|
||||
|
Часть вторая Дела житейские Вероятность, которой можно и должно пренебречь Любители парадоксов часто пытаются убедить читателя в противоречиях, которые якобы часто встречаются в проблемах вероятности. Парадоксы возникают обычно в том случае, если игрой слов пытаются подменить практическую постановку вопроса. Вот пример. Капитан пожарной команды собирается провести учения. Разумеется, тревога должна быть неожиданной, и он решает выбрать день учений броском игральной кости: единица – понедельник, двойка – вторник… шестерка – суббота (воскресенье у пожарной команды выходной). Казалось бы, все ясно, и день тревоги будет выбран в соответствии с законами случая. Однако предположим, что проходит понедельник, вторник… наконец, пятница, а тревоги нет. Значит, наверняка она будет в субботу. А такого положения допустить нельзя, ведь случайность изгнана. Значит, выбор дней тревоги с элементом случая надо ограничить пятницей. Но, владея сим методом рассуждения и не дождавшись тревоги в четверг, пожарники будут твердо знать, что ее объявят в пятницу. И тогда дни учений надо ограничить четвергом. Но, не дождавшись тревоги в среду, пожарники будут твердо знать, что произойдет в четверг. Также отпадает и среда, и вторник… Рассуждение это бессмысленно и вовсе не потому, что в понятии вероятности есть противоречия, а потому что полностью лишена содержания сама постановка вопроса. Ясно, что в понедельник утром пожарники могут ожидать проверки в любой из 6 дней, а во вторник в любой из 5, а в среду в любой из 4 и т.д. Парадокс, как всегда, результат игры слов и отрыва слов от действий. Обращаясь к математику, прошу его написать подряд десять случайных цифр. Он, хитро улыбаясь, пишет подряд десять единиц, а я изображаю на своем лице недоумение. Математик снисходительно поясняет: «Я десять раз подряд бросил монету. Она десять раз упала цифрой кверху. Я обозначил единицей выпадение цифры, и вот вам результат моего опыта. Вы ведь не станете отрицать, что это явление случайное, и также ясно представляете себе, что подобное событие (то есть выпадение цифры 10 раз подряд) вполне возможно – его вероятность около одной тысячной? А с такой вероятностью следует считаться». Все правильно. Только не следует делать из этого вывод, что в понятии «вероятность» заключены какие-то противоречия и неясности. Прежде всего отдавайте, пожалуйста, себе ясный отчет, о чем идет речь – о вероятности серии событий (вероятность выпадения монеты десять раз кряду гербом кверху) или о вероятности одного случайного события. О сериях событий разговор будет позже. А сейчас поговорим об одном событии. Мы ждем этого события. Сейчас оно произойдет. Каков будет результат? Знаете вы это наперед? – Я держу в руках камень. Сейчас разожму руки. Что будет? – Смешной вопрос. Ответ очевиден заранее: камень упадет на землю. – А теперь я подброшу вверх монету. Какой стороной она упадет на пол? – Смешной вопрос. Ответ никому заранее неизвестен. События, исход которых предсказать нельзя, мы называем случайными. Падение камня на землю – событие с достоверным результатом. Падение монеты на пол гербом вверх или вниз – событие со случайным исходом. Предсказать случайное событие мы не можем (эта фраза есть тавтология – «веревка есть вервие простое»), но можем знать заранее его вероятность. – Какова вероятность, что эта монета упадет гербом кверху? – Дайте сюда монету. Так. Она, кажется, правильная, и если центр тяжести ее не смещен, то я не вижу причин, по которой герб был бы лучше цифры. Значит, вероятность, про которую вы спрашиваете, равна одной второй. Соображения симметрии приводят меня к такому заключению. – Да, а если монета неправильная? – Тогда величина вероятности для этой монеты может быть установлена только на опыте. Надо произвести много бросков и установить эмпирическое (опытное) значение вероятности. – Значит, к значению вероятности приходят двумя путями? – Так точно. Либо симметрия события позволяет нам сделать предсказание вероятности его исхода, либо длительный опыт приводит нас к заключению о величине вероятности. Конечно, к соображениям симметрии надо относиться с осторожностью. Можно, скажем, поторопиться и сделать заключение, что появление у молодых родителей мальчика или девочки вполне эквивалентно выпаду герба или цифры у правильной монеты. Но, оказывается, дело обстоит не так, и вероятность появления на свет мальчика примерно на один процент выше. Длительное наблюдение позволяет установить такое значение вероятности и пользоваться им для предсказания грядущих событий. «Вот в этом и порочный круг, – может заявить любитель парадоксов. – Я определяю вероятность опытным путем, то есть анализом прошлого, и применяю ее к будущему. А откуда я знаю, что со временем эта вероятность не претерпит изменения?» Но так можно сказать о любом событии. Откуда я знаю, что завтра взойдет солнце; откуда я знаю, что мой сосед по дому смертен; откуда я знаю, что на клене не вырастут яблоки? Возражать против научного метода, исходя из подобных построений формальной логики, совершенно бессмысленно. Человек не может жить, не приняв без доказательства целый ряд посылок, в том числе и уверенность, что действия законов природы в будущем неизменны. Еще одна линия атаки на законы вероятности – это стирание грани между маловероятным и невозможным. Несомненно, рассуждая формально, можно сказать, что и самые дикие события осуществимы. Легко рассчитать вероятность того, что воздух из комнаты, где вы сейчас трудитесь, выйдет во мгновение ока через открытое окно и работа останется недоделанной. Можно рассчитать вероятность того, что кот Васька отстукает на машинке, тыча в клавиши куда попало лапой, «Сказку о царе Салтане». Нетрудно подсчитать вероятность появления одного лишь красного цвета в рулетке Монте-Карло в течение целого «рабочего дня» и красочно изобразить ужас и растерянность дирекции этого богоугодного заведения… Все это можно; и действительно, вероятности будут отличны от нуля. Но отнести эти события на таком формальном основании к возможным – значит играть словами. События достаточно маловероятные не происходят. Этим законом мы можем и должны руководствоваться и в науке, и в житейской практике. Какие вероятности практически равны нулю, можно всегда оценить. И эта оценка, разумеется, будет разной, смотря о чем идет речь. Если о событии, касающемся одного конкретного человека, скажем меня или вас, – это одно, если о событии, случившемся с абстрактным землянином, – другое. И наконец, совсем иные оценки возникнут, когда от случайностей в мире людей мы перейдем к беспорядку в мире атомов. Итак, прежде всего, как я оцениваю вероятности событий, которые касаются меня лично или вас, читатель? Точнее, какие вероятности событий мы с вами считаем, не раздумывая, нереалистическими и не принимаем во внимание? На этот вопрос отвечают обычно так: событие, вероятность которого равна примерно одной миллионной считается практически несбыточным. Откуда мы взяли это число? Количество дней, которое отпущено природой нам, грешным, равно примерно 25–30 тысячам. Следовательно, число простых жизненных фактов, которые мы повторно совершаем в своей жизни, измеряется миллионами. Значит, считаться с вероятностью одной миллионной – это вроде бы придавать значение каждому жесту, совершенному за время жизни. Подойдем к этой же величине другим путем. Обычно человека, который не выходит из дому из-за боязни попасть в автомобильную катастрофу, считают не вполне нормальным. Чему же равна грустная вероятность погибнуть в какой-либо день своей жизни под колесами автомобиля, скажем, итальянцу, в стране которого проживает 50 миллионов человек, а прощается с жизнью из-за успехов автомобилизма около 10 тысяч человек за год, то есть 25 человек в день? Оказывается, каждый итальянец, выходящий на улицу, имеет один шанс против 500 тысяч попасть сегодня под колеса. Мы видим, что итальянцы не считаются с вероятностями порядка одной миллионной. Также поступают и жители других государств. Кстати, процент гибнущих в путевых катастрофах удивительно одинаков по всем странам Европы и Америки. А вот еще довод. В игорном доме в Монте-Карло ведется запись всех выходящих номеров. За время существования этого богоугодного заведения ни разу не зафиксирована серия, состоящая более чем из 22 одноцветных номеров кряду. Появление такой одноцветной серии имеет вероятность порядка десятимиллионных долей единицы. Значит, играя тысячу игр в день всю свою жизнь, вы можете не встретиться с таким поразительным случаем. Такая же примерно величина вероятности крупнейшего выигрыша и у держателей лотерейных билетов, то есть около одной миллионной. Хотя крупный выигрыш при этом и возможен, разумный человек не строит своих планов в расчете на него, как не страшится гибели в автомобильной катастрофе. Мы вели разговор о вероятности как о руководстве к действию применительно к одному конкретному лицу, скажем, к моей личной судьбе. И другое дело, когда мы оцениваем вероятность происшествия применительно к абстрактным жителям. Положим, я директор страховой компании. На вероятность своей гибели в автомобильной катастрофе я не обращаю внимания, но оценка вероятности такой смерти для некоего абстрактного гражданина моей страны меня волнует и лежит в основе моей деятельности, поскольку в стране проживает несколько миллионов человек. Какую же вероятность должно иметь событие, чтобы мы откинули его как невозможное, когда речь идет об абстрактном жителе Земли? Эмиль Борель, французский математик, много сделавший для развития теории вероятностей, предлагает в качестве такой вероятности 10–15, то есть одну миллионную от одной миллиардной. Это число представляется весьма разумным. А получается оно просто от уменьшения индивидуальной вероятности в число раз, равное населению земного шара. Грубо оценив, что вероятность попасть под автомобиль, выиграть пять тысяч в спортлото или дожить до ста двадцати лет лежит где-то далеко за пределами одной миллионной, вы будете смело ходить по улицам, откажетесь, имея лотерейный билет, от осмотра продающейся дачи и не станете откладывать написание своих мемуаров до 2070 года. Таков вывод, который можно сделать, сталкиваясь с малыми вероятностями. Но наш совет – не делать и обратного. Не стоит всегда принимать во внимание и те вероятности, которые больше одной миллионной. Жизнь была бы очень утомительной. По данным метеорологической статистики, солнечное утро сменяется дождливым днем с вероятностью, лежащей в пределах 0,01–0,001. С этим считаться, вообще говоря, надо. Но риск промокнуть не более драматичен, чем насморк, да дождь можно и переждать. С другой стороны, таскать с собой дождевой зонтик в хорошую погоду – значит неминуемо подвергнуться насмешкам. Поэтому захватить зонтик стоит лишь тогда, когда по небу гуляют темные и подозрительные облака. Вероятно, так поступает большинство читателей. Разумеется, более серьезно стоит отнестись к вероятности дурной погоды при отправлении в далекую морскую прогулку на легком паруснике. Таким образом, оценка вероятности события – вещь, несомненно, полезная и нужная. Следует стараться определить ее как можно более обстоятельно, скажем поинтересоваться прогнозом погоды, постучать по барометру и посмотреть, падает или повышается давление. А окончательное решение принимать, соразмеряя вероятность неприятности с ценой риска. Задуматься о вероятности риска, приучить себя прикидывать величину этой вероятности полезно для людей обеих крайностей – и тех, кто неоправданно рискует, и тех, кто неоправданно осторожничает. Привычка оценивать вероятности может оказаться полезной для обнаружения противоречий, ошибок и, мягко выражаясь, уклонений от истины. О художественной правде Вы читаете рассказ.
