• Глава 10. Квантовая геометрия
  • Суть римановой геометрии
  • Космологическая сцена
  • Существенно новая черта
  • Физические свойства намотанных струн
  • Спектр состояний струны[14]
  • Спор двух профессоров
  • Три вопроса
  • Два взаимосвязанных понятия расстояния в теории струн
  • Минимальный размер
  • Насколько общий этот вывод?
  • Зеркальная симметрия
  • Физика и математика зеркальной симметрии
  • Глава 11. Разрывая ткань пространства
  • Волнующая возможность
  • Зеркальная перспектива
  • Медленный прогресс
  • Рождение стратегии
  • Поздние вечера в последней обители Эйнштейна
  • О шести банках пива и работе по выходным
  • Момент истины
  • Подход Виттена
  • Следствия
  • Глава 12. За рамками струн: в поисках M-теории
  • Краткое изложение результатов второй революции в теории суперструн
  • Приближённый метод
  • Классический пример теории возмущений
  • Использование теории возмущений в теории струн
  • Приближает ли к ответу приближение?
  • Уравнения теории струн
  • Дуальность
  • Мощь симметрии
  • Дуальность в теории струн
  • Предварительные итоги
  • Супергравитация
  • Проблески M-теории
  • M-теория и паутина взаимосвязей
  • Общая панорама
  • Сюрприз в M-теории: демократия в протяжении
  • Помогает ли это в неразрешённых вопросах теории струн?
  • Глава 13. Чёрные дыры с точки зрения теории струн и M-теории
  • Чёрные дыры и элементарные частицы
  • Позволяет ли теория струн продвигаться вперёд?
  • Убеждённо разрывая ткань пространства
  • Шквал электронной почты
  • Снова о чёрных дырах и элементарных частицах
  • «Таяние» чёрных дыр
  • Энтропия чёрной дыры
  • Насколько черно чёрное?
  • Ваш выход, теория струн!
  • Нераскрытые тайны чёрных дыр
  • Глава 14. Размышления о космологии
  • Стандартная космологическая модель
  • Проверка модели Большого взрыва
  • От планковских времён до сотых долей секунды после Большого взрыва
  • Космологическая загадка
  • Инфляция
  • Космология и теория суперструн
  • В начале был комок планковских размеров
  • Почему три?
  • Космология и вид пространств Калаби–Яу
  • До начала?
  • M-теория и слияние всех сил природы
  • Рассуждения о космологии и окончательная теория
  • Часть IV. Теория струн и структура пространства-времени

    Глава 10. Квантовая геометрия

    Примерно за десятилетие Эйнштейн в одиночку сокрушил многовековые устои теории Ньютона, представив миру совершенно новую и значительно более глубокую теорию гравитации. И эксперты, и неспециалисты были покорены завораживающим изяществом и фундаментальной новизной формулировки общей теории относительности Эйнштейна. Не следует, однако, забывать о благоприятных исторических обстоятельствах, в значительной мере способствовавших успеху исследований Эйнштейна. Главное из них состоит в том, что Эйнштейну были известны математические результаты, полученные в XIX в. Георгом Бернгардом Риманом. Эти результаты давали возможность описания искривлённых пространств произвольной размерности в рамках строгого геометрического аппарата. В знаменитой инаугурационной лекции 1854 г. в Гёттингенском университете Риман перешёл через Рубикон мышления в рамках плоского евклидового пространства и проложил дорогу к единообразному математическому описанию геометрии всех типов искривлённых пространств. Именно пионерские идеи Римана позволили математикам дать количественное описание искривлённых пространств, подобных тем, которые иллюстрировались на рис. 3.4 и 3.6. Гениальность Эйнштейна состояла в осознании того, что эти математические идеи были идеально приспособлены для выражения его новых взглядов на гравитационное взаимодействие. Он смело заявил о том, что математические понятия римановой геометрии безупречно согласуются с физикой гравитации.

    Но сейчас, почти век спустя после научного подвига Эйнштейна, теория струн даёт нам квантово-механическое описание гравитации, требующее пересмотра общей теории относительности на длинах порядка планковской. А так как в основе общей теории относительности лежит понятие римановой геометрии, то и само это понятие должно быть модифицировано для соответствия новой физике, возникающей на малых расстояниях в теории струн. И если в общей теории относительности постулируется, что свойства искривлённого пространства Вселенной описываются геометрией Римана, то в теории струн утверждается, что данный постулат справедлив лишь в случае, когда структура Вселенной рассматривается на достаточно больших масштабах. На длинах порядка планковской должна вступать в игру новая геометрия, согласующаяся с новой физикой теории струн. Эту новую геометрию называют квантовой геометрией.

    В отличие от геометрии Римана, здесь нет готовых геометрических рецептов, уже описанных в книгах по математике и пригодных для того, чтобы занимающиеся струнами физики могли взять их на вооружение и использовать в этой науке. Напротив, современные физики и математики погружены в исследования в теории струн, по крупицам собирая знания, которые лягут в основу новой области физики и математики. И хотя основная часть работы ещё впереди, в ходе этих исследований уже было открыто много новых диктуемых теорией струн геометрических свойств пространства-времени, которые наверняка произвели бы впечатление и на самого Эйнштейна.

    Суть римановой геометрии

    При прыжках на батуте его упругие волокна растягиваются под весом человеческого тела, и батут деформируется. Сильнее всего растяжение вблизи тела человека, а по мере приближения к краям батута растяжение менее заметно. Это наглядно видно, если на батут нанесено знакомое изображение (например, Мона Лиза). Если на батуте никто не стоит, изображение выглядит нормально, но если на батут встаёт человек, изображение искажается, в особенности непосредственно под человеком (см. рис. 10.1).

    Рис. 10.1. Если на батуте с нанесённым изображением стоит человек, изображение сильнее всего искажается под весом тела человека

    Этот пример иллюстрирует важнейший принцип описания искривлённых поверхностей, принятый в математической формулировке Римана. На основе более ранних наблюдений Карла Фридриха Гаусса, Николая Лобачевского, Яноша Бойяи и других математиков, Риман показал, что детальный анализ расстояний между всеми точками на поверхности объекта или внутри него даёт способ вычисления значения кривизны. Грубо говоря, чем больше (неоднородное) растяжение, тем сильнее отклонение от формулы для расстояний в плоском случае, и тем больше кривизна объекта. Например, батут сильнее всего растягивается под ногами человека, и поэтому расстояния между точками в этой области будут сильнее всего отличаться от расстояний в случае ненагруженного батута. Следовательно, кривизна батута здесь будет максимальной. Это интуитивно ясно из приведённого рисунка: именно в таких точках изображение на батуте искажено сильнее всего.

    Эйнштейн использовал математические результаты Римана и дал им точную физическую интерпретацию. Как обсуждалось в главе 3, Эйнштейн показал, что гравитационное взаимодействие обусловлено кривизной пространства-времени. Рассмотрим эту интерпретацию более подробно. С математической точки зрения, кривизна пространства-времени, подобно кривизне батута, означает искажение расстояний между точками. С физической точки зрения, действие гравитационной силы на тело есть прямое следствие этого искажения расстояний. По мере того как размеры тел уменьшаются, физика и математика должны согласовываться всё лучше и лучше, потому что абстрактное математическое понятие точки становится всё ближе к физической реальности. Однако теория струн ограничивает точность, с которой геометрическая формулировка Римана может соответствовать физической природе гравитации, ибо накладывает ограничение на минимальный размер, который вы можете придать физическому телу. Как только вы спускаетесь до размера струны, дальше дороги нет. В теории струн не существует традиционного понятия точечной частицы: в противном случае с помощью теории струн было бы невозможно реализовать квантовую теорию гравитации. Это определённо свидетельствует о том, что риманова геометрия, в основе которой лежат вычисления расстояний между точками, на ультрамикроскопических масштабах модифицируется теорией струн.

    Такое наблюдение несущественно для стандартных приложений общей теории относительности к изучению макросистем. Например, проводя исследования в области космологии, физики, не задумываясь, рассматривают огромные галактики в качестве точек, так как размер галактик пренебрежимо мал по сравнению с размером Вселенной. Этот грубый подход к формулировке римановой геометрии оказывается, тем не менее, исключительно точным — в области космологии успех общей теории относительности очевиден. Однако в ультрамикроскопической области в силу протяжённых свойств струн риманова геометрия просто не является подходящим математическим формализмом. Как мы увидим ниже, она должна быть заменена квантовой геометрией теории струн, и эта замена приведёт к возникновению поразительных и неожиданных новых эффектов.

    Космологическая сцена

    Согласно космологической модели Большого взрыва вся Вселенная образовалась в результате необычайного космического взрыва, произошедшего около 15 миллиардов лет назад. Как впервые обнаружено Хабблом, даже сегодня продолжают разлетаться «осколки» этого взрыва, представляющие собой миллиарды галактик. Вселенная расширяется. Нам неизвестно, продолжится ли это расширение бесконечно, или в какой-то момент расширение замедлится, затем прекратится, сменится сжатием, и, наконец, вновь приведёт к космическому взрыву. Астрономы и астрофизики пытаются изучить этот вопрос экспериментально, так как ответ зависит от величины, которую, в принципе, можно измерить, а именно от средней плотности материи во Вселенной.

    Если средняя плотность материи превысит так называемую критическую плотность, равную примерно 10?29 г/см3 (около 5 атомов водорода на каждый кубический метр Вселенной), то Вселенную пронзит всепроникающая гравитационная сила, которая остановит расширение и приведёт к сжатию. Если средняя плотность материи меньше критической, то гравитационное притяжение будет слишком слабым, чтобы остановить расширение, и оно будет продолжаться вечно. (Основываясь на житейских наблюдениях, можно подумать, что средняя плотность Вселенной во много раз превышает критическое значение. Нужно, однако, иметь в виду, что материя, как и деньги, имеет тенденцию скапливаться в определённых местах. Использование средней плотности Земли, Солнечной системы или даже Млечного пути в качестве средней плотности Вселенной сродни использованию величины состояния Билла Гейтса для оценки среднего состояния простых смертных. Состояние большинства людей бледнеет по сравнению с состоянием Гейтса, и это приводит к значительному уменьшению среднего значения. Существование огромных и практически пустых пространств между галактиками ведёт к колоссальному снижению средней плотности материи.)

    Тщательно исследуя распределение галактик в пространстве, астрономы могут довольно точно предсказать среднюю плотность видимой материи во Вселенной. Она оказывается гораздо меньше критической. Однако имеются серьёзные основания полагать (как с теоретической, так и экспериментальной точки зрения), что Вселенная пронизана тёмной материей. Эта материя не участвует в ядерном синтезе, происходящем в звёздах, и поэтому не излучает свет. Следовательно, её нельзя обнаружить с помощью телескопа. Никому ещё не удавалось выяснить природу тёмной материи, не говоря уже о том, чтобы вычислить её точное количество. А это означает, что будущее нашей Вселенной, которая в настоящий момент расширяется, остаётся неясным.

    Рассмотрим, например, что произойдёт, если плотность материи превышает критическое значение, и однажды в далёком будущем расширение прекратится, после чего Вселенная начнёт сжиматься. Все галактики сначала будут медленно приближаться друг к другу, затем, со временем, скорость их сближения возрастёт, и они помчатся навстречу друг другу с огромной скоростью. Представьте себе всю Вселенную, сжимающуюся в один непрерывно уменьшающийся сгусток космической материи. Согласно главе 3, начиная с максимального размера во многие миллиарды световых лет, Вселенная сожмётся до миллионов световых лет, и это сжатие будет ускоряться с каждой секундой. Всё будет сжиматься сначала до размеров одной галактики, затем до размеров одной звезды, планеты, апельсина, горошины, песчинки. Далее, согласно общей теории относительности, до размеров молекулы, атома, и, на неизбежной окончательной стадии Большого сжатия, до размеров точки. Согласно общепринятой теории Вселенная начала своё существование после взрыва в начальном состоянии нулевого размера, и если её масса окажется достаточной, завершит своё существование коллапсом в аналогичное состояние окончательного космического сжатия.

    Однако мы хорошо знаем, что если характерные длины приближаются к планковской или становятся меньше неё, уравнения общей теории относительности теряют свою силу ввиду квантово-механических эффектов. На таких масштабах длин нужно использовать теорию струн. В результате встаёт вопрос о том, к каким изменениям геометрической картины на основе общей теории относительности, в которой допустим сколь угодно малый размер Вселенной (так же, как в римановой геометрии допустим сколь угодно малый размер абстрактного многообразия), приведёт использование теории струн. Вскоре мы увидим, что и здесь в теории струн имеются указания на ограничение физически достижимых масштабов длин, а новым замечательным следствием является невозможность сжатия Вселенной по любому пространственному измерению до размеров, меньших планковской длины.

    Знакомство с теорией струн может вызвать у вас искушение высказать догадку, почему это так. Вы можете рассуждать, что независимо от того, сколько точек (имеются в виду точечные частицы) вы нагромождаете друг на друга, их суммарный объём остаётся равным нулю. Наоборот, если частицы — это струны, сжимающиеся при совершенно случайной ориентации, они заполнят шарик ненулевого размера, типа шарика планковских размеров, состоящего из спутанных резиновых лент. Такие соображения действительно не лишены смысла, но они не учитывают важные и тонкие свойства, изящно используемые в теории струн для обоснования минимального размера Вселенной. Эти свойства позволяют реально понять новую струнную физику и её влияние на геометрию пространства-времени.

    Чтобы пояснить эти важные стороны теории, рассмотрим сначала пример, в котором отброшены детали, несущественные для понимания новой физики. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Эта вселенная, имеющая два пространственных измерения, была введена в главе 8 до обсуждения теории струн с целью разъяснения идей Калуцы и Клейна 1920-х гг. Давайте использовать её в качестве «космологической сцены» для исследования теории струн в простой постановке. Достигнутое понимание свойств этой теории будет использовано ниже для того, чтобы лучше разобраться со всеми пространственными измерениями в теории струн. С этой целью вообразим, что сначала циклическое измерение вселенной Садового шланга имеет нормальный размер, но затем начинает сжиматься всё сильнее и сильнее, приближаясь по форме к Линляндии и приводя к Большому сжатию в упрощённом и частичном варианте.

    Интересующий нас вопрос состоит в том, будут ли геометрические и физические характеристики этого космического коллапса иметь свойства, позволяющие явно отличить Вселенную, основанную на струнах, от Вселенной, основанной на точечных частицах.

    Существенно новая черта

    Не нужно много времени, чтобы обнаружить существенно новую характеристику физики струн. В нашей двумерной вселенной точечная частица может двигаться так, как показано на рис. 10.2: вдоль протяжённого измерения Садового шланга, вдоль циклического измерения, или по обоим измерениям сразу. Замкнутая струна может совершать аналогичные движения, с той разницей, что при движении по поверхности струна колеблется (рис. 10.3а). Это различие уже обсуждалось выше. Вследствие колебаний струна приобретает определённые характеристики, например массу и заряд. Это один из ключевых фактов теории струн, но он не является предметом настоящего обсуждения, так как его физические следствия уже рассмотрены выше.

