появилась жизнь, при остывании Вселенной ее симметрия должна была нарушиться.

    Симметрия и Стандартная модель

    Подобным же образом для того, чтобы понять, как выглядят параллельные Вселенные, мы для начала должны понять симметрию сильного, слабого и электромагнитного взаимодействия. Например, сильное взаимодействие основано на трех кварках, которые ученые метят, символически приписывая им «цвета» (например, красный, белый и синий). Мы хотим, чтобы уравнения оставались неизменными, если поменяем местами эти три цветных кварка. Мы говорим, что уравнения обладают симметрией SU(3), то есть они останутся неизменными, если мы перемешаем эти три кварка. Ученые считают, что теория, обладающая симметрией SU(3), представляет наиболее точное описание сильных взаимодействий (называемое «квантовой хромодинамикой»). Если бы у нас был гигантский суперкомпьютер, то только по массам кварков и силе их взаимодействия мы, теоретически, могли бы вычислить все свойства протона и нейтрона и все характеристики ядерной физики.

    Пусть у нас есть два лептона — электрон и нейтрино. Если мы поменяем их местами в уравнении, то у нас будет симметрия SU(2). Мы можем добавить свет, группа симметрии которого U(1). (Эта группа симметрии меняет местами между собой различные составляющие, или поляризации света.) Таким образом, группой симметрии слабого и электромагнитного взаимодействия является SU(2)xU(1).

    Если мы просто «склеим» эти три теории, то получим (и это неудивительно) симметрию SU(3)xSU(2)xU(l), — иными словами, симметрию, которая отдельно «склеивает» три кварка между собой и отдельно два лептона между собой (но не смешивает кварки и леп-тоны). В результате получили теорию Стандартной модели — возможно, одной из наиболее успешных теорий в истории человечества. Как утверждает Гордон Кейн из Мичиганского университета: «Все, что происходит внашем мире (кроме воздействия гравитации), проистекает из взаимодействия частиц согласно Стандартной модели». Некоторые из ее положений были экспериментально проверены в лабораторных условиях и оправдались с точностью до одной стомиллионной. (Вообще, физики, которые собрали вместе составляющие Стандартной модели, получили 20 Нобелевских премий.)

    В конце концов, можно было бы построить теорию, объединяющую сильное, слабое и электромагнитное взаимодействие в единую симметрию. Простейшая из теорий Великого Объединения, которая способна на это, меняет местами все пять частиц (три кварка и два лептона) одновременно. В отличие от симметрии Стандартной модели, симметрия Великого Объединения может перемешивать кварки и лептоны (что означает, что протоны могут распадаться и превращаться в электроны). Иными словами, в теории Великого Объединения используется симметрия SU(5) (которая перетасовывает все пять частиц — три кварка и два лептона — между собой). За многие годы было проанализировано много других групп симметрии, но SU(5), видимо, является минимальной группой, которая вписывается в расчетные данные.

    Когда происходит спонтанное нарушение, первоначальная симметрия ТВО может разрушиться несколькими путями. В одном случае симметрия ТВО разрушается до SU(3.)xSU(2)xU(1), где есть ровно 19 параметров, которые нам необходимы для описания свойств Вселенной. Это описывает свойства известной Вселенной. Однако в действительности есть много различных вариантов разрушения симметрии ТВО. В других вселенных наверняка будет наблюдаться совершенно иная остаточная симметрия. Минимальным различием будут отличные от наших значений 19 параметров. Иными словами, действие различных сил будет различаться в разных вселенных, ведя к огромным изменениям в структуре Вселенной. К примеру, ослабив силу ядерного взаимодействия, можно предотвратить образование звезд, что погрузит Вселенную в вечную тьму и сделает невозможной существование в ней. Если силу ядерного взаимодействия увеличить, то звезды могут израсходовать свое ядерное топливо слишком быстро, чтобы успела зародиться какая-либо жизнь.

    Группа симметрии может измениться таким образом, что это станет причиной образования совершенно иной вселенной. В некоторых из таких вселенных протон может оказаться неустойчивым и быстро распасться на позитроны. В таких вселенных невозможна известная нам жизнь, они быстро распадутся в безжизненное облако электронов и нейтрино. В других вселенных распад симметрии ТВО может пойти иным путем — будет больше устойчивых частиц, таких, как протоны. В такой вселенной могло бы существовать огромное разнообразие новых неизвестных химических элементов. Формы жизни в таких вселенных были бы более сложными, чем в нашей, так как там соединения, подобные ДНК, создавались бы из большего количества элементов.