Не буду дальше демонстрировать свои беллетристические таланты. (Демонстрация того, что писать плохие рассказы может каждый, не являлась моей целью.) Какую же мысль собираюсь я провести на примере только что изложенной, «захватывающей» истории? А вот какую. Я думаю, что, если этот же самый отрывок перепишет хороший беллетрист, сущность дела не изменится. Ни самые что ни на есть художественные описания природы, ни попытки проникновения в психологию героев не смогли бы спасти пошлого сюжета. Почему, собственно, пошлого? Да по той причине, что он неправдоподобен. Написанное непохоже на правду потому, что происшедшее невероятно. А невероятное есть невозможное – это ведь главный тезис нашей книги. Каждое отдельное событие, изложенное в отрывке, само по себе имеет небольшую, но значимую вероятность. Самая маленькая из них – это выпасть из самолета из-за несовершенства дверей. Пусть авиаинженеры фыркнут от негодования, но, наверное, один-два подобных случая за историю авиации были. Остаться живым при свободном падении?.. Насколько мне не изменяет память, такие происшествия также фигурируют в истории воздухоплавания. Встретиться случайно с пропавшей без вести любимой супругой? Что ж, и такое событие не исключено. В отрывке же все эти крайне маловероятные события происходят одновременно. А вероятность сложного события, как мы знаем, равняется произведению составляющих его элементов. Значит, если вероятность каждого из событий одна миллионная (с этой вероятностью мы условились считаться), то вероятность нашего рассказа измеряется единицей, поделенной на единицу с восемнадцатью нулями. А это уж, простите, стопроцентная невозможность. Разумный человек обычно делит события на правдоподобные и выдуманные без учета данных теории. В критических рецензиях писатели иногда обвиняются в том, что они не считаются с художественной правдой. Мы же часто убеждаемся, что нарушения художественной правды – это просто использование крайне невероятного сюжета, невероятного в самом что ни на есть математическом смысле этого слова. А вот рассказ Ю. Нагибина «Перекур». Что же происходит в рассказе? А примерно то же, что и в моем рассказе, только без падения героя из самолета. Сорокапятилетний герой после двадцатилетнего перерыва понял, что по-настоящему он любил лишь один раз. Хотя любовь была всего лишь каких-то там двадцать лет назад, она вспыхнула вновь, и с пожаром в груди Климов едет в поезде на далекий полустанок, где протекал в свое время его юношеский роман. Приехал, сошел с поезда, зашагал через лес, а Маруся тут как тут. «Надо же было ей так точно рассчитать!» – пишет читатель Квашнин. Автор письма совершенно справедливо говорит: «Когда через двадцать лет герой выходит на полустанке и ровно в тот же час, минуту и секунду здесь же оказывается и героиня, читатель прищуривает глаза: хитро придумано – и перестает верить многому». Примеров, подобных моему «сочинению» или вот этому рассказу Нагибина, нет числа. Авторов обвиняют в художественной неправде. А их стоит осуждать лишь за незнание теоремы умножения вероятностей. Они иногда оперируют несколькими маловероятными (но все же возможными) событиями и достигают сногсшибательного эффекта (а вместе с ним и отхода от художественной правды), заставляя эти события пересекаться. Подобные приемы можно оправдать лишь в том случае, когда автор и не пытается убедить нас, что так было, а просто придумывает такие события, что у читателя дух захватывает. Прочитав подобную книгу, мы иногда говорим: «Бог мой, какая чушь, но до чего здорово закручено!» Блестящий пример такого произведения – «Сердца трех» Джека Лондона. Одна завязка что стоит, когда автор приводит в одно время и в одно место двух братьев и сестру, которые ничего не знают о связывающих их родственных узах. «Но ведь и в шедеврах литературы случайности играют важную роль», – скажет читатель. Несомненно. Но это случайности, которые могут произойти; события, вероятность которых вполне значима. Скажем, у Л. Толстого раненый Болконский оказывается в хирургической палате рядом с Курагиным. Толстому нужна была эта встреча, чтобы показать душевный перелом князя Андрея. Вероятно ли это событие? Без сомнения. Офицерских палат вблизи поля боя было немного, а может быть, даже и одна. Вероятность очутиться в одной палате двум офицерам, грубо говоря, равняется вероятности быть раненными в один день. Если раненых офицеров в этот день был один процент, то вероятность попасть в один процент для каждого из них равняется 0,01, а обоих сразу – 0,0001; вполне разумное число, с которым надо считаться. Нисколько не сомневаюсь, что Л. Толстой этих вычислений не производил. Но настоящий художник чувствует правду без расчетов. Я далек от мысли писать инструкцию литераторам, как добиваться художественной правды в произведениях. Мне хотелось лишь подчеркнуть, что важным элементом жизненности произведений является приемлемое значение вероятности происходящих событий. Пока использование невероятных пересечений приводит лишь к пустяковым результатам, вроде встречи потерявших друг друга влюбленных, то бог уж с ним: читатель развлечется, а то, что такого в жизни не бывает, он и сам знает. Лишний рассказ или роман такого рода вреда не принесет, хотя, конечно, и вкладом в литературу не будет. Но в ряде случаев авторы используют пересечения сюжетных линий для того, чтобы подвести читателя к мысли, что происшедшее есть явление высшего порядка. Они прекрасно понимают, что если останутся в рамках законов природы, то сюжет их «не проходит». И, вместо того чтобы сказать «не проходит» – значит, нет такого, – намекают, что, мол, «по законам, конечно, “не проходит”, а вот у меня прошло, значит, не все подчиняется этим законам, есть что-то и сверх законов». К счастью, откровенно религиозные или мистические произведения сейчас не в моде, и романов или рассказов, в которых чудесные явления преподносились бы на полном серьезе, в последнее время тоже нет. Мы говорили о нарушении художественной правды из-за непонимания теоремы об умножении вероятностей, из-за отнесения события, вероятность которого практически равна нулю, к событиям возможным. Но более распространенным является другое заблуждение, а именно поиск детерминистского истолкования явлений, носящих случайный характер. Можно с большой уверенностью утверждать, что есть категория людей, у которых не совсем правильные представления о случайности. Человеческому разуму свойственно возвышенное объяснение случайным явлениям. Иногда можно услышать: «Попал, бедняга, под автомобиль. Значит, так ему на роду было написано». Встречаются суждения по поводу несчастного случая более глубокомысленные: «Человек был плохой. Мать родную из дому выгнал. Как жил плохо, так и кончил плохо». Во всем этом имеется в виду, что в жизни есть какая-то сила, способная мстить человеку за дурные его поступки. Религиозному человеку мораль подобного типа весьма близка. Рационалистически же мыслящему ясно, что никакого закономерного воздаяния со стороны судьбы, бога, рока и пр. не существует. Однако романам и повестям, подводящим читателей к мысли: «Что-то в этом есть!» или: «От судьбы не уйдешь!» – нет числа. За примерами ходить не приходится, но, чтобы не быть голословным, напомним про роман Макса Фриша «Ното Фабер», в котором герой был наказан за то, что во время фашизма он бросил свою жену-еврейку. Судьба расправилась с героем основательно, хотя и неоригинально (было такое уже в древнегреческой литературе). Что же она сделала с этим трусливым немцем? А вот что. Ей угодно было, чтобы он спустя двадцать лет познакомился с молодой красивой девушкой и влюбился в эту девушку. Далее судьба разъяснила герою, что он согрешил со своей родной дочерью, которая родилась после того, как он сбежал от своей супруги. Герой был доведен до такой степени отчаяния, что покончил жизнь самоубийством. В конце концов можно было рассказать сей драматический случай, изложив его под флагом «чего только в жизни не бывает». Правда, и в этом случае вряд ли роман можно было удостоить названия художественно правдивого, ибо случай уж очень редкий и нетипичный. Но все же это бы еще куда ни шло. Но Макс Фриш не для этого написал свой роман, а захотел встать в ряды авторов, заставляющих судьбу раздавать награды и шлепки в пропорции с делами героев. Позиция не заслуживает уважения. Ничем она не отличается от направленности сочинений откровенно религиозных авторов. С моей точки зрения, любой писатель, который вмешивает «перст судьбы» в жизнь своих героев, никогда не может написать стоящую вещь. Разумеется, всегда проще командовать героями, если перипетии романа определяются тем, кто с кем «случайно» встретился, кто в какой момент догадался погибнуть или спастись… Легко навести героя на путь истинный, заставив его сломать ногу в то время, когда он направляется свершить прелюбодеяние или идет на рынок загнать налево продукцию своего завода. Гораздо труднее обосновать сюжет романа психологией героев и социальным фоном, на котором развиваются события. А только на этом пути рождаются стоящие художественные произведения. Все попытки даже самых великих писателей, таких, как Л. Толстой, создать литературное произведение, в котором случайности были бы возведены в ранг предопределенностей судьбы, кончались крахом. Анна Каренина бросается под поезд вовсе не потому, что судьба наказывает ее за измену супругу. Вся ткань романа показывает, что такой конец естествен для Анны, что он возможен лишь потому, что Анна принадлежит к обществу именно с такой, а не иной моралью. Читателю ясно – будь Анна не Анной или принадлежи она не к российскому дворянству, а к другой среде, конец романа был бы иным, и отмщение не состоялось бы. И одна из задач нашей книги, темой которой является вероятность, как раз и состоит в том, чтобы развенчать всяческую разновидность фатализма, предостеречь читателя от поисков обоснования событий там, где это обоснование невозможно, где события являются чисто случайными. В своей очень интересной статье, посвященной мифотворчеству Томаса Манна, Станислав Лем показывает, что непонимание законов случая лежит в основе многих мифов. Лем приводит характерный пример. Жители одной африканской страны верят в то, что львы делятся на две категории: на львов, которые просто львы, и на львов, в которых переселились души умерших людей. Обыкновенные львы кушают людей, а львы с человеческой душой не питаются своими духовными родственниками. Таким образом случайность изгоняется, и трапезы львов получают свое истолкование. К сожалению, миф не дает нам возможности заранее узнать, с каким львом мы имеем дело; его категория выясняется лишь после его обеда. Понимание законов вероятности ставит все на свои места и является важнейшим оружием против мифов, против религии, против фатализма. С одной стороны, нельзя и не надо искать объяснения случайным событиям, вероятность которых хотя и мала, но вполне разумна. Скажем, очень соблазнительно приписать всесильности материнской любви чудесное избавление от гибели ее ребенка. Ребенок играл под балконом, мать отозвала его, а через пять секунд от карниза оторвался огромный кусок штукатурки и упал на то самое место, где играло дитя. Так и хочется сказать, что «Сердце матери – вещун», или «Материнская любовь – большая сила», или «Бог не допустил гибели невинного младенчика» и т.д. и т.