    Рис. 10.2. Точечные частицы, движущиеся по цилиндру

    Рис. 10.3. Струны на цилиндре могут двигаться в двух конфигурациях — «ненамотанной» или «намотанной»

    Сейчас нас интересует другое отличие между движением частиц и струн, непосредственно связанное с формой пространства, где движется струна. Так как струна является протяжённым объектом, она может существовать ещё в одной конфигурации, отличной от упомянутых выше. Струна может наматываться (как лассо) на циклическое измерение вселенной Садового шланга (рис. 10.3б).{88} Струна будет продолжать скользить и колебаться, но находясь в этой расширенной конфигурации. На самом деле, струна может намотаться на циклическое измерение любое число раз (как показано на том же рисунке) и одновременно осуществлять колебательные движения в ходе своего скольжения. Если струна имеет подобную намотанную конфигурацию, мы говорим, что она находится в топологической моде движения. Ясно, что топологическая мода может существовать только у струн. У точечных частиц не существует аналога этой моды. Попытаемся понять влияние этого качественно нового типа движения струны как на свойства самой струны, так и на геометрические свойства измерения, вокруг которого она намотана.

    Физические свойства намотанных струн

    Выше при обсуждении движения струн основное внимание уделялось ненамотанным струнам. Струны, которые могут наматываться по циклической пространственной координате, имеют почти тот же набор свойств, что и рассмотренные выше струны. Их колебания также вносят существенный вклад в наблюдаемые величины. Главное отличие состоит в том, что у намотанной струны имеется минимальная масса, определяемая размером циклического измерения и числом оборотов струны вокруг него. Колебания струны дают добавку к этой минимальной массе.

    Нетрудно понять причину существования минимальной массы. У намотанной струны есть ограничение на минимальную длину: это ограничение определяется длиной окружности циклического измерения и числом оборотов струны вокруг этого измерения. Минимальная длина струны определяет её минимальную массу. Чем больше эта длина, тем больше и масса, потому что при увеличении длины струна «растёт». Так как длина окружности пропорциональна радиусу, минимальные вклады топологической моды в массу струны пропорциональны радиусу окружности, на которую намотана струна. Учитывая соотношение Эйнштейна E = mc2, связывающее массу и энергию, можно, кроме того, утверждать, что сосредоточенная в намотанной струне энергия пропорциональна радиусу циклического измерения. (У ненамотанных струн тоже есть очень малая минимальная длина, иначе это были бы не струны, а точечные частицы. Аналогичные аргументы могли бы привести к заключению, что и ненамотанные струны имеют хоть и малую, но всё же отличную от нуля массу. В определённом смысле это так, но квантово-механические поправки, рассмотренные в главе 6 (см. аналогию с телеигрой «Верная цена»), могут в точности сократить этот массовый вклад. Напомним, что именно так и происходит, когда в спектре ненамотанной струны возникают фотоны, гравитоны, а также другие безмассовые частицы или частицы с очень малой массой. Намотанные струны в этом отношении отличаются от ненамотанных.)

    Каким образом существование топологических конфигураций струн влияет на геометрические свойства измерения, вокруг которого наматываются струны? Ответ, который был дан в 1984 г. японскими физиками Кейджи Киккавой и Масами Ямасаки, весьма примечателен и очень нетривиален.

    Посмотрим, что происходит на последних катастрофических этапах Большого сжатия вселенной Садового шланга. Когда радиус циклического измерения достигает планковской длины и, в духе общей теории относительности, продолжает стягиваться до меньших размеров, в этот момент, согласно теории струн, необходим радикальный пересмотр модели происходящего. В теории струн утверждается, что в случае, когда радиус циклического измерения становится меньше планковской длины и продолжает уменьшаться, все физические процессы во вселенной Садового шланга происходят идентично физическим процессам в случае, когда радиус циклического измерения больше планковской длины и увеличивается! Это означает, что когда радиус циклического измерения пытается преодолеть рубеж планковской длины в сторону меньших размеров, эти попытки предотвращаются теорией струн, которая в этот момент меняет правила геометрии на противоположные. Теория струн говорит о том, что такую эволюцию можно переформулировать, т. е. переосмыслить, сказав, что когда циклическое измерение стянется до планковской длины, затем оно начнёт расширяться. Законы геометрии на малых расстояниях переписываются в теории струн таким образом, что то, что ранее казалось полным космическим коллапсом, становится космическим расширением. Циклическое измерение может сжаться до планковской длины. Однако благодаря топологическим модам все попытки дальнейшего сжатия в действительности приведут к расширению. Рассмотрим, почему это происходит.

    Спектр состояний струны[14]

    Возможность новых конфигураций намотанной струны означает, что у энергии струны во вселенной Садового шланга есть два источника: колебательное движение и намотка (топологический вклад). Согласно Калуце и Клейну, каждый тип энергии зависит от геометрии шланга, т. е. радиуса свёрнутой циклической компоненты, но эта зависимость имеет ярко выраженный «струнный» характер, так как точечные частицы не могут наматываться вокруг измерений. Поэтому попытаемся сначала определить точную зависимость топологических и колебательных вкладов в энергию струны от размера циклического измерения. Для этого удобно разделить колебательные движения струны на две категории: однородные и обычные колебания. Обычные колебания неоднократно рассматривались выше (например, колебания, иллюстрация которых приведена на рис. 6.2). Однородные колебания соответствуют ещё более простому движению, а именно поступательному движению струны как целого, когда она скользит из одного положения в другое без изменения формы. Все движения струны являются суперпозициями поступательных движений и осцилляций, т. е. суперпозициями однородных и обычных колебаний, однако сейчас нам удобнее рассматривать такое разделение движений струны. На самом деле обычные колебания играют второстепенную роль в наших рассуждениях, и поэтому их вклады будут учтены лишь после изложения сути наших доводов.

    Отметим два существенных наблюдения. Во-первых, энергия однородных колебательных возбуждений струны обратно пропорциональна радиусу циклического измерения. Это является прямым следствием соотношения неопределённостей в квантовой механике. При меньших радиусах струна локализована в меньшем объёме, и поэтому энергия её движения больше. Следовательно, при уменьшении радиуса циклического измерения энергия движения струны обязательно растёт, что объясняет указанную обратно пропорциональную зависимость. Во-вторых, как выяснено в предыдущем разделе, топологические вклады в энергию прямо пропорциональны радиусу, а не обратно пропорциональны ему. Из этих двух наблюдений следует, что бо?льшие значения радиуса соответствуют бо?льшим значениям топологической энергии и малым значениям колебательной энергии, а малые значения радиуса соответствуют малым значениям топологической энергии и большим значениям колебательной энергии.

    В итоге получается важнейший результат: всякому большому радиусу вселенной Садового шланга соответствует некий малый радиус, при котором топологические энергии струны, вычисленные для вселенной с большим радиусом, равны колебательным энергиям струны, вычисленным для вселенной с малым радиусом, а колебательные энергии струны, вычисленные для вселенной с большим радиусом, равны топологическим энергиям струны, вычисленным для вселенной с малым радиусом. Но поскольку физические свойства зависят лишь от полной энергии конфигурации струны, а не от того, как эта энергия распределена между колебательным и топологическим вкладами, нет никакого физического различия между этими геометрически различными состояниями вселенной Садового шланга. А поэтому, что может показаться достаточно странным, в теории струн нет никакой разницы между вселенной толстого Садового шланга и вселенной тонкого Садового шланга.

    Всё это можно назвать «космическим страхованием сделки», что, в определённой мере, аналогично действиям вкладчика небольшого капитала, столкнувшегося со следующей дилеммой. Предположим, он узнал, что судьба акций одной компании (например, производящей тренажёры) неразрывно связана с судьбой акций другой компании (например, производящей сердечные клапаны для шунтирования). Допустим, что по завершении сегодняшних торгов акции каждой компании стоили по одному доллару, и из авторитетного источника известно, что если акции одной компании пойдут вверх, то акции другой компании упадут вниз, и наоборот. Кроме того, этот абсолютно надёжный источник (деятельность которого, однако, может быть не очень-то законной) утверждает, что при завершении завтрашних торгов цены на акции этих двух компаний гарантированно будут обратно пропорциональны друг другу. Например, если одни акции будут стоить $2, то другие — $1/2 (50 центов), а если одни будут стоить $10, то другие — $1/10 (10 центов), и т. д. Однако какие именно акции пойдут вверх, а какие упадут в цене, источник сказать не может. Как поступить в такой ситуации?

    Что же, вкладчик немедленно инвестирует все свои капиталы на биржевой рынок, распределив их в равных долях между акциями двух компаний. Сделав несколько оценок, легко убедиться, что капитал не уменьшится вне зависимости от того, что произойдёт на рынке завтра. В худшем случае капитал не изменится (если акции обеих компаний по завершении торгов будут стоить $1), но любое изменение стоимости акций по известной от источника схеме приведёт к увеличению вклада. Например, если акции первой компании будут стоить $4, а акции второй компании будут стоить $1/4 (25 центов), то их суммарная стоимость будет равна $4,25 (за каждую пару акций) против $2 накануне торгов. Более того, с точки зрения чистой прибыли совершенно не важно, акции какой компании выросли в цене, а какой компании упали. Если вкладчика волнуют только деньги, два различных исхода неразличимы в финансовом отношении.

    Ситуация в теории струн аналогична в том смысле, что энергия струнных конфигураций есть сумма двух вкладов — колебательного и топологического, и эти вклады в полную энергию, вообще говоря, различны. Однако, как подробно обсуждается ниже, определённые пары разных геометрических состояний, соответствующие большой топологической/малой колебательной энергии и малой топологической/большой колебательной энергии, являются физически неразличимыми. И, в отличие от примера из области финансов, в котором при выборе между двумя видами акций могли бы играть роль соображения, отличные от соображений максимальной выгоды, здесь не существует совершенно никакого физического различия между двумя сценариями.

    Как станет ясно далее, для более полной аналогии с теорией струн следует рассмотреть случай, когда начальное капиталовложение распределяется неравномерно между акциями двух компаний, например, покупается 1 000 акций первой компании и 3 000 акций второй компании. Теперь полная итоговая стоимость будет зависеть от того, какие акции упадут в цене, а какие вырастут. Например, если акции первой компании будут стоить $10, а акции второй — 10 центов, то начальное капиталовложение $4 000 вырастет до $10 300. Если случится противоположное, т. е. акции первой компании будут стоить 10 центов, а акции второй — $10, то капиталовложение вырастет до $30 100, что значительно больше.

    Однако обратная зависимость цен акций гарантирует следующее. Если другой вкладчик распределяет капиталовложения прямо противоположным образом, т. е. покупает 3 000 акций первой компании и 1 000 акций второй компании, то в результате он получит $10 300 в случае роста акций второй компании (ту же сумму, которую получит первый вкладчик в случае роста акций первой компании) и $30 100 в случае роста акций первой компании (снова ту же сумму, которую получит первый вкладчик в противном случае). Таким образом, с точки зрения полной стоимости акций обмен типов поднявшихся и упавших в цене акций в точности компенсируется обменом числа акций каждой из двух компаний.

    Приняв к сведению последнее наблюдение, снова обратимся к теории струн и рассмотрим возможные энергии струны на конкретном примере. Предположим, что радиус циклического измерения вселенной Садового шланга в 10 раз больше планковской длины. Запишем это в виде формулы R = 10. Струна может быть намотана вокруг этого измерения один раз, два раза, три раза и т. д. Число оборотов струны вокруг циклического измерения называют топологическим числом[15] струны. Энергия, обусловленная намоткой струны, определяется длиной намотанной струны и пропорциональна произведению радиуса на топологическое число. Кроме того, любая струна способна совершать колебательные движения. Интересующие нас сейчас энергии однородных колебаний обратно пропорциональны радиусу, т. е. пропорциональны произведению целочисленных множителей на обратный радиус 1/R, равный, в данном случае, одной десятой планковской длины. Мы будем называть эти целочисленные множители колебательными числами.{89}

    Видно, что ситуация очень напоминает ситуацию на фондовой бирже. При этом топологические и колебательные числа являются непосредственными аналогами количеств купленных акций двух компаний, а R и 1/R играют роль цен на акции каждой компании по завершении торгов. Вычислить полную энергию струны, зная колебательное число, топологическое число и радиус, так же просто, как вычислить стоимость капиталовложения, исходя из количества акций каждой компании и стоимости акций после завершения торгов. В табл. 10.1 приведён ряд результатов для полных энергий различных конфигураций струн в случае вселенной Садового шланга радиуса R = 10.

    Таблица 10.1. Выборочные колебательные и топологические конфигурации струны, движущейся во Вселенной с радиусом R = 10 (рис. 10.3). Колебательные вклады в энергию кратны 1/10, а топологические вклады кратны 10. В результате получаются перечисленные значения полной энергии. Единицей измерения энергии является планковская энергия, т. е., например, 10,1 в правом столбце соответствует значению 10,1, умноженному на планковскую энергию

    Колебательное число Топологическое число Полная энергия
    1 1 1/10 + 10 = 10,1
    1 2 1/10 + 20 = 20,1
    1 3 1/10 + 30 = 30,1
    1 4 1/10 + 40 = 40,1
    2 1 2/10 + 10 = 10,2
    2 2 2/10 + 20 = 20,2
    2 3 2/10 + 30 = 30,2
    2 4 2/10 + 40 = 40,2
    3 1 3/10 + 10 = 10,3
    3 2 3/10 + 20 = 20,3
    3 3 3/10 + 30 = 30,3
    3 4 3/10 + 40 = 40,3
    4 1 4/10 + 10 = 10,4
    4 2 4/10 + 20 = 20,4
    4 3 4/10 + 30 = 30,4
    4 4 4/10 + 40 = 40,4

    Полная таблица была бы бесконечно длинной, так как топологические и колебательные числа могут принимать произвольные целые значения, однако представленный фрагмент таблицы достаточен для обсуждения. Из таблицы видно, что она соответствует ситуации больших топологических вкладов и малых колебательных вкладов: топологические вклады кратны 10, а колебательные вклады кратны 1/10.

    Предположим теперь, что радиус циклического измерения сужается, скажем, с 10 до 9,2, затем до 7,1 и далее до 3,4, 2,2, 1,1, 0,7 и т. д. до 0,1 (1/10), где, в нашем примере, процесс сужения прекращается. Для такой геометрически иной формы вселенной Садового шланга можно построить аналогичную таблицу энергий струн. В ней топологические вклады кратны 1/10, а колебательные вклады кратны обратному значению, т. е. 10. Результаты сведены в табл. 10.2.