    Мы можем также разбить изначальную симметрию ТВО таким образом, что в результате получим несколько симметрии U(l). Это определит существование нескольких форм света, а не одной. Подобная Вселенная действительно была бы удивительной — существа, обитающие в ней, могли бы «видеть», пользуясь не одной, а несколькими силами. В такой Вселенной глаза любого живого существа были бы снабжены большим количеством разнообразных рецепторов для улавливания различных видов излучения, подобных световому.

    Неудивительно, что существуют сотни, а возможно, бесчисленное множество возможностей разбить эти симметрии на составляющие. В свою очередь, каждое из возможных решений может соответствовать совершенно иной вселенной.

    Проверяемые прогнозы

    К несчастью, проверка теории Мультивселенной, предполагающей существование многочисленных вселенных с различным набором физических законов в каждой из них, в настоящее время не является возможной. Для того, чтобы добраться до параллельных вселенных, необходимо двигаться со скоростью, превышающей скорость света. Но одним из преимуществ инфляционной теории является то, что она делает заключения о природе нашей Вселенной, которые можно проверить.

    Поскольку инфляционная теория — теория квантовая, она основывается на принципе неопределенности Гейзенберга, краеугольном камне квантовой теории. (Принцип неопределенности гласит, что нельзя произвести измерения с бесконечной точностью, например такие, как измерение скорости и местоположения электрона. При этом неважно, насколько чувствительны приборы, — в измерениях все равно будет присутствовать некоторая неопределенность. Если вам точно известна скорость электрона, то не может быть известно его местоположение; если вы точно знаете его местоположение, то вы не можете знать его скорость.) Применительно к изначальному огненному облаку Большого Взрыва это означает, что первоначальный космический взрыв не мог быть бесконечно «ровным». (Если бы он был идеально однородным, то мы бы знали точные траектории субатомных частиц, разлетевшихся в результате Большого Взрыва, что противоречит принципу неопределенности.) Квантовая теория позволяет нам вычислить размер этих волн, или флуктуации, в первоначальном облаке огня. Если мы расширим эти крошечные многочисленные волны, то сможем вычислить минимальное количество волн, которое должны увидеть в фоновом микроволновом излучении через 380 ООО лет после Большого Взрыва. (А если мы расширим эту рябь до настоящего времени, то должны увидеть расположение галактических скоплений. Наша галактика сама появилась в виде одной из этих крошечных флуктуации.)

    Первоначальный поверхностный анализ данных со спутника СОВЕ не обнаружил отклонений или флуктуации в фоновом микроволновом излучении. Это несколько озаботило физиков, поскольку идеально гладкий микроволновый фон противоречил бы не только инфляционной теории, но также и всей квантовой теории, нарушая принцип неопределенности. Это потрясло бы физическую науку до самого основания. Возможно, пришлось бы разрушить весь фундамент квантовой физики XX века.

    К великому облегчению ученых, доскональное изучение обработанных на компьютере данных со спутника СОВЕ обнаружило размытую рябь, при этом колебания температуры не превосходили 10-5 — минимальный размер отклонения, допускаемый квантовой теорией. Эти бесконечно малые волны ряби вписывались в инфляционную теорию. Гут признался: «Я совершенно очарован космическим фоновым излучением. Сигнал был таким слабым, что его обнаружили лишь в 1965 году, а теперь измеряют флуктуации с точностью до 10"5».

    Хотя накапливаемые экспериментальные данные постепенно подтверждали инфляционную теорию, ученым все еще предстояло решить мучительную проблему значения со — объяснить тот факт, что со равнялась 0,3, а не 1,0.

    Сверхновые — возвращение лямбды

    Хотя оказалось, что теория инфляции согласуется с данными, полученными со спутника СОВЕ, все же до 1990-х годов астрономы роптали на то, что она вопиющим образом нарушает экспериментальные данные, касающиеся значения со. Впервые ситуация начала изменяться в девяностых в результате обработки данных, полученных из совершенно неожиданной области. Астрономы пытались пересчитать скорость расширения Вселенной в далеком прошлом. Вместо анализа переменных цефеид (которым в 1920-е годы занимался Хаббл) астрономы начали изучение сверхновых в далеких галактиках на расстоянии миллиардов световых лет в прошлом. В частности, они исследовали тип сверхновых 1а. Сверхновые этого типа — идеальные кандидаты в стандартные свечи.

