|
||||
|
2. Архитектурные пропорции Отношения, определяющие размеры греческих храмов, промежутки между колоннами и соотношения частей фасада соответствуют тем же отношениям, что определяют музыкальные интервалы. Идея перехода от арифметической концепции числа к пространственно-геометрической концепции соотношения различных точек как раз и принадлежит Пифагору. Tetraktys - это символическая фигура, на которой основываются пифагорейцы Tetraktys - это символическая фигура, на которой основываются пифагорейцы. В ней самым совершенным и наглядным образом отражен переход от числа к пространству, от арифметики — к геометрии. Каждая сторона этого треугольника образована четырьмя точками, а в центре его расположена одна точка, единица, от которой берут начало все остальные числа. Число четыре становится таким образом синонимом силы, справедливости и прочности; треугольник, образованный тремя сериями из четырех чисел, есть символ совершенного тождества. Точки, образующие треугольник, в сумме дают десять, а через десять первых чисел можно выразить все возможные числа. Если число — это сущность вселенной, в тетрактисе (или в декаде) сосредоточена вся вселенская мудрость, все числа и все возможные числовые действия. Если продолжать определять числа по модели тетрактиса, расширяя основание треугольника, получаются числовые прогрессии, где чередуются числа четные (символ бесконечности, поскольку в них невозможно найти точку, делящую ряд точек на две равные части) и нечетные (конечные, поскольку в ряду всегда есть центральная точка, делящая его ровно пополам). Но этой арифметической гармонии будет соответствовать и гармония геометрическая; глаз сможет постоянно связывать эти точки в бесконечную и непрерывную последовательность совершенных Построение Пифагорова тетрактиса. Центральная точка равноудалена от точек, образующих равносторонний треугольник тетрады. Продолжив построение из любой точки, получаем потенциально бесконечную сетку, в которую вписано бесконечное множество тождественных равносторонних треугольников 64 2. АРХИТЕКТУРНЫЕ ПРОПОРЦИИ 80 3. ТЕЛО ЧЕЛОВЕКА Альбрехт Дюрер, Антропометрическая таблица, из трактата О симметрии человеческих тел, 1591 Слева направо: Витрувианская фигура, из трактата Ч. Чезариано Луций Витрувий Поплион об архитектуре, 1521. Милан, Национальная библиотека Браиденсе Строение тела и основные свойства человека в соответствии с Зодиаком, XI в. Бурго де Осма, Испания Леонардо да Винчи, Схема пропорций тела человека, ок.1530. Венеция, Галерея Академии зрелые математические выкладки теоретиков Гуманизма и Возрождения. У Дюрера пропорции тела основаны на строгих математических модулях. О пропорциях говорили как во времена Виллара, так и в эпоху Дюрера, но явно изменилась строгость расчетов, и идеальная модель художников Возрождения восходит не к средневековому философскому понятию пропорциональности, но скорее к концепции, воплощенной в Каноне Поликлета. 81 III. КРАСОТА КАК ПРОПОРЦИЯ И ГАРМОНИЯ |
|
||