    Таблица 10.2. Аналогична табл. 10.1, но значение радиуса выбрано равным 1/10

    Колебательное число Топологическое число Полная энергия
    1 1 10 + 1/10 = 10,1
    1 2 10 + 2/10 = 10,2
    1 3 10 + 3/10 = 10,3
    1 4 10 + 4/10 = 10,4
    2 1 20+ 1/10 = 20,1
    2 2 20 + 2/10 = 20,2
    2 3 20 + 3/10 = 20,3
    2 4 20 + 4/10 = 20,4
    3 1 30+ 1/10 = 30,1
    3 2 30 + 2/10 = 30,2
    3 3 30 + 3/10 = 30,3
    3 4 30 + 4/10 = 30,4
    4 1 40+ 1/10 = 40,1
    4 2 40 + 2/10 = 40,2
    4 3 40 + 3/10 = 40,3
    4 4 40 + 4/10 = 40,4

    На первый взгляд может показаться, что таблицы совершенно различны. Но при более пристальном рассмотрении видно, что в столбцы полной энергии в обеих таблицах входят одинаковые элементы, хотя они и расположены в разном порядке. Чтобы найти элемент табл. 10.2, соответствующий данному элементу табл. 10.1, нужно просто поменять местами топологическое и колебательное число. Иными словами, колебательные и топологические вклады взаимно дополняют друг друга при изменении радиуса циклического измерения с 10 до 1/10. Поэтому с точки зрения полных энергий струн нет различия между этими двумя размерами циклического измерения. Как обмен типов акций в точности компенсировался обменом числа акций каждой из двух компаний, так и замена радиуса 10 на 1/10 в точности компенсируется заменой топологических и колебательных чисел. Кроме того, значения начального радиуса R = 10 и его обратного значения 1/10 выбраны в данном примере лишь для простоты, и результат будет тем же для любого радиуса.{90}

    Табл. 10.1 и 10.2 не полны по двум причинам. Во-первых, как указано выше, здесь выбраны лишь некоторые из бесконечного набора колебательных и топологических чисел, возможных для струны. Это, разумеется, не является серьёзной проблемой — мы могли бы строить таблицу до тех пор, пока не иссякнет терпение, и убедились бы, что указанное свойство продолжает оставаться справедливым. Во-вторых, кроме топологического вклада в энергию мы до сих пор учитывали лишь однородные колебания струны. Сейчас необходимо учесть и обычные колебания, так как они дают дополнительный вклад в полную энергию струны и, кроме того, определяют переносимый струной заряд. Здесь важно отметить, что исследования свидетельствуют о независимости этих вкладов от радиуса. Поэтому, даже если эти вклады были бы включены в табл. 10.1 и 10.2, таблицы всё равно точно соответствовали бы друг другу, так как обычные колебательные вклады учитывались бы в каждой таблице совершенно одинаковым образом. Следовательно, можно заключить, что массы и заряды частиц во вселенной Садового шланга радиусом R идентичны массам и зарядам частиц во вселенной Садового шланга радиусом 1/R. А так как именно эти массы и заряды управляют фундаментальными физическими законами, нет никакого физического различия между двумя геометрически различными вселенными. Результаты любого эксперимента в одной вселенной и соответствующего эксперимента в другой вселенной будут в точности совпадать.

    Спор двух профессоров

    После превращения в двумерные существа Джордж и Грейс стали профессорами физики во вселенной Садового шланга. Они основали конкурирующие лаборатории, сотрудники каждой из которых вскоре заявили о том, что им удалось определить размер циклического измерения. На удивление, при всей безупречной репутации каждой лаборатории в области высокоточных исследований, результаты оказались разными. Джордж уверен в том, что радиус (в единицах планковской длины) равен R = 10, а Грейс утверждает, что значение радиуса равно R = 1/10.

    «Грейс, — говорит Джордж, — мои вычисления по теории струн показывают, что если радиус циклического измерения равен 10, то энергии наблюдаемых мной струн должны соответствовать табл. 10.1. Я провёл масштабные эксперименты на новом ускорителе с энергиями порядка планковской, и результаты в точности подтвердили это предположение. Следовательно, я совершенно определённо заявляю, что радиус циклического измерения равен R = 10». В свою очередь, Грейс приводит в защиту своего результата в точности те же доводы, но её вывод состоит в том, что зарегистрированы значения энергий из табл. 10.2, и радиус, таким образом, равен R = 1/10.

    Озарённая проблеском интуиции Грейс демонстрирует Джорджу, что несмотря на разное расположение элементов эти таблицы тождественны. Джордж, который, как всем известно, соображает несколько медленнее Грейс, отвечает: «Но как такое возможно? Я знаю, что, согласно принципам квантовой теории и свойствам намотанных струн, различные значения радиуса должны приводить к разным возможным значениям энергий и зарядов струн. И если эти значения согласуются, то и значения радиуса также должны находиться в согласии».

    Грейс, во всеоружии своего нового понимания физики струн, отвечает: «То, что Вы говорите, почти, но не полностью правильно. Да, обычно верно, что для двух различных радиусов получаются различные допустимые энергии. Однако в частном случае, когда два значения радиуса обратно пропорциональны друг другу, например, как 10 и 1/10, допустимые энергии и заряды на самом деле одинаковы. Судите сами: то, что Вы назвали бы колебательной модой, я назвала бы топологической модой. Но природе безразлично, на каком языке мы говорим. Физические явления обусловлены свойствами фундаментальных составляющих — массами (энергиями) частиц и переносимыми ими зарядами. Не имеет значения, равен ли радиус R или 1/R: полный список значений свойств фундаментальных составляющих теории струн один и тот же».

    В минуту прозрения Джордж отвечает: «Мне кажется, я понимаю. Хотя моё и Ваше детальное описание струн — их намотка на циклическое измерение или особенности их колебательного поведения — могут отличаться, полный список их физических характеристик одинаков. А так как физические свойства Вселенной зависят от свойств фундаментальных составляющих, нет ни различия между радиусами, которые обратно пропорциональны друг другу, ни способа определить это различие». Именно так.

    Три вопроса

    Здесь читатель может спросить: «Будь я существом, живущим на вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких “но” и “если”. Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что всё это добавляет к пониманию случая всех измерений?»

    Начнём с третьего вопроса; ответ на него поставит нас лицом к лицу с двумя первыми.

    Хотя обсуждение касалось вселенной Садового шланга, ограничение одним протяжённым и одним циклическим пространственными измерениями было выбрано лишь для простоты. Если бы мы рассматривали три протяжённых пространственных измерения и шесть циклических измерений — простейшее из всех многообразий Калаби–Яу, — результат был бы в точности тем же самым. У каждой окружности есть радиус, и если его заменить обратным радиусом, получится физически идентичная вселенная.

    Этот вывод можно даже продвинуть на один гигантский шаг вперёд. В нашей Вселенной наблюдаемы три пространственных измерения, каждое из которых, согласно астрономическим наблюдениям, имеет протяжённость порядка 15 миллиардов световых лет (световой год равен примерно 9,46 триллионам километров, так что это расстояние равно примерно 142 миллиардам триллионов километров). Как отмечалось в главе 8, у нас нет данных о том, что происходит за этими границами. Мы не знаем, уходят ли эти измерения в бесконечность или замыкаются сами на себя, образуя огромные окружности — всё это может иметь место за пределами чувствительности современных телескопов. Если справедливо последнее предположение, то путешествующий всё время в одном направлении астронавт в конце концов обойдёт вокруг Вселенной, как Магеллан вокруг Земли, и прилетит назад в исходную точку.

    Следовательно, хорошо знакомые протяжённые измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами R и 1/R теории струн. Приведём несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т. е. примерно R = 1061 в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1/R = 1/1061 = 10?61 в единицах планковской длины! И это — хорошо нам знакомые измерения в альтернативном описании по теории струн. На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться ещё меньше, так как 1/R уменьшается, когда R растёт. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес? И, более того, здесь сам собой перед нами встаёт второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус R больше планковской длины, то 1/R с необходимостью меньше неё. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трёх поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.

    Два взаимосвязанных понятия расстояния в теории струн

    В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.

    Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны, не намотанные вокруг циклического измерения, а во втором — струны, которые намотаны вокруг него. Свойство протяжённости фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.

    Чем отличаются результаты двух процедур? Ответ, который дали Бранденбергер и Вафа, столь же поразителен, сколь и нетривиален. Основную идею можно проиллюстрировать с помощью соотношения неопределённостей. Ненамотанные струны могут свободно двигаться в пространстве, и с их помощью можно измерить полную длину окружности, пропорциональную R. Согласно соотношению неопределённостей их энергии пропорциональны 1/R (вспомним отмеченную в главе 6 обратную пропорциональность энергии зонда расстояниям, которые он способен измерять). С другой стороны, мы видели, что минимальная энергия намотанных струн пропорциональна R. Поэтому, согласно соотношению неопределённостей, если такие струны используются в качестве зондов, то эти зонды чувствительны к расстояниям порядка 1/R. Из математической реализации этой идеи следует, что если для измерения радиуса циклического измерения пространства используются оба зонда, с помощью ненамотанных струн будет измерено значение R, а с помощью намотанных — значение 1/R, где, как и выше, все результаты измерений расстояний выражены в единицах планковской длины. Есть равные основания считать результат каждого из измерений радиусом окружности: теория струн демонстрирует, что для разных зондов, которые используются для измерения расстояния, мы можем получить разные ответы. На самом деле это справедливо для всех измерений длин и расстояний, а не только для определения размера циклического измерения. Результаты, полученные с помощью ненамотанных и намотанных струнных зондов, будут обратно пропорциональны друг другу.{91}

    Так почему же, если теория струн действительно описывает нашу Вселенную, мы до сих пор не сталкивались с различными понятиями расстояния в повседневной жизни или научных исследованиях? Всякий раз, говоря о расстояниях, мы опираемся на опыт, в котором есть место лишь для одного понятия расстояния и ни намёка на другое понятие. Где мы упустили альтернативную возможность? Ответ в том, что при всей симметрии нашего подхода, для значений R (а, следовательно, и значений 1/R), сильно отличающихся от единицы (что опять означает единицу, умноженную на планковскую длину), одно из конструктивных определений крайне сложно реализовать экспериментально, в то время как второе реализуется весьма просто. По существу, мы всегда выбираем самый простой подход, не подозревая, что существует другая возможность.

    Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R (и 1/R) сильно отличается от планковской длины (когда R = 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжёлые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более лёгкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.

    Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются лёгкими струнными модами, и результат равен 1061 планковских длин. Если три известные нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжёлыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают лёгкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжёлых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.

    Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся лёгкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе лёгких и на основе тяжёлых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.

    Минимальный размер

    Предыдущее обсуждение было лишь разминкой; теперь мы перейдём к главному. Если всё время измерять расстояния «простым способом», т. е. использовать самые лёгкие моды струны вместо самых тяжёлых, полученные результаты всегда будут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трёх пространственных измерений в предположении, что они являются циклическими. Для определённости примем, что в начале мысленного эксперимента лёгкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. R станет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.

    По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения даёт значения, обратные значениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R (измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/R (измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались лёгкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.

    В частности, здесь удаётся избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью лёгких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых лёгких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.

    Использование лёгких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия теории струн. Именно это понятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь ещё с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для неё области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование даёт понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.

    Приведённые утверждения достаточно сложны, поэтому ещё раз подчеркнём один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании R за планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда R становится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» не соответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.

    На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопывающейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.

    Насколько общий этот вывод?

    Что произойдёт, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?

    Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существует минимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.

    Зеркальная симметрия

    Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый взгляд, теория струн укрепляет и расширяет связь между физикой и геометрией: свойства колеблющихся струн (например, массы и переносимые ими заряды) в значительной степени определяются свойствами свёрнутой компоненты пространства. Однако, как мы только что видели, квантовая геометрия, связывающая геометрические и физические стороны теории струн, обладает рядом удивительных свойств. В общей теории относительности, как и в «традиционной» геометрии, окружность радиуса R отличается от окружности радиуса 1/R, что кажется незыблемым и очевидным, а в теории струн эти окружности физически неразличимы. Этот факт подталкивает нас пойти дальше и задаться вопросом, не существует ли геометрических структур пространства, отличающихся друг от друга ещё сильнее (не только размером, но, возможно, и видом), но, тем не менее, физически неразличимых в теории струн?

    В 1988 г. Ленс Диксон из Стэндфордского центра линейных ускорителей сделал важнейшее в этом отношении наблюдение, которое впоследствии было обобщено Вольфгангом Лерхе из ЦЕРНа, Вафой из Гарварда и Николасом Уорнером, работавшим в то время в Массачусетском технологическом институте. На основе эстетических соображений, основанных на понятии симметрии, эти физики выдвинули смелое предположение, что два различных многообразия Калаби–Яу, выбранные в качестве дополнительных измерений в теории струн, могут приводить к одинаковым физическим результатам.

    Чтобы дать представление о том, как может оказаться справедливой подобная кажущаяся невероятной гипотеза, вспомним, что число отверстий в добавочных измерениях Калаби–Яу определяет число семейств, в которые группируются возбуждения струны. Эти отверстия аналогичны отверстиям тора или его обобщений с несколькими ручками (рис. 9.1). К несчастью, на двумерном рисунке, который можно воспроизвести на странице, нельзя продемонстрировать то, что отверстия в шестимерном пространстве Калаби–Яу могут иметь различные размерности. Хотя такие отверстия трудно вообразить, их можно описать на понятном математическом языке. Суть состоит в том, что число семейств частиц, возникающих при возбуждениях струны, зависит только от числа всех отверстий, а не от числа отверстий каждой конкретной размерности (вот почему мы не заботились о том, чтобы изобразить разнообразные отверстия в главе 9). Предположим теперь, что у двух пространств Калаби–Яу число отверстий разных размерностей различно, но суммарное число отверстий одинаково. Так как число отверстий различных размерностей не совпадает, два этих пространства различны. Но так как суммарное число отверстий одинаково, число семейств в каждой Вселенной одно и то же. Конечно, это говорит о совпадении лишь одного физического свойства. Эквивалентность всех физических свойств — гораздо более сильное требование, но и совпадение одного свойства уже свидетельствует в пользу того, что гипотеза Диксона–Лерхе–Вафы–Уорнера может оказаться верной.

    В конце 1987 г. я поступил на стажировку на физический факультет Гарвардского университета, где мне выделили кабинет по соседству с кабинетом Вафы. Так как тема моей диссертации была посвящена физическим и математическим свойствам свёрнутых измерений Калаби–Яу в теории струн, Вафа держал меня в курсе своих работ в этой области. Когда в конце 1988 г. он, стоя на пороге моего кабинета, сообщил о гипотезе, к которой они пришли совместно с Лерхе и Уорнером, я был весьма заинтересован, но отнёсся к ней скептически. Интерес объяснялся тем, что в случае, если гипотеза окажется верной, она может открыть новые просторы исследований в теории струн, а скепсис был следствием понимания того, что догадки и установленные свойства теории — далеко не одно и то же.

    На протяжении следующих месяцев я часто думал об этой гипотезе, и, честно говоря, почти убедил себя в том, что она неверна. Но вскоре, к моему удивлению, казалось бы, совершенно не связанные исследования совместно с Роненом Плессером, который в то время был аспирантом в Гарварде, а теперь работает в Институте Вейцмана и университете Дьюка, полностью изменили моё отношение к гипотезе. Плессер и я заинтересовались методами построения путём математических преобразований новых доселе неизвестных многообразий Калаби–Яу из заданного многообразия Калаби–Яу. Особенно притягательным нам казался метод орбифолдов, предложенный в середине 1980-х гг. Диксоном, Джеффри Харви из Чикагского университета, Вафой и Виттеном. Грубо говоря, этот метод состоит в склеивании различных точек на исходном многообразии Калаби–Яу согласно математической схеме, гарантирующей, что при склеивании снова получится многообразие Калаби–Яу. Эта процедура иллюстрируется на рис. 10.4. Математические выкладки, стоящие за подобными манипуляциями, невообразимо сложны, и в этом причина того, что занимающимся струнами теоретикам удалось детально исследовать эту процедуру лишь применительно к простейшим многообразиям — многомерным обобщениям торов, изображённых на рис. 9.1. Однако мы с Плессером поняли, что ряд очень красивых утверждений Дорона Гепнера, работавшего тогда в Принстонском университете, может привести к мощной теоретической схеме, в рамках которой можно применить технику орбифолдов к сложным многообразиям Калаби–Яу, например, к изображённому на рис. 8.9.