    Астрономам известно, что все сверхновые этого типа характеризуются приблизительно одинаковой яркостью. (Яркость сверхновых типа 1а изучена настолько хорошо, что могут быть замечены даже небольшие отклонения: чем ярче сверхновая, тем медленнее убывает ее яркость.) Такие сверхновые Появляются, когда белый карлик в двойной звездной системе медленно вытягивает вещество из своего спутника. Кормясь от сестры-звезды, белый карлик постепенно увеличивает массу, и так до тех пор, пока она не достигает 1,4 солнечной массы, максимально возможной для белого карлика. Превысив этот предел, они коллапсируют и взрываются как сверхновые типа 1а. Эта предельная масса и объясняет тот факт, что все сверхновые типа 1а так однородны в своей яркости — это естественное следствие того, что белые карлики увеличивают массу ровно до 1,4 солнечной массы, а затем коллапсируют под воздействием силы гравитации. (Как показал Субраманьян Чандрасекар в 1935 году, в белом карлике сила гравитации, разрушающая звезду, уравновешивается силой отталкивания электронов, которая называется давлением вырожденных электронов. Если белый карлик превосходит 1,4 солнечной массыА, то гравитация преодолевает эту силу и звезда разрушается, а результатом этого разрушения становится сверхновая.) Поскольку взрывы отдаленных сверхновых произошли в молодой Вселенной, то посредством их анализа можно рассчитать скорость расширения Вселенной миллиарды лет назад.

    Две независимые группы астрономов — возглавляемые Солом Перлмуттером «Проект космологии сверхновых» (Supernova Cosmology Project) и Брайаном П. Шмидтом «Группа поисков сверхновых с большим красным смещением» (High-Z Supernova Search Team) — рассчитывали обнаружить, что Вселенная, продолжая расширяться, все же постепенно замедляет скорость расширения. Для нескольких поколений астрономов это было догмой, которой учили во всех курсах космологии, — «изначальное расширение постепенно замедляется».

    После того как каждая из групп изучила около дюжины сверхновых, они обнаружили, что Вселенная расширяется не так быстро, как считалось раньше (то есть красное смещение сверхновых — а следовательно, и их скорость — было меньше априорных ожиданий). При сравнении скорости расширения ранней Вселенной и Вселенной наших дней обе группы астрономов заключили, что в наши дни скорость расширения Вселенной — не меньше, а больше. К своему большому удивлению, обе группы пришли к поразительному выводу: расширение Вселенной ускоряется

    В полное смятение их привело то, что ни одно из значений со не вписывалось в полученные ими данные. Единственным способом, позволяющим согласовать данные и теорию, было возвращение лямбды ().), энергии вакуума, впервые введенной Эйнштейном. Более того, астрономы обнаружили, что to была просто задавлена необычайно большой что вызывало ускорение Вселенной по сценарию де Ситтера. Две группы совершенно независимо друг от друга пришли к этому потрясающему выводу, но не торопились публиковать результаты из-за господствующего предубеждения, что значение). равнялось нулю. Как сказал Джордж Джейкоби из обсерватории Китт-Пик: «). всегда была донкихотским понятием, и любого, кто был достаточно не в себе, чтобы сказать, что она не равна нулю, считали спятившим».

    Шмидт вспоминает: «Я все еще качал головой, но мы все проверили… Мне не хотелось говорить об этом людям, потому что нас разорвали бы на части». Однако, когда в 1998 году обе группы опубликовали свои результаты, целую гору представленных ими данных было не так-то легко сбросить со счета. «величайшая ошибка» Эйнштейна, которую в современной космологии практически и не вспоминали, возвращалась через 90 лет забвения!

    Физики были ошеломлены. Эдвард Виттен из Института передовых исследований в Принстоне заявил, что это было «самое необычайное экспериментальное открытие с того момента, как я начал заниматься физикой». Когда значение со = 0,3 добавили к значению Х=0,7, то сумма оказалась (с учетом погрешности в ходе эксперимента) равной 1,0, то есть результат совпал с тем, который предсказывала теория инфляции. Будто бы части головоломки встали на свои места, и космологи увидели недостающий фрагмент в теории инфляции. Он пришел прямиком из вакуума.

    Этот результат был самым впечатляющим образом подтвержден спутником WMAP, который показал, что энергия, приписываемая или темная материя, составляет 73 % всего вещества и энергии во Вселенной, что отводит ей доминирующее место в космической головоломке.