п. Но происшедшее не нуждается в таких ремарках, ибо вероятность события вполне приемлема и иного объяснения не требует. С другой – владение законами вероятности позволяет с уверенностью отнести определенный класс событий к невозможным. И если большое число случайных линий все же пересеклось, вероятность события ничтожно мала, а невозможное событие все же совершилось, то, значит, не «что-то в этом есть», а «что-то здесь не так!». Математик спешит на свидание – Ты не забыл, что завтра мы идем в консерваторию? – Ну конечно, нет. – Заедешь за мной? – Дел невпроворот. Давай мне билет, я приду один. – Вот так всегда. Опять подруги надо мной посмеются. Завела, скажут, кавалера, который с тобою и показаться не желает. – Ну ладно, давай встретимся. Где? – У входа в продуктовый, что поближе к Никитским воротам. – Так это на другой стороне улицы. – Конечно. Мне не хочется, чтобы видели, как я тебя жду. – Неизвестно, кто кого будет ждать… Но знаешь, завтра мне и правда время рассчитать трудно. От 18.00 до 19.00 я буду на месте как штык, а точнее – не скажу. – Выходит, я час тебя буду ждать? – Я и говорю: встретимся на месте. – Не хочу. – Тогда предлагаю компромиссное решение. Оба приходим между 17.40 и 18.40. И ждем не более двадцати минут. – А если ты придешь в 18.00, а я в 18.30? – Значит, я буду уже в зале. – Да так мы никогда не встретимся на улице. – Вероятность встречи довольно значительная. Хочешь, подсчитаю? – Да не берись за карандаш, горе ты мое. И надо было влюбиться в математика… Я, конечно, был бы рад продолжить рассказ о радостях и горестях влюбленных математика и девушки, далекой от чисел и интегралов. Тут бездна интересных психологических моментов. Но увы! Тема книги вынуждает вернуться к «сухой» науке. Как же действительно подсчитать вероятность встречи математика с его любимой? Мы уже выяснили, что вероятность – это отношение числа благоприятных случаев к общему числу событий. А здесь как быть? Ведь встреча может состояться или не состояться в любой момент часового интервала. Благоприятным исходом рассматриваемой задачи является мгновение встречи. Но мгновений бесконечно много. Ведь часовой интервал я могу разбить на минуты, на секунды и даже на микросекунды. Значит, здесь бесконечное число исходов, а не два, как в опыте с монетой, и не шесть, как в опыте с кубиком (игральной костью). Как же определяются вероятности в задачах такого рода? Оказывается, геометрическим путем. А поскольку геометрия требует наглядности, нам придется прибегнуть к нехитрому рисунку. Отложим по горизонтали время прибытия девушки на свидание. На вертикальной прямой отметим минуты появления нашего героя. Если бы не было условия – ждать не более двадцати минут, то встреча могла бы произойти в любой точке квадрата, обнимающего часовые ожидания. При наличии же дополнительного условия моменты встречи попадут в заштрихованную область. Пожалуйста, проверяйте. Девушка пришла без двадцати шесть. Встреча состоится, если кавалер явится до шести. Этому соответствует первый отрезок. Девушка пришла в 18.00. Встреча состоится, если кавалер явится от 17.40 до 18.20. Такой встречи соответствует второй отрезок, построенный на рисунке. Если девушка пришла в 18.20, то встреча состоится при условии, если математик явится к продуктовому магазину между 18.00 часами и крайним сроком – 18.40. Вот вам третий отрезок. Теперь еще одна точка, и заштрихованная область будет готова: девушка успела прибежать на свидание в 18.40. Она застанет своего возлюбленного, если он явился не раньше 18.20. Что же дальше? Где же искомая вероятность? Нетрудно догадаться, что она будет равняться частному от деления площади заштрихованной области на площадь всего квадрата. По сути дела, определение вероятности остается тем же – благоприятные варианты относятся ко всем возможным. Но если ранее мерой было число случаев, то теперь мерой является площадь на графике. Два незаштрихованных треугольника образуют квадрат со стороной, соответствующей 40 минутам. Его площадь 402. Таким образом, искомую вероятность получим, поделив (3600-1600) на 3600. Итого 5/9. Будем надеяться, что математик встретится со своей девушкой. Применение теории вероятностей к событиям с непрерывным рядом исходов намного расширяет ее возможности. Одной из исторически первых задач такого рода была проблема, поставленная и решенная французским естествоиспытателем XVIII века Бюффоном. На большом листе бумаги начерчен ряд параллельных линий. Наобум бросается игла, длина которой много меньше расстояния между линиями на бумаге. Игла может пересечь одну из линий, а может очутиться и между линиями. Надо оценить вероятность того, что пересечение произойдет. Предполагается, что центр иглы с равной вероятностью может попасть в любое место бумажного листа. Так же точно считается, что угол наклона иглы к начерченным линиям может принять какое угодно значение. Если игла попадет на середину между линиями, то она не пересечет линии, как бы она ни оказалась повернутой. Если же центр иглы очутился вблизи линии, то пересечение не произойдет, если игла установится параллельно линии или около того, и напротив, игла пересечет линию, если образует угол, близкий к прямому. Получается так: чем ближе к линии попадет центр иглы, тем больше вероятность ее пересечения. Задача может быть решена без всякой математики. Попробуйте свои силы. Треугольник Паскаля Однажды я медленно шёл по Парижу, разглядывал витрины магазинов и читал вывески. Цветастая надпись над входом грязновато-серого здания настойчиво приглашала зайти и попытать счастья. Я удивился, что игорный дом работает среди бела дня, – это не соответствовало сведениям, почерпнутым мною из классической литературы – и… я зашел. Взору представилась поразительная картина: десятки людей стояли лицом к стене, и перед каждым находился цветной ящик. Подойдя ближе, я увидел, что они либо нажимали кнопку, либо дергали за ручку, будто заводя заглохший лодочный мотор. Через несколько минут я понял, в чем дело: люди играли с автоматами. Зрелище это неприятное, но великолепное поле для наблюдений психолога. Человек играет с судьбой. Один на один. Все побочные обстоятельства отсеяны. Нет ни соперничеств, ни личной неприязни, ни необходимости скрывать свои чувства. Есть автоматы, у которых вы можете выиграть только конфетку или сигареты, есть такие, которые играют на деньги, и, наконец, существует возможность наслаждаться игрой безгранично, вступив в единоборство с автоматом, выигрыш у которого дает лишь право дальнейшей игры. Бессмысленно, не правда ли? Но вот так оно есть. Эти автоматы вы можете найти в любом баре, в любом кафе любого города Америки и Западной Европы. В чем же состоит игра? В принципе она сводится к следующему. Выпускается на волю шарик, который под действием силы тяжести или щелчка пружины движется по доске, на которой установлены препятствия. От каждой преграды шарик может отскочить куда попало. Получив несколько десятков таких случайных щелчков, шарик добирается до дна ящика и успокаивается в каком-то положении. В зависимости от формы преград и от того, как они установлены, разные места дна ящика будут достижимы в различной степени. Определив из многочисленных опытов значения вероятностей окончания путешествия шарика в том или ином конечном пункте, нетрудно построить правила игры, которые позволят автомату уверенно обыгрывать своего живого партнера. В самой простой своей форме игровой автомат похож на так называемую доску Гальтона, которую используют в лекционных демонстрациях. Прошу взглянуть на рисунок. В воронку насыпаются шарики. По очереди они мчатся вниз, отскакивают то вправо то влево от препятствий и наконец достигают какой-то ячейки. В качестве препятствий можно брать шестиугольные бляшки или вбить в доску гвоздики. Для доски Гальтона разработана детальная теория. Мы попытаемся обойтись без нее и предположить, что от каждого гвоздика шарик с равной вероятностью может отскочить влево или вправо. Отклонение вправо и влево будет происходить совершенно по тем же законам, что и появление в рулетке красного и черного. На одну комбинацию лллллл… или пппппп… приходится множество комбинаций, состоящих из примерно равного числа отклонений влево и вправо. Поэтому чаще всего шарик будет попадать в среднюю пробирку и реже всего в самые крайние. Можно провести большое число опытов, и каждый раз шарики будут распределяться примерно одинаково. Если усреднить результаты, то получим гладкую симметричную колоколообразную кривую, которая называется кривой Гаусса или кривой нормального распределения. Не кажется ли вам, читатель, странным, что какой-то кривой мы уделяем так много внимания. На небольшом клочке бумаги можно начертить сколько угодно самых разнообразных кривых, и никому не придет в голову присваивать им имена или названия. А наша этой чести удостаивается. Почему? Не имеет ли она какой-то математический признак, раз она заслужила специальное название. Несомненно. Сейчас мы поясним, в чем состоит ее математическая общность, только разрешите от реального опыта перейти к абстрактной схеме. И пожалуйста, имейте в виду, что так поступают всегда физики-теоретики, поэтому абстрагированием мы не нарушаем канонов науки. Упрощение, которое мы введем, состоит в следующем: будем считать, что каждый столбик отличается от соседнего на единицу отклонений. Положим для конкретности, что доска состоит из 10 рядов препятствий. Будем считать, что шарик обязательно встречается с одним из препятствий каждого ряда и с равной вероятностью отскакивает вправо или влево, при этом отклонения происходят всегда на один интервал. Тогда шарик, который попал в среднюю пробирку, отклонился 5 раз влево, 5 раз вправо. Следующая ячейка заполнена шариками, путь которых состоял из шести отклонений в одну сторону и четырех в другую. Далее идут пробирки, заполняющиеся шариками в соответствии с вариантами 7–3, 8–2, 9–1 и 10–0. Вариант 5–5 осуществляется максимальным числом способов, 6–4 – уже несколько меньшим, 7–3 – еще меньшим… 10–0 – самая редкая комбинация. Отсюда и характерный вид кривой, проходящей через вершины столбиков. Высоты столбиков пропорциональны числу комбинаций, с помощью которых осуществляется тот или иной вариант. Об этом мы уже говорили (обратитесь, пожалуйста, к стр. 17) [ссылка], рассматривая все возможные варианты серии из 5 игр в рулетку. Надо было бы для ясности выписать все комбинации для серии из 10 опытов. Пожалуй, мы пойдем на большее. На этой странице изображен так называемый треугольник Паскаля, с помощью которого можно определять числа комбинаций для любых рядов испытаний. Для того чтобы продолжить этот треугольник хоть до бесконечности, нужно лишь время и умение складывать. Даже таблицу умножения знать не обязательно, поскольку каждое число треугольника равно сумме двух чисел, а именно соседних левого и правого верхней строки. В результате этих наипростейших арифметических операций мы получаем числа комбинаций левого и правого, красного и черного и вообще любых статистических «да» и «нет». Как же пользоваться треугольником? Любая из его строк дает числа комбинаций для определенного числа элементов. На рисунке выделена пятая строка. Она отвечает на все вопросы, касающиеся рядов из пяти испытаний. Числам 1, 5, 10, 10, 5, 1 (мы помним их) пропорциональны вероятности появления красного цвета в пяти последовательных поворотах колеса рулетки 0 раз, 1 раз, 2 раза, 3 раза, 4 раза и 5 раз. Значение вероятностей мы получим, поделив каждое число треугольника Паскаля на общее число испытаний, которое равно сумме чисел строки. Возвращаясь к доске Гальтона мы можем сказать, что при десяти случайных встречах с препятствиями число шариков, которые попадут в крайние пробирки (все встречи привели к одним лишь левым или к одним лишь правым отклонениям), будет в среднем в 252 раза меньше числа шариков, попавших в средний приемник. С гауссовой кривой приходится сталкиваться во всех областях знания. Универсальность ее объясняется очень просто: на нее укладываются вероятности отклонений от среднего во всех случаях, если только отклонения «вправо» и «влево» равновероятны. Если же отклонения от среднего невелики, как это бывает очень часто, то подобное требование осуществляется всегда. Сейчас мы продолжим знакомство с этой замечательной кривой, лежащей в основе любой статистики. Случайные отклонения Вкусы у людей, как известно, чрезвычайно разные. Одни сникают при взгляде на длинные колонки цифр, на графики с ниспадающими и вздымающимися вверх ломаными и плавными кривыми, на масштабные столбики, высота которых описывает все, что угодно, – урожаи, рост, потребление водки или посещаемость театров. У других же, и их немало, глаза загораются при взгляде на это богатство информации. Жадно рыщут они взглядом вдоль цифровых столбцов, просматривают графики и приходят к интересным и важным выводам в области экономики страны, понимания человеческого характера или еще в чем-нибудь. Люди эти – статистики, – нужное и важное племя работников, значительный отряд министерств и ведомств. Задачи статистики (так называются не только люди, но и область деятельности) разнообразны и обширны. На десятках тысяч библиографических карточек приведены данные о промышленном производстве, о народном образовании, о смертности населения, о функционировании поликлиник и больниц, об автомобильных катастрофах, о посещаемости кинофильмов и бог весть еще о чем. Статистиков интересуют самые разные вещи: динамика роста тех или иных показателей, сопоставление данных по значению какого-либо параметра в разные времена года, или в разные часы дня, или среди мужчин и женщин, или среди лиц разного возраста. Особое место занимают в статистике измерения средних значений и отклонений от средних. Весьма распространены измерения роста и веса. Вес цыплят, которыми торгует птицеферма, интересен потому, что характеризует ее работу; рост людей интересен для швейной промышленности, выпускающей одежду ог 46-го до 56-го размеров, и т.