    Рис. 10.4. Метод орбифолдов есть процедура построения нового многообразия Калаби–Яу путём склеивания различных точек на исходном многообразии

    После нескольких месяцев напряжённой работы в этом направлении мы пришли к неожиданному выводу. Если склеивать определённые группы точек правильным образом, получающееся многообразие Калаби–Яу будет отличаться от исходного, но совершенно удивительным образом. Число отверстий нечётной размерности нового многообразия будет равно числу отверстий чётной размерности исходного, и наоборот. Это, в частности, означает, что полное число отверстий, а, следовательно, и число семейств частиц в двух многообразиях будут одинаковыми, хотя из-за чётно-нечётных замен вид многообразий и их фундаментальные геометрические свойства будут существенно разными.{92}

    Воодушевлённые очевидной связью с догадкой Диксона–Лерхе–Вафы–Уорнера, Плессер и я углубились в изучение центрального вопроса: будут ли эти два различных многообразия с одинаковым числом семейств частиц согласованы по остальным физическим свойствам? Через пару месяцев кропотливого математического анализа, подбадриваемые моим бывшим научным руководителем Грэмом Россом из Оксфорда и Вафой, мы с Плессером пришли к утвердительному ответу. По математическим соображениям, связанным с чётно-нечётными заменами, мы назвали эти физически эквивалентные, но геометрически различные пространства Калаби–Яу зеркальными многообразиями.{93} Пространства зеркальных пар Калаби–Яу не являются в буквальном смысле зеркальными образами друг друга. Но при всём различии геометрических свойств, если эти пространства используются в качестве дополнительных измерений теории струн, они приводят к физически эквивалентным Вселенным.

    Недели, последовавшие после того, как результат был получен, были крайне волнующими. Мы осознавали, что находимся вблизи новой области физики струн. Мы показали, что изначально установленная Эйнштейном тесная взаимосвязь между геометрией и физикой в теории струн существенно модифицируется. Радикально отличающиеся геометрические структуры, которые в общей теории относительности имели бы различные физические свойства, в теории струн приводят к эквивалентным физическим моделям. Вдруг мы сделали ошибку? Вдруг в их физических свойствах имеются тонкие отличия, которые мы не заметили? Например, когда мы сообщили о своих результатах Яу, он вежливо, но твёрдо сказал, что мы, должно быть, ошиблись; по его мнению, с математической точки зрения наши результаты слишком странные, чтобы оказаться справедливыми. Его мнение заставило нас взять длительный перерыв для проверок. Одно дело ошибиться в скромном утверждении, которое мало кому интересно. Но наш результат был неожиданным шагом в новом направлении, и неминуемо вызвал бы бурные отклики. Если мы ошибёмся, об этом узнают все.

    В конце концов, после всех мыслимых проверок и перепроверок, убеждённость в нашей правоте укрепилась, и мы решили опубликовать результат. Несколькими днями позже, когда я сидел в своём кабинете в Гарварде, зазвонил телефон. Это был Филипп Канделас из Техасского университета, который сразу же осведомился, сижу я или стою. Я сказал, что сижу. Канделас сообщил мне, что он и двое его студентов, Моника Линкер и Рольф Шиммригк, обнаружили закономерность, услышав о которой, я непременно упаду со стула. Тщательно изучив огромный набор пространств Калаби–Яу, моделированных на компьютере, они обнаружили, что почти все пространства идут парами, отличающимися заменами чисел чётномерных и нечётномерных отверстий. Я ответил ему, что всё ещё сижу: мы с Плессером получили тот же результат. Оказалось, что работа Канделаса и наша работа дополняют друг друга; мы с Плессером пошли на один шаг дальше и показали, что все физические свойства зеркальных пар одинаковы, а Канделас со своими учениками показал, что на пары разбивается гораздо большее число многообразий Калаби–Яу. Эти две работы и привели к открытию зеркальной симметрии в теории струн.{94}

    Физика и математика зеркальной симметрии

    Ослабление жёсткой и однозначной эйнштейновской взаимосвязи между геометрией пространства и наблюдаемыми физическими явлениями есть яркий пример новизны теории струн. Однако развитие теории струн далеко не исчерпывается изменением философской концепции. Зеркальная симметрия, в частности, даёт мощное средство для исследования как физических аспектов теории струн, так и математических аспектов теории пространств Калаби–Яу.

    Математики, работающие в области так называемой алгебраической геометрии, изучали пространства Калаби–Яу из чисто математического интереса задолго до открытия теории струн. Они обнаружили множество свойств этих геометрических пространств, никоим образом не предполагая, что их результаты будут когда-нибудь использоваться физиками. Однако определённые черты теории пространств Калаби–Яу оказались слишком сложными для всестороннего математического исследования. Открытие зеркальной симметрии существенно изменило положение дел. По существу, зеркальная симметрия говорит о том, что определённые пары пространств Калаби–Яу, которые ранее считались совершенно независимыми, тесно связаны теорией струн. Связь состоит в том, что если в качестве дополнительных свёрнутых измерений выбирать два пространства из любой пары, получатся физически эквивалентные вселенные. Такая неожиданная взаимосвязь даёт мощный инструмент математических и физических исследований.

    Представим, например, что вы хотите вычислить физические характеристики — массы и заряды, — соответствующие выбору одного из возможных пространств Калаби–Яу в качестве дополнительных измерений. При этом вас не особенно заботит степень согласования ваших результатов с экспериментом, так как в настоящее время, в силу ряда рассмотренных выше теоретических и технических причин, экспериментальное подтверждение результатов достаточно проблематично. Вместо этого проводится мысленный эксперимент, который должен показать, как выглядел бы мир, если бы было выбрано данное пространство Калаби–Яу. Сначала всё идёт хорошо, но в середине такого теоретического анализа возникает необходимость математического расчёта непомерной сложности. Никто, ни один из лучших специалистов-математиков, не может подсказать, как поступать дальше. Двигаться некуда. И тут выясняется, что у этого пространства Калаби–Яу есть зеркальный партнёр. Поскольку окончательные физические свойства будут одинаковы для каждого члена зеркальной пары, вычисления можно проводить для любого из этих пространств. Таким образом, можно перевести сложное вычисление для первого из пространств на язык его зеркального партнёра, и результат вычислений, т. е. физические свойства, будут теми же. Сначала можно предположить, что изменённый вариант вычисления будет таким же сложным, как первоначальный. Но возникает приятная и поразительная неожиданность. Обнаруживается, что вид вычисляемого выражения очень сильно отличается от исходного, и, в некоторых случаях, невообразимо сложное вычисление становится поразительно лёгким в зеркальном пространстве. Не существует простого объяснения, почему это происходит, но, по крайней мере для определённых вычислений, это действительно так, и уменьшение сложности расчётов оказывается впечатляющим. В результате препятствие на пути решения задачи становится преодолимым.

    Ситуация схожа со случаем, когда требуется точно подсчитать число апельсинов, плотно набитых в огромный ящик, скажем, со сторонами 15 м и глубиной 3 м. Пересчитывать апельсины по одному крайне неблагодарное занятие. Но тут, к счастью, находится человек, который присутствовал в момент, когда завезли эти апельсины. Он сообщает, что апельсины были аккуратно упакованы в меньшие коробки, занимающие куб, по длине, ширине и глубине которого умещалось 20 коробок. Оценив, что число коробок равно 8 000, остаётся лишь вычислить, сколько апельсинов входит в одну коробку, и задача решена. В итоге, путём грамотного преобразования вычислений удаётся значительно упростить задачу. В теории струн ситуация с громоздкими вычислениями аналогична. Что касается пространств Калаби–Яу, вычисления могут состоять из очень большого числа этапов. Однако при переходе к расчётам для зеркального пространства вычисления можно гораздо более эффективно реорганизовать, так что выполнить их достаточно просто. Этот факт был отмечен Плессером и мной, а затем результативно использовался на практике в последующих работах Канделаса и его коллег Ксении де ла Осса и Линды Паркс из Техасского университета, а также Пола Грина из университета штата Мэриленд. Они показали, что вычисления невообразимой сложности могут быть проведены до конца с помощью идеи зеркальной пары, персонального компьютера и пары листов алгебраических выкладок.

    Особенно захватывающим данный результат оказался для математиков, так как именно из-за этих вычислений многие их исследования годами находились в тупике. Теория струн, по крайней мере по утверждениям физиков, обогнала математику.

    Здесь можно напомнить о многолетнем здоровом и добром соперничестве между физиками и математиками. Случилось так, что два норвежских математика, Гейр Эллингсруд и Штейн Арилд Штремме, работали над одной из многочисленных задач, которую Канделас и его коллеги успешно решили с использованием зеркальной симметрии. Грубо говоря, задача заключалась в вычислении числа сфер, которые можно упаковать внутрь некоторого пространства Калаби–Яу. Это подобно нашему примеру с подсчётом числа апельсинов в ящике. На семинаре в 1991 г. в Беркли, где собрались физики и математики, Канделас объявил о результате, полученном его группой с использованием теории струн и зеркальной симметрии: 317 206 375. Эллингсруд и Штремме, в свою очередь, объявили о результате своего очень сложного математического вычисления: 2 682 549 425. Несколько дней математики и физики спорили: кто же прав? Вопрос был принципиальным и мог, фактически, служить «лакмусовой бумажкой» для проверки достоверности количественных результатов теории струн. Некоторые даже шутливо замечали, что такая проверка — лучшее, что можно придумать ввиду невозможности проверки теории струн на эксперименте. Кроме того, в результате Канделаса заключалось нечто гораздо большее, чем просто число, каковым это было для Эллингсруда и Штремме. Канделас и его коллеги, кроме того, объявили о решении многих других задач неизмеримо большей сложности, за которые никогда не взялся бы ни один математик. Но можно ли верить результатам теории струн? Семинар закончился плодотворным обменом мнений между математиками и физиками, но причина расхождения результатов так и не была установлена.

    Примерно месяц спустя участники семинара в Беркли получили по электронной почте письмо, озаглавленное «Физика победила!». Эллингсруд и Штремме нашли ошибку в своей компьютерной программе, и после её исправления результат совпал с результатом группы Канделаса. С тех пор было проведено немало количественных проверок надёжности расчётов в теории струн с помощью зеркальной симметрии. Теория струн с триумфом прошла все проверки. Ещё позже, почти через десять лет после открытия физиками зеркальной симметрии, математики добились значительных успехов в выявлении математических принципов, лежащих в основе этой симметрии. Используя фундаментальные результаты математиков Максима Концевича, Юрия Манина, Ганга Тиана, Джуна Ли и Александра Гивенталя, Яу и его коллеги Бонг Лиан и Кефенг Лиу нашли, в конце концов, строгое математическое доказательство для обоснования формул, используемых для подсчёта числа сфер внутри пространств Калаби–Яу, разрешив проблемы, которые сотни лет оставались камнем преткновения для математиков.

    Эти исследования не просто оказались успешными для конкретного случая, но и выявили ту роль, которую физика начала играть в современной математике. Довольно долгое время физики рылись в архивах математических журналов в поисках средств для построения и анализа моделей физического мира. Сейчас, с открытием теории струн, физика начинает выплачивать свой долг и снабжать математиков новыми мощными подходами к неразрешённым проблемам. Теория струн не только предлагает единое описание физического мира, но и помогает установить глубокий и прочный союз с математикой.

    Глава 11. Разрывая ткань пространства

    Если непрерывно растягивать резиновую плёнку, рано или поздно она порвётся. Этот простой факт заставлял физиков годами обращаться к вопросу, возможно ли подобное по отношению к ткани пространства, создающего Вселенную. Может ли эта ткань разорваться, или такое вводящее в заблуждение представление есть результат слишком буквального понимания аналогии с резиновой плёнкой?

    Общая теория относительности Эйнштейна отвечает на вопрос о возможном разрыве структуры пространства отрицательно.{95} Уравнения общей теории относительности основаны на римановой геометрии, которая, как отмечалось в предыдущей главе, позволяет проанализировать искажения свойств расстояний между соседними точками пространства. Чтобы формулы для расстояний были осмысленными, в математическом формализме требуется гладкость самого пространства. Понятие «гладкости» имеет конкретный математический смысл, но общеупотребительное значение слова «гладкость» хорошо передаёт суть этого понятия: гладкий — значит без складок, без проколов, без отдельных «нагромождённых» друг на друга кусков, без разрывов. Если бы в структуре пространства существовали такие нерегулярности, уравнения общей теории относительности нарушались бы, оповещая о космической катастрофе того или иного рода: зловещая перспектива, которую наша Вселенная благоразумно обходит.

    Впрочем, эта зловещая перспектива не отпугивала склонных фантазировать теоретиков, которые годами исследовали возможность квантово-механического обобщения классической теории Эйнштейна, допускающего существование проколов, разрывов и слияний ткани пространства. Тот факт, что по законам квантовой физики на малых расстояниях происходят неистовые флуктуации, позволял предположить, что проколы и разрывы могут быть обычными явлениями в микроскопической структуре пространства. Понятие пространственно-временных червоточин[16] (хорошо знакомое поклонникам фантастического сериала «Звёздный путь») опирается на подобные предположения. Идея проста. Представим себе крупную корпорацию, управление которой находится на девяностом этаже одного из небоскрёбов. Исторически сложилось так, что отделение корпорации, с которым сотрудникам этого управления в последнее время всё чаще приходится связываться, находится на девяностом этаже соседнего небоскрёба. Так как переносить один из офисов в другое здание нецелесообразно, разумным решением было бы строительство моста, соединяющего две башни. Тогда сотрудники получили бы возможность переходить из офиса в офис, не спускаясь вниз и поднимаясь вверх на девяносто этажей.

    Пространственно-временная червоточина играет схожую роль. Это мост или туннель, служащий укороченным маршрутом из одной области вселенной в другую. Пример червоточины в двумерной вселенной показан на рис. 11.1. Если управление «двумерной» корпорации находится вблизи нижней окружности рис. 11.1а, то в её отделение на верхней окружности можно попасть, лишь путешествуя по всему U-образному маршруту, ведущему из одного края вселенной в другой. Но если ткань пространства может рваться с образованием проколов, изображённых на рис. 11.1б, если эти проколы могут «срастись» краями, как на рис. 11.1в, то две ранее отдалённые области соединятся пространственным мостом. Это и есть червоточина. Нужно отметить, что хотя червоточина и мост между небоскрёбами имеют некоторое сходство, между ними есть и существенное различие. Мост между небоскрёбами пролегает по существующему пространству, т. е. по пространству между небоскрёбами. Червоточина, в отличие от этого, образует новое пространство, ибо изображённая на рис. 11.1а двумерная искривлённая поверхность — это всё, что имелось. Область вне поверхности лишь артефакт неадекватной картинки, которая не может изобразить U-образную вселенную иначе как погружённой в наш трёхмерный мир. Червоточина создаёт новое пространство и потому прокладывает новую пространственную территорию.

    Рис. 11.1. а) «U-образная» вселенная, в которой достичь одного конца с другого можно лишь после длительного космического путешествия. б) Ткань пространства рвётся, и два конца червоточины начинают вытягиваться. в) Два конца червоточины соединяются, образуя новый мост — «срезая путь» между двумя концами вселенной

    Существуют ли червоточины во Вселенной? Этого не знает никто. И если они действительно существуют, неясно, могут ли они быть только микроскопической формы, или перекрывать обширные области пространства, как в фантастических фильмах. Существование червоточин в реальном мире во многом определяется тем, возможен ли разрыв структуры пространства.

    Другой яркий пример того, как ткань пространства может растягиваться до предела, дают чёрные дыры. На примере рис. 3.7 мы видели, что сильнейшее гравитационное поле чёрной дыры приводит к настолько сильной искривлённости пространства, что оно выглядит проколотым в центре чёрной дыры. В отличие от червоточин, есть веские экспериментальные свидетельства в пользу существования чёрных дыр, и вопрос о том, что происходит в центре дыры, приобретает конкретный научный характер. В экстремальных условиях внутри чёрной дыры уравнения общей теории относительности становятся неприменимыми. По мнению некоторых физиков, в центре чёрной дыры действительно имеется прокол, но мы ограждены от этой космической «сингулярности» горизонтом событий, не позволяющим даже свету вырваться из гравитационной ловушки. Такие соображения привели Роджера Пенроуза из Оксфордского университета к «гипотезе космической цензуры», согласно которой подобные пространственные особенности возможны лишь в местах, тщательно скрытых от наших глаз пеленой горизонта событий. С другой стороны, до открытия теории струн некоторые физики считали, что корректное объединение квантовой теории и общей теории относительности «залатает» бросающиеся в глаза бреши в ткани пространства, сгладив его квантовыми поправками.