    Фазы Вселенной

    Возможно, основным вкладом спутника WMAP в науку стало то, что он дал ученым уверенность в правильности Стандартной модели космологии. Хотя и до сих пор существуют огромные «белые пятна», перед глазами астрофизиков начинают вырисовываться общие контуры Стандартной теории, рождающейся из общего количества полученных данных. Согласно картинке, которую мы сейчас складываем из отдельных элементов, в эволюции Вселенной по мере ее остывания прослеживались отдельные этапы. Переход от одного этапа к другому означает нарушение симметрии и отсечение одного из фундаментальных природных взаимодействий. Ниже представлены те фазы и вехи, которые известны нам на сегодняшний день: 1. До 10"43 секунды — эпоха Планка.

    Об эпохе Планка точно почти ничего не известно. При энергии Планка (1019 млрд электронвольт) гравитационное взаимодействие было столь же сильным, как и остальные многочисленные силы. Как следствие, четыре взаимодействия Вселенной были, видимо, объединены в единую «сверхсилу». Возможно, Вселенная существовала в совершенном состоянии «небытия», или пустого пространства с большим количеством измерений. Та загадочная симметрия, которая смешивает все четыре взаимодействия, оставляя уравнения неизменными, — скорее всего, «сверхсимметрия» (см. главу 7). По неизвестным причинам эта загадочная симметрия, объединявшая все четыре взаимодействия, была нарушена, и сформировался крошечный пузырек — эмбрион нашей Вселенной, возникший, возможно, в результате значительной, но случайной флуктуации. Размеры этого пузырька не превышали длины Планка, которая составляет 10"33 см.

    2. 10" секунды — эпоха ТВО.

    Произошло нарушение симметрии, что стало причиной образования стремительно расширяющегося пузырька. По мере того как пузырек расширялся, четыре фундаментальных взаимодействия стремительно отделились друг от друга. Гравитация первой отделилась от трех остальных взаимодействий, вызвав ударную волну во всей Вселенной. Изначальная симметрия сверхсилы была нарушена и превратилась в симметрию меньшего порядка, которая, возможно, содержала в себе симметрию ТВО SU(5). Оставшиеся сильное, слабое и электромагнитное взаимодействия были все еще объединены симметрией ТВО. На этом этапе Вселенная расширилась в невероятное количество раз (возможно, в 1050), и расширение это было вызвано неизвестными до сих пор причинами; пространство расширялось со скоростью, астрономически большей, чем скорость света. Температура была 1032 градусов.

    3. 10-34 секунды — конец инфляции.

    Температура упала до 1027 градусов, когда сильное взаимодействие отделилось от двух других сил. (Группа симметрии ТВО распалась на SU(3)xSU(2)xU(l).) Инфляционный период завершился, дав Вселенной возможность идти по пути стандартного расширения Фридмана. Вселенная состояла из горячего плазменного «супа» свободных кварков, глюонов и лептонов. Свободные кварки превратились в нынешние протоны и нейтроны. Наша Вселенная была еще довольно маленькой, размером всего лишь с сегодняшнюю Солнечную систему. Вещество и антивещество аннигилировались, но существовал крошечный перевес вещества над антивеществом (1 миллиардная доля), в результате которого возникла вся материя вокруг нас. (Это энергетический диапазон, который, как мы надеемся, будет дублирован в течение нескольких следующих лет ускорителем частиц — Большим адронным коллайдером (the Large Hadron Collider).)

    4. 3 минуты — образование ядер.

    Температуры упали достаточно низко для образования ядер, которые теперь не разрывало сильным жаром. Водород синтезировался в гелий (создав сегодняшнее соотношение: 75 % водорода к 25 % гелия). Образовались ничтожные количества лития, но синтез более тяжелых элементов прекратился, потому что ядра с 5 частицами были слишком неустойчивы. Вселенная была непрозрачной, свет рассеивался свободными электронами. Этот момент отмечает конец первозданного огненного шара.

    5. 380 ООО лет — возникновение атомов.

    Температура упала до 3000 градусов по Кельвину. Атомы формировались электронами, окружающими ядра, которые не разрывало жаром. Фотоны теперь могли свободно передвигаться, не будучи поглощенными. Это и есть то самое излучение, которое было измерено спутниками СОВЕ и WMAP. Вселенная, когда-то непрозрачная и наполненная плазмой, стала прозрачной. Небо вместо белого стало черным.

    6. 1 млрд лет — звезды отвердевают.

    Температура упала до 18 градусов. Начали формироваться квазары, галактики и галактические скопления," в большинстве своем представляющие побочный продукт многочисленных крошечных волн в первоначальном облаке пламени. В звездах начали «печься» легкие элементы, такие, как углерод, кислород и азот. Взрывающиеся звезды извергали в небеса элементы с атомным весом выше железа. Это самая отдаленная эпоха, которую мы можем исследовать с помощью космического телескопа Хаббла.