д. Так как все это известно читателю из газет и радиопередач, приводящих всевозможные числа, то перейдем к нашей теме, а именно, к проявлению во всей этой массе чисел законов случая. Один из скучных рисунков, фигурирующих в сочинениях по статистике, нам придется привести. Мы с художником долго ломали голову над тем, как сделать это масштабное построение более приемлемым в книге серии «Эврика». Результат творчества изображен на странице 71 [ссылка]. Рисунок показывает диаграмму и кривую, которая носит название кривой статистического распределения. Чтобы рисунок лучше рассмотреть, поверните, пожалуйста, книжку на 90 градусов. Правда, новобранцы очутились в лежачем положении. Но, ей-богу, ничего более толкового не придумаешь. Теперь (в повернутом положении) высота кривой показывает число будущих солдат определенного роста. Величины роста нанесены на уровне носа. Выбран конкретный пример измерения роста 1375 ребят. Столбики – это результат измерения, а плавная линия – наиболее близкая к опыту – гауссова кривая. Статистикам известна следующая замечательная вещь: чем больше привлеченный для построения графика материал (в данном случае чем больше ребят), тем плавнее и ближе к теории кривая, соединяющая вершины масштабных столбиков. Самым замечательным обстоятельством является то, что кривая, получающаяся при измерении любых объектов, имеет форму той же самой кривой Гаусса, на которую, как мы видели, ложатся числа комбинаций «красного» и «черного»! Теперь рассмотрим вид кривой нормального распределения в деталях. Нормальная кривая примерно похожа на колокол; она спадает одинаково в обе стороны сначала медленно, а потом быстро. Чтобы построить ее, математику достаточно знать три параметра: высоту ее максимума, среднее значение изучаемой величины (то есть то место на горизонтальной оси, которое соответствует среднему значению) и ширину кривой. Вершине колокола как раз и соответствует то, что мы называем средней величиной. (Как получить среднее, известно даже тем, кто враждует с арифметикой: надо сложить все измерения и разделить на число измерений.) Откуда же видно, что максимум кривой Гаусса придется на среднюю величину? Доказательство легкое: нужно проинтегрировать гауссову кривую. Но так как это занятие здесь неуместно, то просим поверить на слово, что теорема доказывается совсем просто. Итак, остается пояснить, что такое ширина нормальной кривой. Условно меряют ширину на полувысоте колокола. Очевидно, что ширина показывает, насколько часто или редко мы встречаемся с отклонениями от среднего. Чем уже колокол, тем реже значительные отклонения от среднего. Нормальная кривая распределения роста, которая была нарисована на предыдущей странице, описывается такими словами: «Высота кривой 200 человек», то есть двести человек имеют средний рост (первый параметр кривой). Заметим тут же, что иметь строго средний рост невозможно, можно иметь средний рост с точностью 1, 2, 5 сантиметров и т.д. На нашем графике каждая точка представляет группу ребят, рост которых лежит в пределах 2,5 сантиметра. Средняя высота новобранцев, как мы видим по диаграмме, равна 158 сантиметрам – это второй параметр. Третьим параметром является ширина колокола, равная в этом случае 15 сантиметрам. Знание ширины кривой позволяет сразу же оценить, с какими отклонениями от среднего мы можем встретиться. Нормальная кривая универсальна и относится к любым событиям, поэтому, смотря все на тот же рисунок, мы можем делать общие заключения, справедливые для любых нормальных кривых. Скажем, отклонения больше трех полуширин практически не встречаются. Так обстоит дело всегда, вне зависимости от того, о чем идет речь. Для характеристики вероятности отклонения от среднего значения в технике и статистике существуют еще среднее отклонение по абсолютной величине, среднее квадратичное отклонение, вероятное отклонение, мера точности. Все эти величины связаны между собой и с полушириной гауссовой кривой числовыми множителями, близкими к единице. Вообще говоря, каких-либо доводов в пользу того, чтобы те или иные статистические сведения ложились на гауссову кривую, нет. Правда, кое-что мы чуть позже увидим. Сейчас же надо подчеркнуть, что точные представления о нормальном распределении случайных событий показывает кривая числа комбинаций «красного» и «черного». И к идеалу, с точки зрения математической, эта кривая приближается тем лучше, чем большее число испытаний проводится. Если число событий, которые мы обрабатываем статистически, исчисляется десятками, то ординаты кривой будут отличаться от идеальных на десятые доли процента; при сотнях испытаний разница уменьшится до сотых долей процента. Во всяком случае, на рисунке размером в страницу мы не отличим кривую распределения, построенную для тридцати событий, от гауссовой кривой идеальной. Без преувеличения можно сказать, что закон Гаусса является важнейшим оружием в технике, в физике, в медицине – в любой науке. Знание среднего значения случайной величины и ширины кривой нормального распределения позволяет уверенно судить о возможном и невозможном. В технике беспорядочные колебания случайной величины около ее среднего значения называют шумом. Такой шум вы слышите, когда снимаете телефонную трубку. Шумом называют обыкновенный белый свет. Шумит молния, излучая весь спектр электромагнитных колебаний. Если шум изображать на телевизионном экране (осциллографе), то будет видна беспорядочная зигзагообразная кривая. Шум нетрудно ограничить двумя горизонтальными линиями; так сказать, вписать его между нулем и некоторым максимумом. Что можно сказать об этом максимуме, о верхнем пределе шума? В зависимости от природы, источника, от излучателя, шум может быть как угодно большим. По-одному шумит громкоговоритель в квартире, по-другому – на маленьком полустанке и совсем иной шум громкоговорителей, работающих на улицах Москвы во время парада на Красной площади. Разница основательная. Но если построить графики этих трех шумов, то одну общую черту, продиктованную законом Гаусса, мы обнаружили бы без труда: верхний предел шума превышает средний шум примерно в четыре раза. То есть колокол гауссовой кривой весьма крутой и обрывается исключительно резко, несмотря на то, что с точки зрения формальной математики крылья кривой продолжаются в бесконечность. Из этого графика мы бы увидели, какое маловероятное событие становится практически невозможным. Еще одно замечание: всякое заметное превышение шума над граничной горизонталью, дающее более чем пятикратное отклонение от среднего шума, называется уже не шумом, а сигналом. Кривая гауссова распределения показывает, на что надо, а на что не надо обращать внимания, когда речь идет о случайной величине. Физические измерения, как и математический анализ, показывают, что отклонения, не превышающие четырехкратного значения среднего отклонения, являются нормой и поэтому не заслуживают ни особого внимания, ни объяснения. Скажем, известно, что физики могут измерять расстояния между атомами с точностью до 0,01 ангстрема. Некто Иванов публично заявил, что его измерения на 0,03 ангстрема отличаются от ранее полученных результатов, и пытается доказать, что его результат лучше имеющегося. Не стоило ему так поступать: не спорить ему надо, а сообщить ученому миру, что он лишь подтвердил ранее достигнутый физиками результат. Вот если бы его измерения отличались на 0,06 ангстрема, тогда другое дело; тогда можно было бы говорить, что какая-то из двух величин неверна и некто Петров был бы прав с точки зрения научной этики, приступив к измерению того же межатомного расстояния третий раз. Зная гауссовы кривые для разных случайных событий, статистики отвергнут газетное сообщение о новорожденном весом в 6 килограммов, о том, что в городе Киеве 12-го числа рождались только мальчики, а 13-го только девочки, о том, что в Москве в мае месяце не было ни одного дня с температурой ниже 30 градусов, о том, что число автомобильных катастроф в декабре было в десять раз больше, чем в январе, что во вторник по всему городу не было продано ни одного куска мыла, а в среду никто не приобрел в аптеке таблеток пирамидона и т.д. И право же, такой скептицизм, базирующийся на хорошей статистике и знании закона вероятности, обоснован не хуже, чем расчеты траектории космического корабля. Словом, невероятно – не факт. Если вероятности невелики… Во время войны довольно часто стреляли из винтовок по вражеским самолетам. Может показаться, что это безнадежное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие летчика, приносят результат. Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется. Примеров, в которых нас интересует вероятность многократно осуществленного события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолет из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам. Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном. В любом математическом справочнике вы найдете формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчета. Средняя частота – это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи – 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш. В таблицах Пуассона приводятся цифровые данные для всевозможных значений средних частот. Чтобы было ясно, в каком виде нам сообщаются эти сведения и для общей ориентировки приведем несколько чисел характеризующих распределение вероятности при средней частоте, равной единице. Вот эти числа. Ста выстрелами при вероятности попадания в 0,01 или тысячью выстрелами при вероятности попадания в 0,001, или миллионом при вероятности в 0,000001, мы поразим цель один раз в 37 процентах случая, 2 раза в 18 процентах, 3 раза в 6 процентах… 8 раз лишь в 0,001 процента. А промахнемся сколько раз? Промахов точно столько же, сколько одноразовых попаданий, то есть 37 процентов. Приведенные проценты, как и любые числа вероятностей, работают точно лишь для очень большого числа серий. Если миллион людей приобрел лотерейные билеты, выигрывающие с вероятностью в 0,01, то 37 процентов из них не выиграют ни разу, а 37 процентов других лиц обязательно выиграют по одному билету и т.д. Если же мы заинтересуемся выигрышами только 100 человек, то должны считаться с вероятными отклонениями от среднего. В «среднем» 37 из них не выиграют ни разу. Отклонения здесь от «среднего» не превысят 6?sqrt(37)[Примечание 1]. А с такими отклонениями, как мы уже знаем, следует считаться и помнить, что число неудачников будет находиться между 31 и 43. Конечно, не исключены и бо?