    С открытием теории струн, органично связывающей квантовую теорию с гравитацией, появилась твёрдая почва для исследования этих вопросов. На сегодняшний день они окончательно не решены, но в последние годы были решены тесно связанные с ними вопросы. В этой главе мы покажем, что в теории струн впервые явно демонстрируется возможность разрыва ткани пространства при определённых физических явлениях (в некоторых отношениях отличных от явлений пространственных червоточин и чёрных дыр).

    Волнующая возможность

    В 1987 г. Шин-Тун Яу и его студент Ганг Тиан, работающий сейчас в Массачусетском технологическом институте, сделали интересное математическое наблюдение. Используя хорошо известный математический приём, они обнаружили, что одни многообразия Калаби–Яу можно преобразовать в другие путём протыкания их поверхности и сшивания образовавшегося отверстия согласно строго определённой математической процедуре.{96} Грубо говоря, они обнаружили, что внутри исходного пространства Калаби–Яу можно выделить двумерную сферу определённого вида (рис. 11.2). (Двумерная сфера аналогична поверхности надувного мяча, который, как и все знакомые нам объекты, трёхмерен. Здесь, однако, мы говорим только о поверхности, не учитывая толщину материала, из которого сделан мяч, а также пространство внутри него. Точки на поверхности мяча определяются двумя числами, «широтой» и «долготой», аналогично тому, как определяются координаты на поверхности Земли. Вот почему поверхность мяча, как и поверхность упоминавшегося в предыдущих главах Садового шланга, является двумерной.) Далее они рассмотрели стягивание сферы в одну точку; этот процесс показан на рис. 11.3. Как и все последующие рисунки этой главы, он упрощён с целью наглядности изображения наиболее важного «куска» пространства Калаби–Яу: но вы должны помнить, что такие преобразования происходят внутри несколько большего пространства Калаби–Яу, подобного изображённому на рис. 11.2. И, наконец, Тиан и Яу рассмотрели случай, когда в точке сжатия пространство Калаби–Яу слегка надрывается (рис. 11.4а), раскрывается и перестраивается в другую шарообразную фигуру (рис. 11.4б), которую затем снова можно раздуть до нормального размера (рис. 11.4в и 11.4г).

    Рис. 11.2. В выделенной области внутри пространства Калаби–Яу находится сфера

    Рис. 11.3. Сфера внутри пространства Калаби–Яу сжимается в точку, приводя к перетяжке в ткани пространства. На этом и следующих рисунках для простоты показана лишь часть всего пространства Калаби–Яу

    Рис. 11.4. При разрыве перетяжки пространства Калаби–Яу возникает сфера, которая сглаживает его поверхность. Исходная сфера рис. 11.3 оказывается «перестроенной»

    Математики называют последовательность таких действий флоп-перестройкой[17]. Всё происходит так, как будто надувной мяч «выворачивается» наизнанку внутри другого пространства Калаби–Яу. Тиан, Яу и другие математики показали, что при определённых условиях новое многообразие Калаби–Яу (см. рис. 11.4г), будет топологически отличным от исходного (рис. 11.3а). То есть, выражаясь привычным языком, не существует никакого способа деформировать исходное пространство Калаби–Яу, показанное на рис. 11.3а, в конечное пространство Калаби–Яу, показанное на рис. 11.4г, не разрывая на некотором промежуточном этапе структуры пространства Калаби–Яу.

    С точки зрения математики процедура Яу и Тиана очень интересна, так как позволяет получить новые пространства Калаби–Яу из уже известных. Но действительная сила процедуры проявляется в области физики, где в этой связи возникает волнующий вопрос: если забыть об абстрактном характере данной математической процедуры, может ли в природе иметь место изображённая на рис. 11.3а–11.4г последовательность превращений? Может ли произойти так, что вопреки предсказаниям теории Эйнштейна структура пространства способна рваться и затем восстанавливаться подобно тому, как описано выше?

    Зеркальная перспектива

    На протяжении нескольких лет после 1987 г., когда Яу сделал своё наблюдение, он часто советовал мне поразмыслить о возможных физических применениях флоп-перестроек. Я отнекивался. Мне казалось, что флоп-перестройки относятся только к абстрактной математике и не имеют никакого отношения к теории струн. Действительно, из главы 10, в которой было установлено существование минимального радиуса циклического измерения, можно сделать вывод, что в теории струн сфера на рис. 11.3 не может полностью стянуться к выколотой точке. Однако, как тоже отмечено в главе 10, если стягивается часть пространства (в данном случае — сферическая часть многообразия Калаби–Яу), а не всё циклическое измерение, то аргументы, которые позволяют различать малые и большие радиусы, не применимы буквально. Тем не менее, возможность разрыва структуры пространства казалась маловероятной, даже при том, что запрещающие флоп-перестройку соображения не выдерживали серьёзной критики.

    Уже позже, в 1991 г., норвежский физик Энди Люткен и мой однокурсник по учёбе в Оксфорде, а ныне профессор университета Дьюка, Пол Аспинуолл, задались вопросом, который впоследствии оказался очень интересным. Если перестраивается пространственная структура компоненты Калаби–Яу нашей Вселенной, как это будет выглядеть с точки зрения зеркального пространства Калаби–Яу? Чтобы понять, почему возник такой вопрос, нужно вспомнить, что физические свойства зеркальной пары пространств Калаби–Яу (если эти пространства используются в качестве дополнительных измерений) идентичны, но сложность математических расчётов, необходимых для установления этих физических свойств, может сильно отличаться. Аспинуолл и Люткен предположили, что математически сложный переход между рис. 11.3 и 11.4 может описываться гораздо проще в терминах зеркальных пространств, и физический смысл этого перехода станет гораздо понятнее.

    В момент проведения этих исследований ещё не было достаточного понимания зеркальной симметрии, чтобы иметь возможность ответить на поставленный вопрос. И всё же Аспинуолл и Люткен отметили, что в зеркальном описании нет ничего такого, что свидетельствовало бы об абсурдных физических последствиях разрывов пространства при флоп-перестройках. Примерно в то же время мы с Плессером, развивая найденную нами идею зеркальных пар многообразий Калаби–Яу (см. главу 10), неожиданно сами столкнулись с необходимостью анализа флоп-перестроек. Математикам хорошо известен тот факт, что склеивание различных точек (подобное показанному на рис. 10.4), которое использовалось нами для построения зеркальных пар, приводит к геометрическим следствиям, идентичным перетягиванию и проколам на рис. 11.3 и 11.4. В соответствующей физической формулировке мы с Плессером, однако, не нашли явных противоречий. Более того, вдохновлённые результатами Аспинуолла и Люткена (а также результатом их предыдущей совместной работы с Грэмом Россом), мы пришли к выводу, что математически перетягивание можно «отреставрировать» двумя различными способами. Один из них приводит к пространству Калаби–Яу, соответствующему рис. 11.3а, а другой — к пространству, соответствующему рис. 11.4г. Это подсказало нам, что переход от рис. 11.3а к рис. 11.4г действительно может иметь место в реальном мире.

    Таким образом, к концу 1991 г. у некоторых физиков, занимающихся теорией струн, возникло ясное ощущение того, что ткань пространства может разрываться. Но ни у кого из них не было технических методов, которые позволили бы твёрдо установить или опровергнуть справедливость этой замечательной гипотезы.

    Медленный прогресс

    В течение 1992 г. мы с Плессером время от времени возвращались к попыткам доказать, что структура пространства может подвергаться перестройкам с разрывами пространства. Наши расчёты частично подтверждали эту гипотезу в частных случаях, но строгого доказательства найти не удавалось. Весной Плессер съездил с докладом в Принстонский институт перспективных исследований. Там он встретился с Виттеном и в частной беседе рассказал ему о наших попытках дать интерпретацию математической процедуры флоп-перестройки с разрывом пространства в рамках теории струн. После того, как Плессер изложил свои соображения, Виттен отвернулся от доски и некоторое время, возможно минуту или две, молча смотрел в окно своего кабинета. Затем он повернулся к Плессеру и сказал, что если наши идеи окажутся правильными, то «это будет впечатляюще». Такая реакция Виттена побудила нас работать с удвоенной энергией. Однако вскоре исследования застопорились, и мы обратились к другим вопросам в теории струн.

    Даже работая над другими задачами, я постоянно ловил себя на том, что возвращаюсь к мысли о возможности перестроек с разрывами пространства. Месяц от месяца во мне укреплялась уверенность, что они должны быть неотъемлемой частью теории струн. Из расчётов, сделанных ранее вместе с Плессером, а также из стимулирующих обсуждений с Дэвидом Моррисоном, математиком университета Дьюка, казалось, следовало, что возможность перестроек является естественным следствием зеркальной симметрии. Во время моего пребывания в Дьюке Моррисон и я, используя результаты гостившего в то же время в Дьюке Шелдона Каца из Оклахомского университета, наметили стратегию обоснования появления флоп-перестроек в теории струн. Однако когда мы приступили к вычислениям, оказалось, что они крайне громоздки: даже с использованием самого быстрого в мире компьютера на расчёты ушла бы сотня лет. Мы продвигались вперёд, но нам явно не хватало новой идеи, которая значительно повысила бы эффективность нашего вычислительного метода. Не подозревая об этом, Виктор Батырев, математик из университета города Эссен, дал нам такую идею в двух своих статьях, опубликованных весной и летом 1992 г.

    Батырев очень интересовался зеркальной симметрией, особенно после успешного решения Канделасом и соавторами описанной в конце главы 10 задачи о подсчёте числа сфер. Однако Батырев, будучи математиком, был сбит с толку приёмами, которые мы с Плессером использовали для нахождения зеркальных пар пространств Калаби–Яу. Хотя в нашем подходе применялись известные теоретикам методы, Батырев позже признался мне, что наша статья произвела на него впечатление «чёрной магии». Это было следствием исторически сложившихся культурных различий между математикой и физикой, и по мере размытия теорией струн границ каждой науки различия в языке, методах и стиле исследований становились всё более явными. Физики больше похожи на композиторов-авангардистов, стремящихся обойти устоявшиеся правила и расширить границы дозволенного при поиске решения задачи. Математики же больше похожи на классических композиторов, обычно скованных рамками гораздо более жёсткой схемы и с неохотой воспринимающих переход к следующему шагу до тех пор, пока предыдущие шаги не были обоснованы со всей строгостью. У каждого подхода свои преимущества и недостатки, и каждый из них обладает своими уникальными возможностями для творческих исследований. Так же, как современную музыку нелепо сравнивать с классической, эти подходы нельзя сравнивать, чтобы выяснить, какой из них лучше — используемые методы в значительной степени определяются вкусами и подготовкой.

    Батырев решил перевести схему построения зеркальных многообразий на более понятный математический язык, и это ему удалось. Под впечатлением белее ранней работы тайваньского математика Ши-Шир Роана, Батыреву удалось сформулировать последовательную математическую процедуру построения пар пространств Калаби–Яу, являющихся зеркальными близнецами друг друга. Его процедура сводится к нашей с Плессером, если применять её для рассмотренных нами примеров, но приводит к более общей формулировке в терминах знакомых математикам понятий.

    Оборотной стороной медали было то, что в работах Батырева использовались знания из неизвестных большинству физиков областей математики. Мне, например, удалось уловить суть его аргументов, но понимание многих важнейших моментов давалось с огромным трудом. Одно, тем не менее, было ясно: методы, описанные в его статье, при правильном их осознании и применении вполне могут дать второе дыхание исследованиям флоп-перестроек с разрывом пространства.

    К концу лета, находясь под впечатлением результатов этих работ, я решил вернуться к задаче о флоп-перестройках и сконцентрировать на ней всё своё внимание. От Моррисона я узнал, что он собирается провести год в Институте перспективных исследований, а Аспинуолл, по моим сведениям, тоже будет там на стажировке. После нескольких телефонных звонков и переписки по электронной почте я договорился, что тоже проведу осень 1992 г. в этом институте.

    Рождение стратегии

    Трудно вообразить себе лучшее место для многочасовой и напряжённой исследовательской работы, чем Институт перспективных исследований. Этот институт, основанный в 1930 г., расположен среди слегка холмистых полей, примыкающих к идиллическому лесу, и находится в нескольких милях от территории Принстонского университета. Говорят, здесь ничто не может отвлечь вас от работы в Институте, потому что отвлекать просто нечему.

    После отъезда из Германии в 1933 г. Эйнштейн обосновался в этом институте и прожил здесь до конца своей жизни. Не нужно напрягать воображение, чтобы представить его размышляющим о единой теории поля в безлюдной тишине и почти аскетической атмосфере окрестностей Института. В воздухе здесь витает дух наследия прошлых глубоких идей, и ощущение этого может быть или возбуждающим, или угнетающим, в зависимости от того, на какой промежуточной стадии находятся ваши исследования.

    Как-то раз, вскоре после моего прибытия в Институт, мы с Аспинуоллом прогуливались по улице Нассау (главной торговой улице в Принстоне), рассуждая о том, где будем сегодня обедать. Вопрос не праздный, потому что Поль — большой любитель мясного, а я вегетарианец. В самый разгар обмена мнениями о стилях жизни он спросил, есть ли у меня идеи о том, какими новыми задачами стоило бы заняться. Я ответил, что есть, и подробно изложил свои соображения по поводу важности вопроса о том, возможны ли во Вселенной флоп-перестройки с разрывом пространства, если Вселенная действительно описывается теорией струн. Я также обрисовал ему стратегию своих действий и рассказал о недавно возникшей надежде на то, что работа Батырева может помочь восполнить недостающие пробелы в понимании. Я полагал, что проповедую новообращённому, и Поль будет возбуждён перспективой этого исследования. Но я ошибся. Сейчас, задним числом, я понимаю, что его сдержанность объяснялась добродушной и давно возникшей тягой к интеллектуальному соперничеству, в котором каждый из нас играет роль «адвоката дьявола» по отношению к идеям другого. Не прошло и нескольких дней, как он примкнул ко мне, и мы оба с головой погрузились в изучение флоп-перестроек.

    К тому времени приехал и Моррисон. Втроём мы собрались в институтском кафе, чтобы выработать план действий. Мы были единодушны в том, что главная задача состоит в ответе на вопрос, могут ли переходы от рис. 11.3а к рис. 11.4г иметь место в нашей Вселенной. Однако решение этой задачи в лоб сулило непреодолимые препятствия, так как описывающие этот переход уравнения, особенно те из них, которые описывают разрыв пространства, крайне сложны. Вместо этого, мы решили переформулировать задачу в терминах зеркальных пространств, надеясь на то, что уравнения в этом случае будут более простыми. Идея схематически показана на рис. 11.5, где в верхнем ряду показана эволюция от рис. 11.3а к рис. 11.4г, а в нижнем — та же эволюция с точки зрения зеркальных многообразий Калаби–Яу. Уже тогда нам было ясно, что в зеркальной формулировке физика струн обладает хорошими свойствами и свободна от всякого рода катастроф. На рис. 11.5 видно, что в нижнем ряду не наблюдается разрывов или проколов пространства. Однако самый сложный вопрос, к которому привело нас это наблюдение, заключался в том, не переходим ли мы через границы применимости зеркальной симметрии. И, несмотря на то, что верхние и нижние многообразия Калаби–Яу, изображённые в левой колонке на рис. 11.5, приводят к эквивалентным физическим результатам, верно ли, что на каждом шаге вправо, изображённом на рис. 11.5 (в процессе чего в середине обязательно встретятся фазы прокола-разрыва-восстановления) физические свойства исходной и зеркальной точки зрения идентичны?