    7. 6,5 млрд лет — расширение де Ситтера.

    Расширение Фридмана завершается, и Вселенная постепенно ускоряет свое расширение и входит в фазу ускорения, которая называется расширением де Ситтера, вызванным загадочной антигравитационной силой, природа которой не раскрыта и до сегодняшнего дня.

    8. 13,7 млрд лет — сегодня.

    Настоящее. Температура упала до 2,7 градуса. Мы наблюдаем сегодняшнюю Вселенную, состоящую из галактик, звезд и планет. Расширение Вселенной продолжает стремительно ускоряться.

    Будущее

    Хотя сегодня инфляционная теория способна объяснить столько загадок Вселенной, это еще не служит доказательством того, что она верна. (Кроме того, недавно были предложены конкурирующие теории, как мы увидим в главе 7.) Данные, касающиеся сверхновых звезд, предстоит еще проверять и проверять, принимая во внимание такие факторы, как пыль и аномалии, возникающие при образовании сверхновых. «Дымящимся пистолетом» (то есть последней, явной уликой), который окончательно подтвердит или опровергнет инфляционный сценарий, являются «гравитационные волны», возникшие в момент Большого Взрыва. Подобно микроволновому фону, эти гравитационные волны должны по-прежнему отражаться во Вселенной и, по сути, могут быть обнаружены при помощи детекторов гравитационных волн, как мы расскажем в главе 9. Теория инфляции содержит некоторые предположения относительно природы этих гравитационных волн, и детекторы должны обнаружить их.

    Но один из наиболее интригующих прогнозов теории инфляции не может быть проверен прямым путем. Этот прогноз — существование в Мультивселенной «дочерних вселенных», которые живут по несколько иным физическим законам. Чтобы осознать все, что влечет за собой факт возможного существования Мультивселенной, необходимо прежде всего понять, что теория инфляции полностью укладывается в причудливые уравнения Эйнштейна и квантовой теории. Согласно теории Эйнштейна, существование многочисленных вселенных является возможным, а по квантовой теории у нас даже есть средства для передвижения между ними. И в рамках новой М-теории мы можем обрести новую, окончательную теорию, которая поможет раз и навсегда решить вопрос о параллельных вселенных и путешествии во времени.


    Примечания:



    1

    Его фамилию (Guth) часто также транскрибируют как «Гус». — Здесь и далее прим. ред., если не указано иначе.



    2

    Хотя общепринятый перевод этого высказывания Эйнштейна — «Ничто не может перемещаться быстрее света», в данном контексте адекватен именно вышеуказанный дословный перевод, поскольку автор таким образом обыгрывает это высказывание, приравнивая «ничто» к пустому пространству.



    3

    В классическом переводе Т. Гцепкнной-Куперннк эти слова звучат следующим образом: «Весь мир — театр. В нем женщины, мужчины — все актеры. У них свои есть выходы, уходы», но, поскольку слово stage означает не только «театр», но и «сцену», а автор на протяжении книги проводит аналогию Вселенной именно со сценой, мы дали именно такой перевод.



    4

    Сжатие объектов, движущихся с околосветовой скоростью, в действительности было открыто Хендриком-Лоренцом и Джорджем Френсисом Фитцджеральдом незадолго до Эйнштейна, но они не поняли этого эффекта. Они пытались анализировать этот эффект в рамках исключительно ньютонианской системы, предположив, что это сжатие представляет собой электромеханическое сжатие атомов, создающееся вследствие прохождения сквозь «эфирный ветер». Сила идей, предложенных Эйнштейном, состояла в том, что он не только получил всю специальную теорию относительности из одного принципа (постоянства скорости света), — он также интерпретировал его как универсальный природный принцип, противоречащий теории Ньютона. Таким образом, эти искажения являлись свойствами, присущими пространству-времени, а не электромеханическими искажениями вещества. Великий французский математик Анри Пуанкаре, вероятно, подошел ближе всех к выводу тех же уравнений, что получил Эйнштейн. Но лишь у одного Эйнштейна был полный набор уравнений и глубокое понимание физической подоплеки проблемы.



    5

    Первым человеком, предложившим идею «первоатома» начала времен, был Эдгар Аллан По. Он утверждал, что материя притягивает другие формы материи, а значит, в начале времен должно было существовать космическое скопление атомов.