льшие отклонения в обе стороны, но их вероятность совсем уж невелика. Узнав из условий розыгрыша, что в среднем на сотню лотерейных билетов один выигрывает, владелец билетов будет считать себя несчастливым, если на его 100 билетов выигрыш не упадет ни разу. Если же ему не повезет несколько раз, то он, возможно, заподозрит устроителей лотереи в несправедливости. Однако сделаем простой расчет. Если вероятность одного «промаха» равна 0,37 (37%), то вероятность двух «непопаданий» равна квадрату этого числа (0,14), а трех – кубу (0,05). А это не такие уж малые доли, чтобы делать столь решительные выводы. Теория рекламы Мой знакомый – американский математик мистер В., ранее занимавшийся достаточно успешно приложениями теории вероятностей к вопросам структуры жидкостей, переменил область своей деятельности. – Я занимаюсь теорией рекламы, – сообщил он мне при последней нашей встрече. – И это интересно? – Бесспорно. Здесь много занятных тонкостей. – А, собственно говоря, что же является конечной целью теории? – Хотя бы получение ответа на вопрос, который интересует любого нашего промышленника: сколько денег имеет смысл потратить на рекламу? – Но каковы же математические методы, которые вы используете? – Да все те же, с которыми я имел дело до сих пор. Теория рекламы, теория популярности актера, теория известности писателя, прогноз бестселлеров литературы – все это классический предмет теории вероятностей. Не я один, а много моих коллег заняты этим приложением теории вероятностей к проблемам нашей капиталистической действительности. – Может быть, вы расскажете мне о наиболее интересных теоретических находках в этой области? – С удовольствием. Надеюсь, мне не надо доказывать вам, что, прежде чем добиться того, чтобы вещь, или событие, или некая персона понравились, надо, чтобы они стали известными потребителю? – Без сомнения. – Поэтому не будем пока касаться проблемы «нравится», а остановимся на вероятности получения неким гражданином сведений о существовании сигарет Честерфилд, лезвий для бритья фирмы Вильсон, романа Агаты Кристи «Убийство по азбуке» или киноактрисы Бетти Симпсон. Мы оставим в стороне систематические знания, приобретаемые в результате обучения в школе или университете, и будем интересоваться лишь теми сведениями, которые люди приобретают «на ходу», не преследуя образовательных целей. На каждого из нас через разные каналы: радио, газеты, телевидение, болтовню с друзьями – обрушивается мощный поток информации, получаемой «по случаю». Фамилии актеров, названия книжных новинок, новых сортов сигарет, лезвий для бритья и многое другое мы узнаем большей частью случайно. В зависимости от размаха рекламы, от интереса, который общество проявляет к тому или иному «модному» предмету, имеется некоторая определенная вероятность о нем услышать. Эта вероятность более или менее одинакова для однородной группы населения – скажем, для жителей города, имеющих телевизоры и радиоприемники и выписывающих две-три наиболее распространенные газеты. Разумеется, равная вероятность получить информацию вовсе не означает, что по истечении какого-либо срока все люди окажутся одинаково сведущими. Случайное получение информации очень похоже на лотерейный выигрыш. Действительно, среди тысячи обладателей по десяти лотерейных билетов окажутся лица, которые не выиграют ни разу, которые выиграют один раз, найдутся обладатели двух счастливых билетов, будут и такие везучие игроки, у которых выигрыши выпадут на три, четыре и более билетов. Так что… – Вы хотите сказать, что вероятность «столкновения» с рекламой, вернее, не с рекламой, а с упоминанием о предмете или лице, известность которого обсуждается, подчиняется распределению Пуассона? – Совершенно верно. Если, скажем, вероятность натолкнуться на соответствующую информацию в течение одного дня равна одной сотой, то через сто дней 37 процентов населения, так сказать, омываемого этим потоком информации, так и не столкнется с этой рекламой, другие 37 процентов встретятся с упоминанием о рекламируемом предмете 1 раз, 18 процентов – два раза, 6 процентов – три раза и т.д. Эти числа, как вы, конечно, помните, дает закон Пуассона. – Значит, при вероятности узнавания, равной одной сотой в день, через сто дней обеспечивается известность среди 63 процентов населения? – Не совсем так. У людей, к сожалению торговцев, память коротка, да и жизнь суматошная. С одного взгляда на рекламу мало кто запоминает рекламируемую вещь. – Так что у вероятности узнавания имеется еще и второй множитель? – Вот именно! – А какова величина этой поправки на невнимательность? – Разумеется, она различна в зависимости от того, о чем идет речь. Я могу вам сообщить, к примеру, данные, полученные из анализа анкет, распространявшихся среди телезрителей. Из этих данных была вычислена вероятность запоминания с одной встречи. Оказалось, что она колеблется между 0,01 и 0,1. – Существенная поправка к распределению Пуассона!.. – Конечно. Судите сами: если подсчитать процент населения, который получит информацию через сто дней, то из 37 процентов «столкнувшихся» с рекламой один раз, информированными окажутся лишь 3,7 процента (если мы примем вероятность запоминания с одной встречи равной 0,1). Из 18 процентов «сталкивавшихся» с информацией два раза доля лиц, усвоивших рекламу, будет больше. Действительно, вероятность не запомнить с одного раза равна 0,9, а не запомнить после двух встреч равна квадрату этой величины, то есть 0,81. Запомнивших будет 0,19. Таким образом, процент информированного населения в нашем примере будет подсчитываться так: 37·0,1 + 18·0,19 + 6·0,27 + … – Да, до 63 процентов далеко!.. – Вот этот коэффициент невнимательности и приводит к необходимости назойливой, торчащей на всех углах рекламы. Чтобы каждый потребитель узнал о товаре, он должен сталкиваться с соответствующей информацией очень часто. – Мы все время говорим с вами об известности. Но ведь знать – это еще не значит предпочитать! – Так-то оно так, – улыбнулся мой собеседник. – Но роль рекламы оказывается решающей. Недостаточная реклама означает малую известность, а малая известность влечет двойной проигрыш в конкурсе на высшую оценку. Первая причина ясна. Те, кто не знает, естественно, не могут подать голос за то, что им неизвестно. Вторая причина состоит вот в чем. Менее популярные вещи, книги, актеры, писатели… известны наиболее образованным людям. Но поскольку они образованны, они делают свой выбор среди значительно большего числа конкурентов. По этой причине вероятность высшей оценки предмета или объекта, который выбирается знатоками, становится меньше вероятности высшей оценки, которую выносит менее осведомленный судья. – Я начинаю теперь понимать, почему в вашей стране тратят столько денег на рекламу! – Еще бы!.. Вот вам простая числовая иллюстрация. Имеется 10 лучших ресторанов в городе. Из них два, скажем, «Империал» и «Континенталь», разрекламированы много более других. Гурманы знают о существовании всех десяти ресторанов, которые примерно одинаково хороши. Случайные же посетители ресторанов, как правило ужинающие у себя дома, знают лишь о существовании «Империала» и «Континенталя». Положим, что тысяча человек собирается сегодня вечером поужинать вне дома. Из них 500 знатоков и 500 профанов. На первый взгляд может показаться, что менее разрекламированные рестораны не будут в проигрыше. Однако, будут – и в очень большом! 500 профанов с вероятностью 1/2 выберут один из двух наиболее известных ресторанов. Из них 250 очутится в «Империале» и 250 в «Континентале». А 500 знатоков с вероятностью 1/10 выберут один из десяти ресторанов. Таким образом, в «Империале» и «Континентале» окажется по 300 человек, а в остальных 8 ресторанах – по 50. Как видите, наименее компетентные потребители играют решающую роль. – Да, воистину реклама – двигатель торговли! – Бог с ней, с торговлей. Меня огорчает во всем этом деле столь легкая возможность искажения истинной цены культуры. Как несправедливо получается, что в популярности человека искусства, произведения искусства самую последнюю роль играет мнение знатоков! – Не забывайте, что такой вывод верен только в том случае, если реклама находится в нечестных руках. Если же знатоки будут влиять на то, чтобы объем рекламы был пропорционален заслугам, то все будет на своем месте! – Это верно, – вздохнул мой собеседник, – но как этого у нас добиться? Случайности, складывающиеся в законы Кривая статистического распределения, построенная на основе большого числа измерений, испытаний или опросов, передает сущность событий и является их законом. Пожалуй, первый вопрос, который заинтересует исследователя, – это стабильность кривой распределения. Действительно, если я знаю, что явление меняется медленно, то могу использовать сегодняшнюю кривую для предсказаний завтрашних событий. В то же время сам факт систематического смещения кривых распределения весьма многозначителен и свидетельствует о каких-то важных переменах. Допустим, смещается кривая распределения солнечных дней, построенная по данным ряда десятилетий, – значит, происходят изменения в геофизических факторах, определяющих погоду; в изменениях кривой распределения среднего возраста жизни заложена информация о борьбе с болезнями, и т.д. Напротив, если обнаруживается исключительное постоянство кривой распределения, например рождения мальчиков и девочек, то это значит, что отношение младенцев обоего пола есть генетическое свойство, глубоко запрятанное в живой клетке и не поддающееся влиянию внешней среды. Покажем, какие богатые выводы можно сделать из постоянства статистических данных. Во Франции в течение долгого времени число ежегодно рождавшихся мальчиков относилось к числу девочек как 22:21. Иными словами, нормальная кривая для этого отношения, построенная по месяцам за много лет, имеет максимум при 22:21. Просматривая записи рождений мальчиков и девочек в Париже (собранные за 39 лет), Лаплас нашел, что максимум кривой лежит при отношении 26:25. (26:25 < 22:21). Используя теорию нормальной кривой, можно убедиться, что это отклонение – различие в дробях – не может быть случайным. А если так, то оно должно иметь реальное объяснение. «Когда я стал размышлять об этом, – пишет Лаплас, – то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Он действительно изучил списки приютов и убедился в справедливости своего предположения. Встречается множество случаев, когда нет преимуществ у отклонений по кривой «вправо» или «влево». А если эти отклонения являются суммарным эффектом большого числа случайностей, то распределение будет гауссовым. (Математики могут доказать справедливость этого утверждения достаточно строго.) Если же мы ждали симметричной кривой, а получили «хвост» в одну сторону и даже в стороне от колокола наметился еще один холмик поменьше, то над этим фактом стоит задуматься: вероятно, исследованию подвергалась неоднородная группа явлений. Как это может быть? Например, речь идет об измерениях роста жителей какого-нибудь города, в котором живут представители двух рас. Пусть девяносто процентов жителей относится к высокорослой расе, а десять процентов – к низкорослой. В этом случае результаты измерений роста не создадут симметричную гауссову кривую: сбоку от среднего роста может наметиться добавочный горб кривой, во всяком случае, кривая распределения будет иметь разные хвосты влево и вправо. Выводы статистики приобретают ценность тем большую, чем обширнее материал, на основе которого построена гауссова или иная статистическая кривая. Имея перед глазами кривую статистического распределения или статистические таблицы, мы можем делать предсказания двух типов: уверенные – детерминистские, если речь идет о средних значениях, и вероятностные – если речь идет об индивидуальном событии. Правда, обычно вероятностные предсказания не распространяются на конкретное лицо. Скажем, если известно, что средний процент брака в цехе равен 1,5 процента, то есть смысл говорить о вероятности, что 15 деталей из тысячи, изготовленных слесарем Ивановым, попадут в ящик для стружки лишь в том случае, если об Иванове ничего не известно. На земле живет очень много людей, они выполняют похожие дела, совершают похожие поступки. Поэтому почти все события, в том числе и такие, которые кажутся редкими и исключительными, свершаются достаточно часто и являются предметом статистики. Обратимся к таким печальным событиям, как автомобильные катастрофы. Их, оказывается, так много, что можно говорить не только о средних числах катастроф вообще, но и «рассортировать» их по типам причин, из-за которых они произошли. Исследователям известно, например, сколько аварий происходит по вине велосипедистов; есть данные для сравнения числа катастроф, происшедших по вине велосипедистов, имеющих фонари и не имеющих; в сводках автомобильных катастроф, публикуемых ООН, можно увидеть, как они распределяются по возрастным категориям водителей. Из этих сводок видно, что наиболее безопасными для окружающих являются водители среднего возраста; наиболее опасными оказываются мальчишки; небольшое увеличение числа несчастных случаев наблюдается у водителей, перешагнувших за семьдесят. Внутри каждой категории возрастов введены графы для разной погоды, разного времени дня и ночи и т.