    Рис. 11.5. Флоп-перестройка с разрывом пространства (верхний ряд) и соответствующая зеркальная формулировка (нижний ряд)

    Хотя у нас были достаточные основания считать, что важная связь между исходными и зеркальными многообразиями не нарушится в ходе преобразований, приводящих к разрыву пространства Калаби–Яу в верхней части рис. 11.5, мы понимали, что вопрос о том, останутся ли многообразия на рис. 11.5 зеркальными друг другу после разрыва, нетривиален. Это ключевой вопрос, так как если они останутся зеркальными, отсутствие катастрофы в зеркальной формулировке будет означать отсутствие катастрофы в исходной формулировке, и это станет доказательством того, что пространство в теории струн может разрываться. Мы поняли, что этот вопрос можно свести к вычислению. Нужно рассчитать физические свойства Вселенной для верхнего многообразия Калаби–Яу после разрыва (например, используя правое верхнее пространство Калаби–Яу на рис. 11.5) и физические свойства зеркального (по предположению) пространства (правого нижнего пространства Калаби–Яу на рис. 11.5), а затем сравнить, будут ли эти свойства одинаковы.

    Этим расчётом Аспинуолл, Моррисон и я занимались осенью 1992 г.

    Поздние вечера в последней обители Эйнштейна

    Острый, как лезвие бритвы, ум Эдварда Виттена облечён в мягкие манеры, что часто приобретает насмешливый, почти иронический оттенок. Виттен общепризнанно считается наследником титула Эйнштейна в роли величайшего из живущих на Земле физиков. Некоторые даже считают его величайшим физиком всех времён. У Виттена неутолимая жажда к передовым исследованиям в физике, а его влияние на выбор направлений исследования в теории струн огромно.

    Работоспособность Виттена стала легендой. По словам его жены Кьяры Наппи, которая занимается физикой в том же институте, Виттен часами сидит на кухне, мысленно анализируя передовые достижения в теории струн и лишь изредка возвращаясь в комнату за ручкой и бумагой, чтобы проверить одну или две тонкие детали.{97} Другую историю рассказал стажёр, которого как-то летом разместили в соседнем с Виттеном кабинете. Он описывал своё уныние, когда он часами мучился со сложными расчётами в теории струн под ритмичный и непрекращающийся стук клавиш из кабинета Виттена, свидетельствовавший о том, что прямо из головы Виттена в файлы на компьютере одна за другой струятся статьи, которые вскоре сыграют поворотную роль в науке.

    Примерно через неделю после моего приезда, когда мы с Виттеном беседовали в институтском дворике, он справился о моих научных планах. Я рассказал ему о флоп-перестройках с разрывами пространства и о стратегии, которую мы в этой связи избрали. Услышав об этих идеях, Виттен крайне заинтересовался, но предупредил, что, по его мнению, расчёты будут чрезвычайно сложными. Он также отметил потенциально слабое звено в описанной стратегии, которое относилось к моей совместной работе с Вафой и Уорнером, проделанной несколькими годами ранее. Вопрос, который поднял Виттен, имел лишь косвенное отношение к нашему подходу, но этот вопрос побудил его заняться задачей, которая, в конце концов, оказалась связанной с нашими задачами и дополнительной по отношению к ним.

    Аспинуолл, Моррисон и я решили разбить вычисления на два этапа. Естественное на первый взгляд разделение состояло в вычислении сначала физических характеристик, соответствующих последнему многообразию Калаби–Яу в верхнем ряду рис. 11.5, а затем характеристик, соответствующих последнему многообразию в нижнем ряду рис. 11.5. Если зеркальность не нарушается в результате разрыва для верхнего ряда, то эти два многообразия должны приводить к одинаковым физическим следствиям, так же, как к одинаковым следствиям приводит анализ двух исходных многообразий. (В такой постановке задачи не требуется проведения крайне сложных вычислений для верхнего многообразия в момент его разрыва.) Оказалось, что вычисления физических характеристик для последнего из верхнего ряда многообразий Калаби–Яу достаточно просты. Главная сложность состояла в том, чтобы сначала определить точный вид последнего многообразия Калаби–Яу в нижнем ряду на рис. 11.5 (которое, по предположению, является зеркальным образом верхнего многообразия), а затем получить для него соответствующие физические результаты.

    Процедура решения второй задачи, т. е. вычисления физических характеристик последнего из многообразий Калаби–Яу в нижнем ряду, если известна его точная геометрическая форма, была разработана несколькими годами ранее Канделасом. Его подход, однако, подразумевал проведение длительных расчётов. Мы поняли, что для решения задачи в данном конкретном случае нужно написать хорошую компьютерную программу. Аспинуолл, — не только известный физик, но и крутой программист, — взял эту задачу на себя. Моррисон и я приступили к расчёту первой задачи о нахождении точного вида пространства Калаби–Яу.

    Мы чувствовали, что именно в этом месте работа Батырева может подсказать нам ряд важных моментов. Однако и на этот раз исторически сложившиеся культурные различия в подходах математиков и физиков, — в данном случае, Моррисона и меня, — стали тормозить продвижение вперёд. Нам нужно было соединить мощь двух наук и найти математический вид нижних многообразий Калаби–Яу, которые соответствуют той же физической Вселенной, что и верхние многообразия, если флоп-перестройки с разрывами на самом деле имеют место в действительности. Но ни я, ни Моррисон не знали чужого языка достаточно хорошо для того, чтобы ясно увидеть путь к достижению этой цели. Стало очевидным, что и мне, и ему нужно срочно пройти курс в области, экспертом в которой является другой из нас. Поэтому днём мы решили с максимальной отдачей пытаться двигаться вперёд в наших расчётах, а по вечерам по очереди играть друг для друга роли преподавателя и студента: я буду в течение часа или двух читать лекции для Моррисона по интересующим нас физическим вопросам, а затем он в течение часа или двух будет читать мне лекции по соответствующим математическим вопросам. Эти лекции обычно заканчивались около 11 вечера.

    Мы стали твёрдо соблюдать такой ежедневный режим. Продвижение было медленным, но мы чувствовали, что всё начинает понемногу вставать на свои места. Тем временем Виттен семимильными шагами двигался к разрешению вопроса о слабом звене, которое он обнаружил ранее. В его работе предлагался новый мощный метод, связывающий физические результаты в теории струн с математическими аспектами пространств Калаби–Яу. Аспинуолл, Моррисон и я почти ежедневно участвовали в импровизированных дискуссиях с Виттеном, и он рассказывал нам о новых перспективах, которые открываются в его подходе. С каждой неделей становилось всё яснее, что его работа, основанная на совершенно ином подходе, с неожиданной стороны приближается к вопросу о флоп-перестройках. Аспинуолл, Моррисон и я поняли, что если мы в ближайшее время не закончим наши вычисления, Виттен отправит всех нас в нокаут.

    О шести банках пива и работе по выходным

    Ничто так благотворно не действует на мозг физика, как доза здорового соперничества. Аспинуолл, Моррисон и я вошли в азарт. Нужно отметить, что для Аспинуолла это означало одно, а для нас с Моррисоном совершенно другое. В характере Аспинуолла своеобразно сочетаются утончённость английского аристократа, во многом благодаря десяти годам студенчества и аспирантуры в Оксфорде, и озорное плутовство. Режим, в котором он работает, делает его одним из самых дисциплинированных физиков, которых я когда-либо знал. В то время как многие из нас засиживаются допоздна, Аспинуолл никогда не работает позже пяти часов вечера. В то время как многие из нас работают по выходным, Аспинуолл никогда этого не делает. Он чинно откланивается, потому что к этому моменту он успевает сделать всё. Для него войти в азарт означает ещё выше поднять планку эффективности своей работы.

    Было начало декабря. Моррисон и я к тому времени обучали друг друга уже несколько месяцев, и это обучение начало себя оправдывать. Мы были очень близки к тому, чтобы установить точный вид искомого пространства Калаби–Яу. Более того, Аспинуолл почти закончил писать свою компьютерную программу и ждал нашего результата, который должен был служить её начальными данными. Ночью в четверг нам с Моррисоном, наконец, стало совершенно ясно, как можно определить вид искомого пространства Калаби–Яу. Это сводилось к некоторой процедуре, которая также требовала своей (довольно простой) компьютерной программы. К полудню пятницы мы написали и отладили программу, а к позднему вечеру у нас на руках был результат.

    Но это была пятница, и уже перевалило за 5 пополудни. Аспинуолл ушёл домой, и не вернётся до понедельника. Мы оказались в ситуации полного бессилия без его компьютерной программы. Но ни Моррисон, ни я и в мыслях не могли представить, что придётся ждать все выходные: мы стояли на пороге решения вопроса о разрывах структуры пространства мироздания, мучившего нас столько времени, и бездействие было невыносимым. Мы позвонили Аспинуоллу домой и стали упрашивать его прийти в офис завтра утром. Сначала он решительно отказался. Но после долгого ворчания в трубку он всё же согласился присоединиться к нам, если мы ему принесём блок из шести банок пива. Мы согласились.

    Момент истины

    Как и планировалось, мы встретились в Институте в субботу утром. Ярко светило Солнце, и настроение у всех было шутливо-расслабленным. Я был наполовину уверен, что Аспинуолл так и не появится, а когда он всё же пришёл, минут пятнадцать пел ему дифирамбы по поводу первого в его жизни прихода в офис в выходной день. Он заверил меня, что это больше не повторится.

    Мы все сгрудились вокруг компьютера Моррисона, стоявшего в нашем кабинете. Аспинуолл объяснил Моррисону, как запустить программу и какой точный вид должны иметь вводимые в неё данные. Моррисон привёл полученные ночью результаты к нужному виду, и теперь всё было готово.

    Расчёт, который нужно было провести, грубо говоря, сводился к определению массы конкретной частицы, являющейся колебательной модой струны при её движении во вселенной, компоненту Калаби–Яу которой мы изучали всю осень. Мы надеялись, что в соответствии с выбранной нами стратегией масса окажется точно такой же, что и масса в случае многообразия Калаби–Яу, возникшего после флоп-перестройки с разрывом пространства. Последнюю массу вычислить было легко, и мы сделали это несколькими неделями раньше. Ответ оказался равным 3 в определённой системе единиц, которой мы пользовались. А так как сейчас проводился численный расчёт на компьютере, то ожидаемый результат должен был быть близким к числу 3, что-то вроде 3,000001 или 2,999999; отличие от точного ответа объяснялось бы ошибками округления.

    Моррисон сел за компьютер. Его палец завис над клавишей «Enter». Напряжение нарастало. Моррисон выдохнул «поехали» и запустил программу. Через пару секунд компьютер выдал ответ: 8,999999. Моё сердце упало. Неужели действительно флоп-перестройки с разрывом пространства нарушают зеркальную симметрию, а значит, вряд ли существуют в реальности? Но в следующее же мгновение мы сообразили, что здесь какая-то глупая ошибка. Если в массах частиц на двух многообразиях действительно есть отличие, почти невероятно, что компьютер выдал бы результат, столь близкий к целому числу. Если наши идеи неверны, то с тем же самым успехом компьютер мог бы выдать ответ, состоящий из совершенно случайных цифр. Мы получили неправильный ответ, но неправильность его была такого вида, из которого напрашивался вывод о том, что где-то мы допустили банальную ошибку. Аспинуолл и я подошли к доске, и моментально ошибка была найдена: мы забыли множитель 3 в «простом» вычислении несколько недель назад, так что правильный результат должен был равняться 9. Поэтому ответ компьютера — это как раз то, на что мы надеялись.

    Конечно, совпадение результата после того, как найдена ошибка, является лишь наполовину убедительным. Если известен желаемый результат, очень легко найти способ его получить. Нам срочно требовался другой пример. Имея все необходимые программы, придумать его не представляло сложности. Мы вычислили массу ещё одной частицы на верхнем многообразии Калаби–Яу, на этот раз с особой тщательностью, чтобы избежать ещё одной ошибки. Ответом было число 12. Мы снова окружили компьютер и запустили программу. Через несколько секунд был получен ответ 11,999999. Согласие. Мы доказали, что предполагаемое зеркальное пространство является зеркальным пространством, и флоп-перестройки с разрывами пространства являются частью теории струн.

    Я вскочил со стула и, опьянённый победой, сделал круг по комнате. Моррисон, сияя, сидел за компьютером. И только реакция Аспинуолла была нестандартной. «Здорово. Я и не сомневался, что всё так и будет, — спокойно сказал Аспинуолл. — А где моё пиво?»

    Подход Виттена

    В понедельник мы с победоносным видом направились к Виттену, чтобы сообщить ему о нашем успехе. Он был очень рад нашему результату. Оказалось, что он тоже только что нашёл способ доказательства существования флоп-перестроек в теории струн. Его аргументация была совершенно иной и значительно проясняла понимание того, почему пространственные разрывы на микроскопических масштабах не приводят к катастрофическим последствиям.

    Подход Виттена акцентирует различие между теорией точечных частиц и теорией струн в случае таких разрывов. Суть различия в том, что вблизи разрыва возможны два типа движения струны и только один тип движения точечной частицы. А именно, струна может двигаться, примыкая к разрыву, как и точечная частица, но, кроме того, она может опоясывать разрыв при движении, — что недоступно для точечной частицы, — как показано на рис. 11.6. В результате опоясывания области разрыва струна экранирует окружающую её Вселенную от катастрофических последствий, которые имели бы место в противном случае. В теории струн всё происходит так, как будто мировая поверхность струны (двумерная поверхность, которую заметает струна при её движении в пространстве, см. главу 6) эффективно играет роль барьера, на котором все пагубные воздействия геометрического вырождения пространства в точности сокращаются.

    Рис. 11.6. Мировая поверхность, заметаемая струной, служит экраном, который гасит потенциально катастрофические эффекты при разрыве структуры пространства

    Здесь читатель вправе задать вопрос. Что будет, если разрыв действительно произойдёт, но поблизости не окажется струн, которые экранировали бы его? Насколько эффективную защиту от этой кластерной бомбы, взрывающейся в момент разрыва пространства, может дать бесконечно тонкая «броня» струны? Ответ на оба вопроса основан на важнейшем квантово-механическом эффекте, рассмотренном в главе 4. Там было показано, что в фейнмановской формулировке квантовой механики объект, будь то струна или частица, движется от одной точки к другой, «разведывая» все возможные траектории. Наблюдаемое в результате движение есть объединение всех возможностей, и отдельные вклады каждой возможной траектории в движение точно определяются формулами квантовой механики. Если структура пространства внезапно разорвётся, то среди всех возможных траекторий движущихся струн окажутся и те, которые опоясывают место разрыва (см. рис. 11.6). И хотя кажется, что около разрыва может не оказаться струн, в квантовой механике учитываются все возможные их траектории, и среди таких траекторий многие (в действительности, бесконечное число) будут опоясывать место разрыва. Виттен показал, что вклады именно этих траекторий сокращают эффект космической катастрофы, к которой привёл бы разрыв пространства.

    В январе 1993 г. Виттен и мы втроём одновременно послали наши работы в электронный архив статей в Интернете, из которого статьи моментально становятся доступными во всём мире. В наших статьях, основанных на двух совершенно различных точках зрения, приводились первые примеры переходов с изменением топологии — такое название мы дали процедуре с разрывом пространства. Давний вопрос о том, могут ли происходить разрывы пространства, был разрешён теорией струн и подтверждался количественными расчётами.

    Следствия

    Мы добились большого успеха в понимании того, как могут происходить разрывы пространства без катастрофических физических последствий. Но что на самом деле происходит при таких разрывах? Какие следствия разрыва могут быть наблюдаемыми? Мы видели, что многие свойства окружающего нас мира зависят от конкретной структуры свёрнутых измерений. Поэтому естественно предположить, что радикальное изменение пространства Калаби–Яу при преобразовании, показанном на рис. 11.5, будет иметь серьёзные физические последствия. Однако на самом деле на двумерных иллюстрациях, которыми мы пользуемся для того, чтобы представить себе пространства, картина происходящего в действительности преобразования несколько усложнена. Если бы нам удалось наглядно изобразить шестимерную геометрию, мы бы увидели, что структура пространства действительно рвётся, но не так уж сильно. Повреждения больше похожи на изящные следы, оставляемые молью на пальто, чем на результат резкого приседания в брюках, из которых вы давно выросли.

    В нашей работе, как и в работе Виттена, показано, что физические характеристики (например, число семейств струнных мод и типы частиц каждого семейства) не изменяются в ходе этих процессов. То, что может действительно меняться при преобразованиях пространства Калаби–Яу, на промежуточном этапе которых происходит разрыв, это массы отдельных частиц, т. е. энергии возможных мод колебаний струны. В наших работах было показано, что эти массы будут непрерывно изменяться в ответ на изменение геометрического вида компоненты Калаби–Яу, причём некоторые будут увеличиваться, а некоторые — уменьшаться. Важно, однако, то, что при разрыве не возникнет катастрофических скачков или других резких изменений значений меняющихся масс. С точки зрения физики момент разрыва пространства ничем не примечателен.

    Здесь возникают два вопроса. Во-первых, мы рассматривали разрывы структуры пространства в дополнительном шестимерном пространстве Калаби–Яу. Могут ли эти разрывы возникать в трёх наблюдаемых нами измерениях Вселенной? Почти наверняка могут. Пространство есть пространство, независимо от того, является оно туго скрученным в многообразие Калаби–Яу или развёрнутым до вселенских просторов, обширность которых мы понимаем, глядя лунной ночью на звёздное небо. На самом деле, как мы видели, привычные нам пространственные измерения могут сами быть свёрнуты в гигантскую фигуру, замыкающуюся саму на себя в направлении другого конца Вселенной, и поэтому само деление измерений на свёрнутые и развёрнутые несколько искусственно. Хотя наш анализ, как и анализ Виттена, опирался на определённые математические свойства многообразий Калаби–Яу, тот результат, что структура пространства может разрываться, несомненно, имеет более широкие рамки применимости.

    Во-вторых, может ли разрыв с изменением топологии произойти сегодня или завтра? Мог ли он иметь место в прошлом? Да. Экспериментальные исследования показывают, что массы элементарных частиц довольно стабильны во времени. Но на ранних стадиях после Большого взрыва даже в теориях, отличных от теории струн, рассматриваются важные периоды, в течение которых массы элементарных частиц менялись. С точки зрения теории струн в эти периоды, несомненно, происходили переходы с изменением топологии, рассмотренные в этой главе. Говоря о временах более близких к настоящему моменту, наблюдаемая стабильность масс элементарных частиц означает, что если сейчас Вселенная находится на стадии перехода с изменением топологии, то он происходит настолько медленно, что влияние на массы элементарных частиц невозможно зарегистрировать на современных экспериментальных установках. Примечательно, что пока выполняется это условие, наша Вселенная может находиться в данный момент в кульминации пространственного разрыва. Если разрыв происходит достаточно медленно, мы даже не поймём, что он происходит. Это один из редких примеров в физике, когда отсутствие поразительного экспериментально наблюдаемого феномена есть повод для сильного возбуждения. Отсутствие наблюдаемых катастрофических последствий при таком экзотическом изменении геометрии демонстрирует, как далеко продвинулась теория струн по сравнению с ожиданиями Эйнштейна.

    Глава 12. За рамками струн: в поисках M-теории

    В долгих поисках единой теории Эйнштейн размышлял о том, «мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты».{98} Это замечание Эйнштейна предвосхищает точку зрения, которой сегодня придерживаются многие физики: если у нас есть окончательная теория природы, то одним из самых убедительных аргументов в пользу её конкретной структуры является то, что теория не могла бы быть другой. Окончательная теория должна иметь тот вид, который она имеет, потому что она даёт уникальную формулировку, в рамках которой можно объяснить Вселенную, не натыкаясь на внутренние или логические противоречия. В подобной теории должно постулироваться, что всё вокруг устроено именно так потому, что оно должно быть устроено именно так. Любое сколь угодно малое расхождение приводит к теории, которая, подобно фразе «это предложение является ложным», содержит в себе семена своей собственной несостоятельности.

    Установление такой неизбежности в структуре Вселенной потребует долгого пути и вплотную приведёт нас к разрешению глубочайших вопросов мироздания. Эти вопросы подчёркивают загадку: кто или что сделал выбор среди бессчётного числа вариантов? Неизбежность упраздняет эти вопросы путём отметания других возможностей. Неизбежность означает, что в действительности другого выбора нет. Неизбежность постулирует, что Вселенная не может быть иной. Как мы увидим в главе 14, нет причин, по которым Вселенная должна иметь такую жёсткую конструкцию. Тем не менее, поиск этой жёсткости законов природы лежит в основе программы объединения в современной физике.

    К концу 1980-х гг. теория струн, по мнению физиков, хотя и приблизилась к построению единой картины Вселенной, но не выдержала экзамен на «отлично». На то были две причины. Во-первых, как вскользь отмечено в главе 7, физики обнаружили, что существует пять различных вариантов теории струн. Напомним, что их называют теориями типа I, типа IIA, типа IIB, а также теориями гетеротических струн на основе групп O(32) (O-гетеротические струны) и E8 ? E8 (E-гетеротические струны). Многие основные свойства этих теорий совпадают: колебательные моды определяют возможные массы и заряды, общее число требуемых пространственных измерений равно 10, их свёрнутые измерения должны быть многообразиями Калаби–Яу и т. д. Мы не говорили об их различиях в предыдущих главах, однако, как выяснилось в конце 1980-х гг., эти теории действительно отличаются друг от друга. В примечаниях в конце книги можно прочесть о свойствах этих теорий, но здесь для нас важно то, что в них по-разному реализуется суперсимметрия и есть существенные различия между допустимыми колебательными модами.{99} (Например, в теории струн типа I кроме обсуждаемых нами замкнутых струн имеются открытые струны.) Теоретики, занимавшиеся струнами, чувствовали себя неуютно: хоть и впечатляет иметь на руках серьёзную кандидатуру на окончательную единую теорию, но если таких кандидатур пять, непонятно, как распределить время на исследование каждой из них.

    Вторая причина отклонения от неизбежности более тонкая. Чтобы понять её в полной мере, нужно признать, что все физические теории состоят из двух частей. Первая часть — это набор основных идей теории, выраженных, как правило, в виде математических уравнений. Вторая часть состоит из решений этих уравнений. Вообще говоря, одни уравнения допускают только единственное решение, а другие — более одного решения (возможно, много более). (Например, уравнение «2 умножить на некоторое число равно 10» имеет одно решение: 5. Однако уравнение «0 умножить на некоторое число равно 0» имеет бесконечно много решений, так как любое умноженное на 0 число даёт 0.) Тем самым, даже если получается строго определённая теория со строго определёнными уравнениями, искомая неизбежность ещё под вопросом, ибо уравнения могут иметь множество различных решений. В конце 1980-х гг. казалось, что ситуация в теории струн обстоит именно так. Когда физики начинали исследовать уравнения любой из пяти теорий, выяснялось, что у этих уравнений действительно много решений, например много возможных способов свёртывания дополнительных измерений, и каждое решение соответствует вселенной со своими свойствами. И хотя все эти вселенные возникали в качестве полноправных решений уравнений теории струн, большинство из них, казалось, не имеет никакого отношения к наблюдаемому нами миру.

    Эти отклонения от неизбежности могли бы считаться досадным фундаментальным недостатком теории струн. Но исследования, начавшиеся в середине 1990-х гг., дали надежду на то, что этот недостаток есть просто следствие того, как физики теоретики подходят к анализу теории струн. В двух словах, дело в том, что уравнения теории струн настолько сложны, что никто даже не знает их точного вида. Физикам удалось найти лишь приближённый вид этих уравнений. Именно эти приближённые уравнения сильно отличаются для разных теорий струн. И именно они в любом из пяти подходов приводят к избытку решений, рогу изобилия лишних вселенных.

    С 1995 г. (начало второй революции в теории суперструн) растёт число свидетельств в пользу того, что точные уравнения, вид которых до сих пор находится за пределами наших познаний, могут разрешить эти проблемы и, тем самым, придадут теории струн статус неизбежности. К удовлетворению большинства занимающихся теорией струн физиков уже доказано, что точные уравнения, когда их вид будет ясен, вскроют связь между всеми пятью теориями струн. Как лучи морской звезды, все они являются частями одного организма, который в настоящее время пристально исследуется теоретиками. Физики уверены, что вместо пяти различных теорий должна существовать одна, объединяющая все пять в рамках общего теоретического формализма. Эта теория приведёт к ясности, всегда возникающей при выявлении скрытых зависимостей между различными областями исследования, и даст новый мощный подход к пониманию структуры Вселенной в рамках теории струн.

    Чтобы объяснить эти идеи, нам придётся воспользоваться рядом самых сложных и самых современных результатов теории струн. Необходимо понять суть приближений, используемых в теории струн, а также присущие им ограничения. Нам нужно ближе познакомиться с искусными методами, известными под собирательным названием дуальностей, которые физики применяют для выхода за рамки некоторых приближений. Затем мы должны по шагам разобраться в каждом этапе аргументации, опирающейся на эти методы, и прийти к указанным выше замечательным выводам. Но не нужно пугаться: вся действительно сложная работа уже выполнена теоретиками, а нам остаётся лишь проиллюстрировать их результаты.

    Тем не менее есть множество, казалось бы, не связанных элементов, которые нам придётся исследовать и соединить воедино, поэтому в данной главе особенно просто не разглядеть за деревьями леса. Поэтому, если обсуждение в этой главе начнёт казаться слишком запутанным и возникнет желание пропустить её и перейти к чёрным дырам (главе 13) или космологии (главе 14), мы вам рекомендуем всё-таки вернуться к следующему параграфу, где сведены вместе ключевые идеи второй революции в теории суперструн.

    Краткое изложение результатов второй революции в теории суперструн

    Важнейший результат, полученный в ходе второй революции в теории суперструн, показан на рис. 12.1 и 12.2. На рис. 12.1 изображена ситуация до того, как стало возможным (частично) выйти за рамки приближённых методов, традиционно используемых физиками для исследований в теории струн. Однако, как показано на рис. 12.2, в свете последних результатов видно, что подобно лучикам морской звезды все теории струн рассматриваются сейчас как части единого целого. (К концу этой главы, на самом деле, станет ясно, что даже и шестая теория — шестой лучик звезды — будет вписана в это объединение.) Этот единый формализм по причинам, которые станут ясными в дальнейшем, условно назвали M-теорией. Рис. 12.2 иллюстрирует эпохальное достижение в поисках окончательной теории. Тропы исследований в теории струн, которые, казалось, ведут в разные стороны, слились в одну широкую дорогу — единую и всеохватывающую теорию, которая вполне может оказаться искомой «теорией всего».

    Рис. 12.1. Многие годы физики, работавшие с пятью теориями струн, думали, что они исследуют совершенно различные теории

    Рис. 12.2. Результаты, полученные в ходе второй революции в теории суперструн, показали, что все пять теорий в действительности являются частью единого формализма, условно названного M-теорией

    Хотя предстоит проделать ещё много работы, две основные характеристики M-теории уже установлены физиками. Во-первых, M-теория рассматривает одиннадцать измерений (десять пространственных и одно временное). Подобно тому, как Калуца внезапно обнаружил, что одно дополнительное пространственное измерение можно использовать для объединения гравитации с электромагнетизмом, теоретики осознали, что одно дополнительное пространственное измерение в теории струн (помимо оставшихся девяти пространственных и одного временного, обсуждавшихся в предыдущих главах) позволяет осуществить более чем удовлетворительный синтез всех пяти вариантов теории струн. Кроме того, это дополнительное измерение возникает не из воздуха: теоретики обнаружили, что выводы о существовании одного временного и девяти пространственных измерений, сделанные в 1970-х и 1980-х гг., являются приближёнными, а точные вычисления показывают, что одно пространственное измерение в те годы осталось незамеченным.

    Второе установленное свойство M-теории состоит в том, что она, кроме колеблющихся струн, включает и другие объекты: колеблющиеся двумерные мембраны и трёхмерные капли (последние называют 3-бранами), а также и многие другие составляющие. Это свойство, как и одиннадцатое измерение, возникает вследствие отказа от приближений, использовавшихся до середины 1990-х гг. Если не считать этих и ряда других результатов, полученных в последние годы, M-теория остаётся мистической (этим объясняется одно из предложенных толкований буквы «M» в её названии). Физики всего мира с большим энтузиазмом работают над тем, чтобы добиться полного понимания M-теории, и эта задача вполне может стать центральной проблемой физики XXI в.

    Приближённый метод

    Ограничения методов, с помощью которых физики пытались анализировать теорию струн, связаны с использованием теории возмущений. Теория возмущений — меткое название приближённой процедуры, в которой сначала пытаются найти грубый ответ, а затем поэтапно уточняют его с учётом всё большего числа подробностей, опущенных на предыдущих этапах. Теория возмущений играет важную роль во многих областях науки; она являлась существенным элементом в понимания теории струн, и, как мы сейчас покажем, прочно входит в круг житейских явлений.

    Предположим, что в один прекрасный день машина вашего знакомого начинает барахлить, и он обращается в мастерскую, чтобы её проверить. Осмотрев машину, механик говорит, что дело плохо. Нужен новый блок двигателя, и обычно ремонт в таких случаях обходится примерно в $900 (включая стоимость деталей). Это примерная оценка, а более точная стоимость выяснится в ходе ремонта. Проходит несколько дней, и, проведя дополнительные проверки, механик сообщает более точную стоимость $950. Он объясняет, что необходим ещё и новый регулятор: это увеличит общую стоимость ремонта примерно на $50. Наконец, когда машина отремонтирована, вашему знакомому выставляется счёт на $987,93. В мастерской объясняют, что в него входят $950 за блок двигателя и регулятор, $27 за ремень вентилятора, $10 за кабель аккумулятора и $0,93 за изолированный болт. Примерная первоначальная стоимость $900 уточнялась с учётом всё более мелких деталей. На языке физики эти детали рассматриваются как возмущения исходной оценки.