д. и т.п. И приходится только поражаться стабильности этих данных. Отнесенные к числу, характеризующему интенсивность движения в стране (что-то вроде числа автомобилей на число километров дорог), данные по катастрофам оказываются совершенно универсальными. Казалось бы, что может быть случайнее столкновения двух машин. Здесь и усталость водителей, и состояние дороги, и то, что автоинспектора называют «дорожная обстановка», тут и случайно подвернувшийся прохожий, и каток, оставленный на обочине дорожными рабочими, тут и состояние тормозов автомобилей, и еще бесчисленное множество маленьких и больших факторов. Да, действительно, это типично случайное событие, но так как причин очень много, то законы статистики здесь выполняются безупречно строго. Недавно был опубликован анализ статистических данных, казалось бы, очень редких событий – исследовалось творчество в области научно-технической деятельности. В статье ставился вопрос: сколь часто одно и то же открытие или изобретение делается одновременно несколькими людьми. Обработка материала привела к следующим выводам: за определенный промежуток времени два человека одновременно пришли к одному научному результату в 179 случаях, три человека – в 51, четыре человека – в 17, пять человек – в 6… Исследователь убедительно показал, что к творческой научной деятельности можно смело применять законы теории вероятностей. Рассуждал он следующим образом. Представьте себе сад научных открытий. В нем имеется яблоня, на которой растет тысяча спелых яблок. По саду гуляет тысяча ученых, глаза которых завязаны. Их подводят к яблоне и просят одновременно сорвать по одному яблоку. (Поскольку задача математическая, то мы просим снисхождения к реальности обстановки.) Предполагается, что каждый из участников может дотянуться с равной вероятностью до любого яблока. При такой постановке вопроса можно рассчитать, каковы же шансы обнаружить на одном яблоке одну или несколько рук друзей по профессии. Получаются данные, поразительно близкие к тем, которые мы привели выше. Статистические распределения всегда представляют познавательный интерес, а в очень многих случаях знание статистики дает руководство к действиям. Остановимся же на двух важных примерах: на страховании жизни и предсказании погоды. Двум… не бывать! Люди не очень любят размышлять о грядущей неприятности, а тем более о кончине дней своих и своих близких. По этой причине наш разговор о статистике смертей может показаться излишним и бестактным. Однако наступает день, когда мы начинаем интересоваться дальнейшей своей судьбой и вопросами страховки. Допустим, вы хотите застраховать в одну тысячу рублей свой дом от пожара, свое имущество от кражи или свою жизнь от смерти сроком на один год. То есть вы хотите, чтобы в случае, если произойдет какая-либо из этих неприятностей, вам (или вашим наследникам) уплатили тысячу рублей. Чему должен равняться страховой взнос за год, чтобы государству (или страховой компании) имело бы смысл заключить с вами контракт? Нетрудно сообразить, что суть дела состоит в том, чтобы знать вероятность того несчастного случая, от которого вы себя страхуете. Не всегда это простая задача. Волей-неволей страховой агент должен абстрагироваться от частностей, скажем он постарается учесть состояние вашего здоровья, чтобы отнести вас к определенной категории плательщиков. Правда, ему останется неизвестно, насколько умело и нерискованно вы водите свой автомобиль или насколько вы вспыльчивы и как часто вступаете в уличные драки. Однако, пренебрегая всем этим и многим другим, Госстрах отнесет вас к одной из возрастных категорий, составленных на основании длительных наблюдений и о которых известна статистика смертей. Эти статистические данные сведены в таблицы «дожития». В них записано, сколько из миллиона родившихся в один и тот же год мужчин в данной категории доживают до определенного возраста. Например, во Франции в 1895 году (у меня эти таблицы под рукой, а все примеры одинаково показательны) до 40 лет доживало 717 338 человек, а до 41 года – 711 352 человека. Таким образом, вероятность сорокалетнего человека прожить ближайший год равняется 0,992, соответственно вероятность умереть равняется 0,008. Из миллиона человек до 80 лет «добралось» 166 162, до 81 года – 145 553. Вероятность прожить год с 80 до 81 уже равняется 0,876, а вероятность покинуть мир 0,124. Чтобы вести свою работу, так сказать, «вничью», страховой организации следует определить страховые взносы по страховкам следующим образом. Меньше чем в одном случае из ста страховок придется выплатить тысячу рублей семьям сорокалетних клиентов. Чтобы оправдать эту тысячу рублей, надо установить страховой взнос что-нибудь около 10 рублей в год за тысячу рублей страховки. Принимая во внимание, что страхование должно приносить доход, эта сумма должна быть соответственно увеличена. Страховка восьмидесятилетних стариков возможна лишь на гораздо более дорогих началах: из ста страховок уплатить придется в среднем более чем в двенадцати случаях. Следовательно, годовой страховой взнос должен быть выше чем 120 рублей за тысячу. Надеюсь, что читатель не сердится на меня за напоминание о конечности жизни; мне кажется, что «Momento mori!» – полезный возглас. Человек живет значительно разумнее, спокойнее и полнее, если он время от времени вспоминает о сроке, отпущенном ему природой, зная, сколько «в среднем» живут люди его возраста. Кстати, для ответа на этот последний вопрос существуют особые таблицы среднего срока ожидаемой жизни. Скажем, для пятидесяти лет этот срок близок к 20 годам, для шестидесяти – к 13, для семидесяти – к 8 и для восьмидесяти – к 4 годам. Смысл этих чисел таков: средняя продолжительность жизни лиц, перешагнувших за пятьдесят, равна 70 годам, за шестьдесят – 73, за семьдесят – 78 и за восемьдесят – 84. Так что не надо прибегать к услугам кукушки, чтобы выяснить, сколько еще осталось лет для того, чтобы поумнее распорядиться своей жизнью. А теперь о погоде Вряд ли есть радиопередача, пользующаяся большей популярностью, чем сообщение о погоде. Хорошая погода для человека – это залог хорошего настроения. Ведь план ближайшего дня иногда сильно зависит от погоды, не говоря уже о планах отпуска. Прогноз погоды слушают внимательно: негодуют, когда он не выполняется, радуются удачам метеорологов. Метеостанции, раскиданные по всем уголкам земного шара, ведут систематические наблюдения за погодой уже много десятков лет. Ими накоплен огромный материал о температуре воздуха и почвы, об облачности и ветре, о давлении и количестве осадков. Хотите узнать, какая температура воздуха была в 10 часов утра 12 июля 1927 года в городе Ефремове? Пожалуйста, порывшись в архивах, вы найдете эти сведения. Все они обрабатываются по тем правилам, которые мы обсуждали. Для каждого элемента погоды построены самые разные кривые распределения. Ведь не угадаешь наперед, какие случайные величины заинтересуют специалиста, планирующего сельскохозяйственные работы, и курортника, интересующегося погодой в прогулочных целях. В метеорологических справочниках приведены средняя годовая температура, средняя месячная температура, средняя максимальная температура (для каждого дня всегда отмечается верхняя отметка, до которой добиралась ртуть термометра), средняя минимальная температура… Все эти величины подвержены беспорядочным (и систематическим) колебаниям. Поэтому интересны средние отклонения от средних значений для всех этих величин. В этом году я собираюсь поехать встречать Новый год в Сухуми или Гагру. Перед принятием такого решения я выписал из библиотеки справочник по климату и с нудной дотошностью ученого деятеля стал анализировать данные о погоде этих мест. Оказалось, что у меня есть шансы попасть в настоящую жару. В городе Сухуми в январе был однажды зафиксирован абсолютный максимум температуры в 24 градуса. Вспомнив, о чем писал на предыдущих страницах, я решил не полагаться на мизерную вероятность повторения такой температуры в эту зиму и в соответствующей таблице нашел «средний из абсолютных максимумов». (Это вот что такое. Каждый год отмечается максимальная температура января, февраля и т.д. «Среднее», о котором говорится, было выведено чуть ли не за 100 лет.) «Средний абсолютный максимум» оказался равен 18 градусам. А на такую температуру, хотя бы в течение одного-двух дней, уже можно рассчитывать даже невезучему субъекту. Восемнадцать градусов в тени – этого совершенно достаточно, чтобы с полным наслаждением загорать; а загорать на солнце в январе – это совершенно превосходно. Значит, беру отпуск в январе. Но, скажет внимательный читатель, знание одного лишь среднего значения абсолютных максимумов совершенно недостаточно, чтобы судить о вероятности события. Ведь нормальная кривая может быть очень плоской, колокол может быть невысоким, и тогда вероятность среднего будет невелика. Правильно. Такие 18 градусов – сомнительный залог блаженства. Я продолжаю листать справочник и нахожу то, что требуется. Другая таблица дает значение «среднего отклонения» «средней максимальной температуры» от «многолетнего среднего январского»: это 2 градуса. («Среднее отклонение» – это еще одна характеристика ширины кривой нормального распределения. Полуширина кривой, с которой мы подробно знакомили читателя, немного больше «среднего отклонения».) Как получены эти 2 градуса? Предположим, в 1900 году средняя январская температура равнялась 15 градусам, в 1901 году – 14, в 1902 – 18, в 1903 – 20, в 1904 – 17 и т.д. Поместив рядом, в следующей графе таблицы, абсолютные отклонения от среднего (то есть от 18 градусов), получим для 1900 года – 3, 1901 – 4, 1902 – 0, 1903 – 2, 1904 – 1 и т.д. Теперь остается сложить эти цифры за все годы наблюдений и разделить на число лет. Так были получены эти 2 градуса. Добыв «среднее отклонение», я значительно прояснил условия проведения своего отпуска. То есть могу достаточно смело рассчитывать на то, что встречусь с такими днями, когда температура будет лежать в пределах 16–20 градусов. Ну а будут ли отклонения от 18 градусов больше 2? Возможно. Но если температура не поднимается выше 14 градусов (отклонение в два раза больше среднего), то я буду считать, что мне не повезло. Если же за месяц пребывания в Сухуми столбик термометра не пересечет 12 градусов – это уже редкостное невезение, и старожилы скажут, что такого они не помнят. На этом можно было бы закончить разговор о метеорологических исследованиях, но я засомневался в его исчерпывающей полноте. Наши рассуждения насчет вероятности отклонений справедливы в том случае, если распределение температуры подчиняется нормальному гауссову закону. А подчиняется ли оно на самом деле? Данные о «среднем значении» и о «среднем отклонении» от среднего – это хорошо, а «полная кривая распределения» все-таки лучше. Какова она? Составители справочника предусмотрели и такой запрос и привели данные для построения многолетней средней кривой распределения максимальных температур января. Согласно этим данным ниже нуля температура в январе не наблюдалась ни разу. В среднем 2,2 дня в январе имеют температуру между 0 и 5 градусами (можно сказать и так: вероятность температуры между 0 и 5 градусами в январе в городе Сухуми равняется 2,2/31, то есть 0,07 (семь процентов шансов). Температура между 5 и 10 градусами наблюдалась в среднем в течение 11,3 дня января; между 10 и 15 градусами – 12,4 дня; между 15 и 20 – 4,7 и, наконец, между 20 и 25 градусами – 0,4 дня. Я построил кривую и увидел, что все в порядке – получилась нормальная колоколообразная кривая. Дни с температурой выше 10 градусов (в Москве в это время мороз и заносы) я считаю превосходной погодой: можно загорать, купаться, ходить на водных лыжах, кататься на катере. А таких дней в среднем за месяц будет 17,5, то есть больше половины. Значит, вероятность хорошей погоды одна вторая: орел или решка? Можно рискнуть – взять отпуск в январе и поехать загорать в Сухуми. Итак, вы видите, что справочник по климату может великолепно служить руководством к действию: при его помощи можно делать определенные прогнозы. Некоторые предсказания оказываются почти категорическими: в январе в Сухуми температура ниже 0 не опускается, до плюс 12 в какие-то дни она повысится непременно и т.д. Менее решительные суждения могут быть сформулированы в виде предположений. И кой-какие прогнозы можно делать и без глубоких соображений. Разумеется, носят они вероятностный характер, но сохраняют этот характер и в том случае, когда их делают специалисты. * * *– Это ни на что не похоже, – сказала она тоскливо. – Пропал весь отпуск. Дождь и дождь не переставая. Сколько можно! А еще говорят, что этот месяц обычно не очень дождливый. – Старожилы говорят, что такого не помнят, – сказал он. – Аномалия. Не повезло. А что сказало бюро погоды? – Обещают на завтра такую же погоду, как сегодня, – и после паузы: – Слушай, давай уедем, черт с ними, с путевками. – Не угадаешь. Уедешь, и как раз дожди кончатся. Хоть бы наука помогла. Вычислить вероятность продолжения дождей, что ли, а потом решить? – Разве можно такие вещи вычислять? – с недоверием спросила она. – А потом… ну, допустим, вычислишь, получишь 30 процентов за дождь, а 70 против. Решим остаться и… проиграем. При 70 проиграть не так уж трудно. Честно говоря, я не решился бы дать совет этой паре. Проиграть не так уж трудно и при шансах на выигрыш в 90 процентов. Но все же, если следовать вероятности всегда, то, подводя итоги, придешь к выводу, что расчеты помогли. Что же касается возможности рассчитать, будет ли дождь идти завтра после того, как он уже льет целую неделю, то она имеется. Существует довольно простая формула математика прошлого Томаса Бейеса, опубликованная впервые в 1763 году в его посмертной работе «Опыт решения одной проблемы теории вероятностей». В ней впервые был поставлен вопрос о том, как может быть использована теория вероятностей для составления того или иного суждения о явлении, располагая лишь ограниченным рядом наблюдений. Пусть перед нами урна с шарами. Шары могут быть только белыми, могут быть только черными, а могут быть и белые и черные, то есть состав шаров – смешанный. Мы скажем, что любой состав урны имеет равные априорные вероятности. (Что такое априорные? Латынь, которая обильно украшала научные сочинения прошлого, вышла сейчас из моды, но некоторые слова оказались стойкими. К ним относятся a priori и a posteriori, что означает «до опыта» и «после опыта». Впрочем, даже и в этом случае мы предпочитаем вводить соответствующие русские прилагательные.) Предположим, мы вытащили один шар: он оказался белым. Ситуация после этого сразу изменилась, поскольку уже ясно, что предположение, будто все шары черные, надо отбросить. А если мы вытащили 5 белых шаров подряд? Этот факт сильно повышает вероятность гипотезы, что в урне много белых шаров. Можно ли выяснить, какова вероятность, что белых шаров 100 процентов, или 90, или 80, после того, как произведен опыт? Или короче – какова априорная вероятность того, что в урне столько-то белых шаров после того, как мы вытащили из урны 5 белых шаров? Вот такие и подобные проблемы решал Бейес в своей работе. Одна из формул, выведенных Бейесом, отвечает на вопрос, который интересовал неудачливую пару, попавшую в полосу дождей. Если какое-то событие произошло несколько раз, то можно высчитать, какова вероятность его свершения и в следующий раз. Формула, как говорилось, очень простая, и ее можно привести здесь, прибегнув – увы! – к алгебраическим символам, навевающим на некоторых все же страх или скуку: p=(q+1)/(q+2) (вероятность равна дроби, числитель которой равен числу происшедших событий плюс единица, а знаменатель равен этому же числу плюс два). Значит, если дождь идет один день, то вероятность, что он будет идти завтра, равна 2/3, если дождь идет два дня, то назавтра вы можете ждать такой же погоды с вероятностью 3/4, три дня – 4/5… восемь дней – 9/10. Просто, не правда ли? Но если бездумно применять эту формулу, то можно прийти к абсурду. Например, я два раза набирал по телефону 01, вызывая пожарную команду, и она приезжала: значит, если я буду вызывать ее третий раз, то она прибудет тушить пожар с вероятностью в 75 процентов. Глупо ведь? Конечно, глупо. Или в этом году с Эйфелевой башни бросились и разбились две девушки, обманутые женихами. Значит, следующая имеет шанс из четырех остаться в живых. Глупо? Конечно, глупо. Но при чем здесь наша простая формула? Прочитав внимательно работу этого превосходного математика, мы увидим, что формула введена в предположении, что о вероятности единичного события нам неизвестно ровно ничего, то есть что эта вероятность может быть любой – от 0 до 1. Итак, формулу Бейеса следует применять в том случае, когда мы ровно ничего не знаем о единичном событии. Так ли обстоит дело с дождливой погодой? На основании многолетних наблюдений в городе Брюсселе установлено, что если дождь идет 1 день, то вероятность того, что он будет идти и завтра, равняется 0,63; если дождь идет 2 дня – его вероятность на завтра равна 0,68, 3 дня – 0,70, 5 дней – 0,73. Согласно же формуле Бейеса мы должны были бы иметь 0,66; 0,75; 0,80 и 0,86. Хотя опыт и теория близки, полного совпадения нет: формула оказывается несколько более пессимистична, чем реальная действительность. Лучше совпадают с выводами теоремы Бейеса данные, полученные при наблюдении смены температуры. По данным того же города Брюсселя, вероятность того, что завтра температура будет такой же, как и вчера, равна 0,75; если 2 дня температура была неизменной, то она останется такой же и завтра с вероятностью 0,76; если 3 дня неизменна, то сохранится и завтра с вероятностью 0,78; если 5 дней, то с вероятностью 0,83, и если температура не менялась 10 дней, то с вероятностью 0,85 она останется той же и в 11-й день. Как видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счетов все прогнозы типа «погода остается без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания – вот в чем должно проявиться понимание законов климата. Но вернемся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в ее знаменателе будет стоять полное число событий плюс 2. Например, если проведенная на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днем, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: P=(6+1)/(7+2)=7/9. Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счет 1 : 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идет речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд – участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счет 1 : 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13. Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую – неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своем мнении, а шансы авторов первой упали. Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнем лишь идейную сторону дела. Довольно редко дело обстоит так, что после проведенного единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почета. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять черных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет – одиннадцатый раз вытащили белый, и вопрос вновь остается открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено, и результат обнародован. Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объема информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что ее можно считать истиной. Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей. Миллион цифр В заголовке мы написали «миллион цифр», а точнее надо бы было сказать – миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмем ряд случайных цифр: 0, 1, 9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнем с ответа на второй вопрос. Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определенным способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки. Поручить кому-либо называть цифры наобум нельзя, нельзя даже ребенку, который не заинтересован в пропаганде ваших или еще чьих-то агротехнических теорий, нельзя потому, что, оказывается, каждый человек питает симпатию к одним и нелюбовь к другим цифрам. Поэтому «наобум» не будет означать «случайно». Ряды же случайных цифр нужны самым разным экспериментаторам: медикам и социологам, администраторам и полководцам, экономистам и метеорологам и многим-многим другим. Нужду в случайных цифрах испытывают также и математики, решающие свои задачи так называемым методом Монте-Карло, который становится все более распространенным по мере увеличения числа электронно-вычислительных машин. Чтобы дать хоть некоторое представление об этом методе, приведем несколько простых примеров. Мы хотим вычислить площадь произвольной сложной фигуры, какую представляет, ну скажем, Московская область на карте. Площадь всей карты найти просто – надо помножить ее ширину на длину. А как быть с фигурой причудливой формы? Представьте себе, что на карту падают капли дождя и случайным образом усеивают карту. Подсчитаем общее число капелек и число капелек, попавших на интересующую нас Московскую область. Ясно, что отношение этих чисел должно равняться отношению площади всей карты к площади Московской области. Разумеется, подставлять карту под дождь не надо. Каждую каплю можно представить двумя случайными числами (двумя координатами на плоскости), и тогда «заполнение площадей каплями» можно произвести мысленно. Но для этого также нужна книга случайных цифр, о которой у нас идет речь. Еще пример. Во многих задачах требуется вычислить, через сколько времени достигнет заданного барьера некая точка, если известно, откуда она вышла, и сказано, что движется она случайными шагами одинаковой длины, но направленными как попало. Разбив это «как попало» на 10 направлений (скажем, под углами 36°, 72°, 108° и т.д.), мы можем перемещать точку при помощи книги случайных цифр. Итак, случайные цифры нужны. Но что же такое ряд случайных цифр? На первый взгляд безупречным выглядит следующее определение: нет правила, по которому можно было бы, закрыв пальцами любую из цифр книги, угадать, какая она, с вероятностью большей, чем 0,1 (потому что цифр 10). Однако это определение не подходит, и вот почему. При помощи счетных машин с точностью до ста тысяч цифр после запятой вычислена величина «пи» – замечательное число, начинающееся цифрами 3,14… Если бы вы взглянули на эту последовательность, то она вам показалась бы идеально беспорядочной. Во всяком случае, вы будете действительно угадывать любую цифру лишь с вероятностью 0,1. Более того, исследуя число «пи» повнимательнее, вы найдете, что у него нет склонности к какой-либо особенной цифре и все они встречаются в среднем одинаково часто. Вы не найдете также никаких особенностей в расположении двух или трех ближайших цифровых соседей. И тем не менее тот, кто знает, что это число «пи», может предсказать каждую следующую цифру. Но дело обстоит еще хуже для составителей книги случайных цифр, когда исследуется еще одно число. Структура числа «пи» в глаза не бросается, а вот у такого числа, как 12345678910111213141516171819…, закономерность в расположении цифр – так сказать, узор ряда – вполне ясна. В то же время оказывается, что этот ряд удовлетворяет всем требованиям беспорядочной серии: вероятность появления каждой цифры равна 0,1; двух определенных цифр рядом – 0,01; трех определенных цифр – 0,001 и т.д. То есть никакие комбинации не имеют преимуществ. После размышлений математики пришли к такому выводу: нет ничего странного в том, что ограниченная последовательность цифр обладает некоторым узором. При этом чем длиннее серии случайных цифр, тем чаще на отдельных ее отрезках будут встречаться самые странные узоры. Все сказанное показывает, что было бы большой ошибкой ставить знак равенства между отсутствием узора в следовании цифр, штрихов или событий, с одной стороны, и случайностью этих событий – с другой. Вот вам пример: большего «беспорядка», чем расположение звезд на небе, пожалуй, не придумаешь. Тем не менее оно полно созвездий, имеющих характерный рисунок. В ряду случайных событий, таких, как появление «черного» и «красного» в рулетке, мы найдем и длинные ряды одинакового цвета, и ряды, в которых множество раз два «черных» чередуются с одним «красным». Будут такие случаи, когда «красного» будет больше в четные дни месяца, а «черного» – в нечетные. Найдутся последовательности месяцев, когда число 13 упорно приходится на воскресенье. Любые такие события возможны, а чтобы увидеть их, надо просто подсчитать вероятность их появления и убедиться в том, что она больше одной миллионной. Узоры случайностей – идея абстрактной живописи Джексона Поллока. Сообщалось, что этот «художник» выплескивает как попало на длинное полотно краски с помощью разных леек, шланг, ведер. Рассуждал Поллок вполне правильно. При совершенно случайном нанесении красок на полотно на нем будут образовываться различные узоры, и не исключено, что часть из них будет смотреться с интересом и удовольствием. Случайно возникающие узоры в форме или цвете создают красоту природы. Но беспорядок без узоров не производит впечатления; в нем нет никаких зрительных образов, которые вызывали бы у зрителя ассоциации и воспоминания. Беспорядок эмоционально беден. Одним из способов введения порядка в беспорядок является наложение симметрии на хаотически разбросанные цветовые пятна в бессюжетной декоративной живописи. Для этого художники зачастую прибегают к услугам калейдоскопа. Нехитрое это устройство, многократно отражающее в системе зеркал случайное расположение нескольких десятков цветных пятен, создает выразительные узоры. Многие из них потом оказываются рисунками на обоях. Мастера декоративной живописи используют часто и другие приемы введения порядка в хаос цвета и формы, например ритмическое повторение рисунка вдоль запутанного пути: спирали, зигзаги и т.д. Декоративная живопись смело могла бы принять на вооружение таблицы случайных цифр и некоторые приемы теории вероятностей, но художники, как правило, еще сторонятся математики. Эстетически невыразительной, по моему мнению, является и противоположная крайность в расположении цветов и форм – идеальный порядок. Справедливость этого утверждения видна из того, что даже в архитектуре идеальная симметрия и повторяемость вышли из моды. Введением беспорядка в порядок заинтересовался один геометр, который стал известным живописцем. Пример творчества этого голландского художника Эшера читатель найдет в книге А. Шубникова и В. Копцика «Симметрия». Довольно легко и широко стали использоваться идеи и методы теории вероятностей в музыке. Так же, как декоративная живопись, музыка (мелодия) лежит «посередине» между гудком телефона (порядок) и беготней котенка по клавишам рояля (беспорядок). Следование друг за другом нот подчиняется правилам композиции лишь отчасти. Поэтому вполне правомерно поставить вопрос о вероятности следующей ноты в рамках правил, предписанных музыке. Но об испытании «гармонии алгеброй» написано много научных работ и популярных книг. Не устоял против этой темы и я, посвятив ей несколько страниц в книге «Реникса». Там я рассказал, как, вводя различное число инструкций, накладывающих узы на хаотическое следование звуков, получают музыку различных стилей. Такими приемами можно при желании исследовать музыкальную структуру того или иного произведения, можно характеризовать различных композиторов степенью случайности в выборе соседних звуков. Насколько мне известно, энтузиасты такого рода исследований встречаются редко. Причины надо, видимо, искать в различном духовном складе человека искусства и человека точной науки. Цель наших замечаний сводится к тому, чтобы показать, что закономерности случая могут проявить себя в фактуре произведений искусства, а также и в том, чтобы отметить некоторые возможности использования миллиона случайных цифр в анализе предметов живописи, музыки, а может быть, и поэзии. Телепатия – друг случайностей Я беру монету и накрываю ее шапкой. Мне известно, какой стороной кверху она лежит. Некто берется отгадать это положение и просит меня лишь напряженно думать о том, как лежит монета, воссоздать мысленно образ этой монеты. Что ж, можно считать это игрой и заключать пари: отгадает – не отгадает. Если кто-нибудь мне скажет, что «Этот человек великолепный отгадчик», то я смело вступлю с ним в игру и поставлю рубль, что он не отгадает, скажем, 10 раз подряд против его двух рублей. Если он не захочет ставить два рубля, то пусть ставит рубль двадцать. Если и это много, то я скажу, что он не верит в своего отгадчика, и соглашусь играть с ним, поставив свой рубль против его одного рубля и пяти копеек. Я действительно принял бы это пари и разбогател бы быстрее владельцев игорного дома в Монте-Карло. Я убежден, что нет на свете людей, которые могут угадывать, какой стороной кверху обращена монетка под шапкой, большее число раз, чем это предписывает теория вероятностей. Убежден, что передача мыслей от одного человека к другому является невозможным событием, хотя имеется некоторое число людей, придерживающихся обратного мнения. Есть также небольшое число лиц, посвятивших свое время доказательству телепатии (так называется передача мыслей). Шестьдесят лет гоняются за этой синей птицей исследователи, именующие себя парапсихологами. Они испытали телепатические способности у тысяч людей. С каждым из них провели многие сотни опытов. Парапсихологи накопили грандиозный статистический материал. Про историю, корни, психологические аспекты увлечения телепатией и всякими другими черными и белыми магиями подробно рассказано в той же книге «Реникса». В 1971 году вышла посвященная этой теме переводная книга Ханзеля «Парапсихология» (изд-во «Мир»). Поэтому я отсылаю интересующегося читателя к этим книгам, а здесь остановлюсь на одной занятной странице телепатической истории, совершенно непосредственно связанной с темой вероятности. В 1953 году английский натурфилософ Г. Спенсер Браун, человек, несомненно, острого ума, в английском журнале сообщил, что, по его мнению, некоторые частичные удачи в наблюдениях телепатов представляют собой не что иное, как узоры в ряду беспорядочных событий. По мнению Брауна, стоило бы поискать узоры такой же вероятности в таблицах случайных чисел. Браун писал: «Мне кажется очевидным, что статистически значимые результаты, обладающие такой же степенью “достоверности”, что и результаты телепатических экспериментов, могут быть получены простой выборкой из таблиц случайных цифр, рассматриваемых как отчет о телепатическом опыте». Этот вызов взволновал общество парапсихологов, и некто А. Т. Орам годом позже опубликовал подробнейшую статью, целью которой было доказать, что результаты исследований в области парапсихологии никак не могут быть рассматриваемы как игра в рулетку. Орам не поленился изучить таблицы случайных цифр, составленные Кендаллем и Бабингтоном Смитом. Таблицы эти имеют такой вид: всего цифр 100 тысяч; на каждой странице 1000 цифр, расположенных в 20 парах колонок, в каждой колонке по 25 цифр. Такое расположение удобно для проверки идей Брауна. В чем, собственно говоря, заключается его предложение?
Чтобы опровергнуть это утверждение, была мобилизована целая бригада английского парапсихологического общества. Работа не маленькая: надо было сравнить 50 тысяч цифр. Результат оказался великолепным. При полном беспорядке правильно угаданных цифр по теории вероятностей должно было бы быть около 5 тысяч; их оказалось 5029. То есть оказалось, что таблицы случайных таблиц «не обладают телепатическими способностями» и мистер Браун вроде бы оказался посрамлен. В статье Орама таблицы случайных цифр подвергались самым разнообразным испытаниям для того, чтобы показать, что, как ни компонуй случайные цифры, хаос и беспорядок в них торжествует и никаких «угадываний» со сколько-нибудь значительными отклонениями от вероятности, типичной для случайных событий, не происходит. Самую маленькую вероятность упорядочения в таблицах случайных чисел Орам оценил в 0,05. Вполне допустимый результат. Прошел год, и в печати появился ядовитый ответ Брауна. Сам того не ведая, Орам дал в руки Брауну блестящее доказательство справедливости идеи, что таблицы случайных цифр содержат узоры, хоть вероятность их и совсем невелика. Дело обстояло следующим образом. Среди прочего большого цифрового материала Орам привел цифры «угадываний» по страницам, разбитым на четыре части: левая верхняя часть, нижняя левая, правая верхняя и правая нижняя. Браун обратил внимание на обстоятельство, не замеченное Орамом. При полном беспорядке число угадываний после сравнения 50 тысяч пар цифр, разбитых на четыре части (по 12 500 пар цифр в каждой части), должно было бы быть близким к 1250. Отличия от 1250 оказались разными: для левых верхних частей страниц – плюс 46, для левых нижних – плюс 13, для правых верхних – плюс 2 и для правых нижних – минус 60. Что же означал бы такой результат, если бы речь шла не о таблице случайных цифр, а об отчете телепатии и каждая страница представляла бы собой результат одного телепата? – Неужели после нашего эксперимента вы можете все еще серьезно опровергать факт передачи мыслей? – настаивал бы сторонник телепатии. – Смотрите, левая верхняя страница – это начало эксперимента, телепат бодр, и результат положительный. Далее наступает утомление, и в конце опыта – правая нижняя часть таблицы – уже сплошные неудачи. – Здесь нет доказательства телепатии, – заметил бы противник. – Как нет? Привлечем теорию вероятностей. Отклонение в плюс 40 от среднего результата в верхнем левом углу и минус 60 – в правом нижнем – событие, имеющее вероятность 0,005. Проверяйте, пожалуйста. – Нет, зачем же проверять, вы превосходно знаете математику, но дело в том, что на предыдущих страницах книги мы установили, что отклонения от среднего, обладающие вероятностью даже порядка одной стотысячной доли (0,0001), еще не позволяют занести событие в разряд чуда. Так что ваш результат вполне может быть отнесен к ничего не значащей случайности. – Ах, оставьте! Какая же это случайность? Попробуйте получить такой результат с помощью таблицы случайных цифр. Таков, несомненно, был бы ответ на наши возражения сторонника телепатии. Разоблачение ошибочной позиции, считающей возможным делать существенные выводы из ограниченного ряда наблюдений, произвело в свое время большое впечатление на читателей. Действительно, раз уж в таблице случайных цифр можно найти узоры, вероятность которых измеряется тысячными долями, то каждому стало ясно, что отдельные ряды «угадываний», обладающие вероятностью этого порядка, никак нельзя брать за доказательства телепатии. Обычный стиль работы фанатика, желающего доказать свою правоту, прибегая к статистике, состоит в том, что он отбрасывает неудачные (на его взгляд) ряды (почему они неудачны, он вам сразу объяснит: исполнители опыта были нездоровы, или была скверная погода, или на Солнце были пятна и т.д.) и учитывает удачные. Примечания:1 Запись «sqrt(n)» в данной книге означает «корень квадратный из n». В бумажной книге напечатан непосредственно радикал, но в электронной версии для совместимости с текстовыми форматами использована такая запись. Sqrt происходит от англ. «square root» и является распространенным обозначением функции взятия квадратного корня в языках программирования. |
|
||