    При правильном использовании теории возмущений первоначальная оценка будет достаточно близка к окончательному ответу, и после учёта мелких подробностей, опущенных в исходной оценке, поправка будет невелика. Но иногда при оплате счёта выясняется, что конечная сумма ужасающе расходится с начальной оценкой. И хотя в этот момент в голову, возможно, приходят совсем другие слова, в математике это называется неприменимостью теории возмущений. Это означает, что исходное приближение было плохим прогнозом окончательного ответа, потому что поправки привели не к относительно малым отклонениям, а к сильным изменениям приближённой оценки. Как указывалось в предыдущих главах, наше обсуждение теории струн до этого места опиралось на теорию возмущений, в определённом смысле аналогичную той, которую использовал механик. Упоминавшееся время от времени «недостаточное понимание» теории струн так или иначе связано с применением этого приближённого метода. Чтобы лучше понять смысл последнего утверждения, рассмотрим теорию возмущений в контексте, менее абстрактном, чем в теории струн, но всё же более близком к этой теории, чем пример с механиком.

    Классический пример теории возмущений

    Классический пример использования теории возмущений даёт изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землёй, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учётом всех влияний невозможно. На самом деле, уже в случае трёх небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их.{100}

    Тем не менее в рамках теории возмущений можно предсказать движение Земли в Солнечной системе с высочайшей точностью. Огромная масса Солнца по сравнению с массами всех других тел Солнечной системы, как и близость Солнца к Земле по сравнению с расстояниями от Земли до других звёзд, свидетельствуют о том, что Солнце оказывает доминирующее воздействие на движение Земли. Таким образом, в первом приближении можно учитывать только гравитационное воздействие Солнца. Для многих приложений этого вполне достаточно. Если окажется необходимым, можно уточнить это приближение, последовательно учитывая гравитационное воздействие следующих по степени влияния тел, например, Луны или тех планет, которые в данный момент проходят ближе всего к Земле. По мере того как паутина гравитационных взаимодействий будет становиться более запутанной, вычисления могут стать сложными, но это не должно затемнять смысл философии теории возмущений: гравитационное взаимодействие между Землёй и Солнцем даёт нам приближённое понимание движения Земли, а совокупность остальных гравитационных взаимодействий последовательно учитывается всё уменьшающимися поправками.

    В этом примере подход в рамках теории возмущений применим, так как существует доминирующее физическое воздействие, допускающее сравнительно простое теоретическое описание. Это не всегда так. Например, если нужно рассчитать движение трёх сравнимых по массе звёзд, вращающихся в тройной системе одна вокруг другой, нельзя указать, взаимодействие каких звёзд будет доминирующим. Поэтому нельзя дать грубую оценку, к которой затем можно было бы делать малые поправки, обусловленные другими эффектами. Если попытаться использовать теорию возмущений и выбрать для грубой оценки, например, взаимодействие между двумя звёздами, быстро выяснится, что подход неприменим. Вычисленные «поправки» за счёт влияния третьей звезды будут не малыми, а столь же существенными, что и первое грубое приближение. Ситуация знакомая: движения трёх человек, танцующих танец «хора» мало напоминают движения пары, танцующей танго. Большие поправки означают, что исходное приближение было выстрелом мимо цели, а вся схема была карточным домиком. Важно понимать, что дело не просто в учёте большой поправки третьей звезды. Здесь действует эффект домино: большая поправка сильно влияет на движение двух звёзд, что, в свою очередь, сильно влияет на движение третьей звезды, которое опять-таки влияет на движение двух звёзд, и т. д. Все нити гравитационной паутины одинаково важны, и должны рассматриваться одновременно. Единственным спасением в таких случаях часто бывает метод грубой силы — компьютерное моделирование совместного движения.

    Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение действительно приближением, и, если оно им является, сколько и каких более точных деталей следует учитывать, для достижения требуемой точности. Как мы сейчас обсудим, эти вопросы особенно важны при применении теории возмущений к изучению физических процессов в микромире.

    Использование теории возмущений в теории струн

    Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6[18], в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.) Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределённостей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна/антиструна (двух струн с противоположными колебательными модами) за счёт одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рождённые из квантового хаоса, живущие за счёт одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют парами виртуальных струн. И хотя их жизнь скоротечна, присутствие этих дополнительных пар виртуальных струн влияет на детальную структуру взаимодействия.

    Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь

    Схематически этот процесс изображён на рис. 12.4. Две исходные струны сливаются вместе в точке а, образуя единую петлю. Некоторое время эта петля движется, но в точке б квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в, и в результате снова получается одна петля. Наконец, в точке г эта струна отдаёт энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображённого на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных.

    Рис. 12.4. Квантовый хаос приводит к рождению пары струна/антиструна (б) и её уничтожению (в), что усложняет взаимодействие

    Однако это ещё не всё: краткосрочные извержения виртуальных струн вследствие квантовых флуктуаций могут произойти любое число раз, что приведёт к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5. Каждая диаграмма даёт простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая далее снова распадается на виртуальную пару и т. д. Как и для других диаграмм, для каждого из этих процессов есть математические формулы, в которых учитывается влияние на движение исходной пары струн.{101}

    Рис. 12.5. Квантовый хаос может привести к рождению и уничтожению длинных последовательностей пар струна/антиструна

    Более того, аналогично примеру с механиком, определившим конечную стоимость ремонта сложением его исходной оценки $900 с последующими поправками $50, $27, $10 и $0,93, и аналогично уточнению описания движения Земли при добавлении к влиянию Солнца меньшего влияния Луны и других планет, теоретики показали, что взаимодействие двух струн можно вычислить путём сложения математических выражений для диаграмм без петель (без пар виртуальных струн), с одной петлёй (одной парой виртуальный струн), с двумя петлями (двумя парами виртуальных струн) и т. д., как показано на рис. 12.6.

    Рис. 12.6. Суммарное воздействие одной струны, налетающей на другую, есть результат сложения воздействий, включающих диаграммы с увеличивающимся числом петель

    В точном расчёте требуется сложить математические выражения для всех этих диаграмм с растущим числом петель. Но так как диаграмм бесконечно много, а соответствующие математические вычисления с ростом числа петель усложняются, эта задача неразрешима. И здесь занимающиеся струнами теоретики берут на вооружение теорию возмущений, предполагая, что разумная грубая оценка даётся процессом без петель, а диаграммы с петлями дают поправки, значения которых уменьшаются по мере увеличения числа петель.

    В действительности, почти всё, что мы знаем о теории струн, включая бо?льшую часть сведений из предыдущих глав, было открыто физиками при проведении подробных и тщательных вычислений по теории возмущений. Но чтобы удостовериться в точности полученных результатов, необходимо выяснить, являются ли грубые приближения, в которых учитывается только несколько первых диаграмм рис. 12.6, а все остальные диаграммы опущены, действительно хорошим приближением.

    Приближает ли к ответу приближение?

    Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подобно тому, как вероятность разрыва каната на две части при сильном растяжении и раскачивании определяется его прочностью, вероятность распада струны с образованием виртуальной пары при квантовых флуктуациях также определяется некоторым параметром. Этот параметр называют константой связи струны (как мы вскоре увидим, в каждой из пяти теорий струн своя константа связи). Это название довольно наглядно: значение константы связи струны определяет, насколько сильно квантовые колебания трёх струн (исходной струны и двух виртуальных струн, на которые она распадается) зависят друг от друга, т. е. насколько сильно три струны связаны между собой. Вычисления показывают, что при больших значениях константы связи струны вероятность того, что квантовые флуктуации приведут к распаду струны (и её последующему воссоединению), становится больше, а при малых значениях константы связи вероятность такого краткосрочного образования виртуальных струн мала.

    Немного ниже мы обсудим вопрос об определении константы связи струны в каждой из пяти теорий, однако сначала необходимо уточнить, что означают слова «большая» и «малая» применительно к константе связи. Оказывается, что с точки зрения математического формализма теории струн границей между областями «больших» и «малых» констант связи является число 1. Это означает, что при константах связи, меньших 1, молниеносное вырывание большого числа пар виртуальных струн становится крайне маловероятным. Однако если константа связи больше или равна 1, то краткосрочное появление на сцене таких виртуальных пар становится весьма вероятным и увеличивается с увеличением константы связи струны.{102} В итоге, при константах связи струны, меньших 1, вклады диаграмм с петлями при увеличении числа петель уменьшаются. Это как раз то, что нужно для подхода с использованием теории возмущений: уменьшение вкладов говорит о том, что мы получим достаточно точные результаты, если будем пренебрегать всеми вкладами, кроме вкладов диаграмм, содержащих лишь несколько петель. Но если константа связи струны больше 1, то по мере увеличения числа петель старшие петлевые вклады становятся всё более важными. Как и в случае тройной системы звёзд, теория возмущений здесь неприменима. И первое приближение, которое дают диаграммы без петель, приближением не является. (Всё это в равной мере относится к каждой из пяти теорий струн, так как применимость приближённого подхода с использованием теории возмущений к любой заданной теории определяется значением константы связи.)

    Поэтому возникает ещё один важнейший вопрос: чему же равно значение константы связи (точнее, чему равны значения констант связи струны в каждой из пяти теорий струн)? Найти ответ до сих пор никому не удалось. Этот вопрос является одним из главных нерешённых вопросов в теории струн. Можно с уверенностью утверждать, что выводы, полученные в рамках теории возмущений, справедливы лишь в случае, если константа связи струны меньше единицы. Кроме того, точное значение константы связи струны непосредственно влияет на массы и заряды частиц, соответствующих её различным колебательным модам. Таким образом, значение константы связи струны определяет большинство физических свойств теории. Сейчас мы подробнее обсудим причины того, почему на вопрос о значении константы связи во всех пяти теориях струн до сих пор нет ответа.

    Уравнения теории струн

    Как и для определения взаимодействия между струнами, для поиска фундаментальных уравнений теории струн может использоваться теория возмущений. На самом деле, эти уравнения определяют то, как струны взаимодействуют между собой, и, наоборот, способ взаимодействия струн определяет уравнения теории.

    В каждой из пяти теорий струн существует уравнение, с помощью которого можно вычислить значение константы связи в этой теории. Однако к настоящему времени для всех пяти теорий физикам удалось найти лишь приближённый вид этого уравнения, полученный в рамках теории возмущений путём вычисления небольшого числа определённых диаграмм. И во всех пяти теориях приближённый вид уравнения говорит лишь о том, что если умножить значение константы связи на нуль, должен получиться нуль. Результат крайне удручающий, так как любое число при умножении на нуль даёт нуль, и уравнению удовлетворяет любое значение константы связи струны. Поэтому во всех пяти теориях приближённые уравнения для определения константы связи не дают никакой информации о её значении.

    Кроме того, в каждой из пяти теорий струн должно существовать уравнение, с помощью которого в принципе можно определить точный вид как протяжённых, так и свёрнутых пространственно-временных измерений. Известный на данный момент приближённый вид этого уравнения приводит к гораздо более жёстким ограничениям, чем вид уравнения для константы связи, но допустимых решений всё равно оказывается очень много. Например, допустимы решения с четырьмя протяжёнными и шестью свёрнутыми измерениями Калаби–Яу, но даже этим широким классом решений все они не исчерпываются: возможны и другие разбиения числа измерений на протяжённые и свёрнутые.{103}

    Что означают эти результаты? Возможны три ситуации. В первом, наихудшем случае даже при наличии уравнений для определения константы связи струны, а также уравнений для определения размерностей и точного вида пространства-времени (этим не может похвастаться ни одна теория), до сих пор не найденные точные уравнения могут допускать широкий спектр решений, что значительно ослабляет их предсказательную силу. Если это так, это будет крахом гипотезы о том, что теория струн способна объяснить свойства природы без необходимости экспериментального определения этих свойств и более или менее произвольной подгонки теории под эти свойства. Мы вернёмся к анализу этого случая в главе 15. Во втором случае избыточная свобода выбора при решении приближённых уравнений теории струн может говорить об изъянах в нашей аргументации. Мы пытаемся использовать методы теории возмущений для определения значения самой константы связи струны. Но, как обсуждалось выше, методы теории возмущений имеют смысл лишь в случае, если константа связи меньше 1, и поэтому возможно, что при таких расчётах делается неоправданное предположение о самом результате, а именно, что этот результат будет меньше 1. Наша неудача вполне может объясняться неправильностью исходной предпосылки: в любой из пяти теорий струн константа связи может быть больше 1. Наконец, в третьем случае нежелательный произвол в решениях может быть просто следствием того, что мы используем приближённые, а не точные уравнения. Например, даже если константа связи в данной теории струн меньше 1, уравнения теории могут быть чувствительны к вкладам всех диаграмм. То есть учёт небольших поправок, соответствующих всем многопетлевым диаграммам, может быть важным для сведения приближённого уравнения, допускающего множество решений, к точному уравнению с ограниченным числом решений.

    К началу 1990-х гг. анализ двух последних возможностей убедил большинство теоретиков в том, что повсеместное использование теории возмущений является помехой на пути прогресса. По мнению подавляющего большинства учёных, следующее серьёзное продвижение возможно лишь при использовании подхода, не скованного приближёнными методами и, следовательно, далеко выходящего за рамки теории возмущений. Ещё в 1994 г. разработка такого подхода казалась несбыточной мечтой. Однако иногда и такие мечты сбываются.

    Дуальность

    Сотни занимающихся теорией струн теоретиков из многих стран мира ежегодно съезжаются на конференцию, посвящённую обсуждению полученных за «отчётный» год результатов и оценке перспектив возможных направлений исследования. В зависимости от достигнутого в данном году прогресса обычно легко предугадать степень интереса и энтузиазм его участников. В середине 1980-х гг., в апогее первой революции в теории суперструн, на семинарах царила безграничная эйфория. Физиков окрыляла надежда на то, что скоро у них появится полное понимание теории струн, и она предстанет пред ними в качестве окончательной теории Вселенной. Сегодня это кажется наивным. Как выяснилось в следующие годы, для понимания многих глубоких и нетривиальных аспектов теории струн требуются длительные и напряжённые исследования. После того как далеко не всё сразу становилось на свои места, необоснованная первоначальная эйфория сменилась мёртвым сезоном, а многие исследователи впали в уныние. Конференции по струнам, проводившиеся в конце 1980-х гг., отражали скрытое разочарование: физики представляли интересные результаты, но в атмосфере конференции не чувствовалось вдохновения. Некоторые даже предлагали отменить ежегодную конференцию. Однако в начале 1990-х годов ситуация стала исправляться. После ряда значительных прорывов (некоторые из них обсуждались в предыдущих главах) теория струн вновь стала набирать свою силу, и у многих исследователей опять появился энтузиазм и оптимизм. Тем не менее, трудно было предположить то, что произойдёт на конференции по струнам, состоявшейся в марте 1995 г. в университете Южной Калифорнии.

    Когда подошло время заявленного выступления Эдварда Виттена, он поднялся на кафедру и сделал доклад, который вызвал вторую революцию в теории суперструн. Вдохновлённый результатами более ранних работ Даффа, Халла и Таунсенда, а также замечательными идеями Шварца, Ашока Сена и других теоретиков, Виттен объявил о новой стратегии выхода за рамки теории возмущений в теории струн. Главным элементом этой стратегии было понятие дуальности.

    Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вследствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймёт, что речь идёт о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведёт её на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разными языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского к китайскому и обратно не приводит к появлению новых физических результатов.

    Нетривиальными являются те примеры дуальности, в которых различные описания одной и той же ситуации приводят к различным взаимодополняющим физическим выводам и математическим методам исследования. На самом деле, выше мы уже дважды сталкивались с такими примерами. В главе 10 обсуждалось, что теория струн во вселенной с циклическим измерением радиусом R может быть с тем же успехом описана в рамках теории во вселенной с циклическим измерением радиусом 1/R. Геометрически два варианта различны, но физические явления оказываются совершенно идентичными. Второй пример — зеркальная симметрия. Имеются два различных многообразия Калаби–Яу в дополнительных шести пространственных измерениях, но две вселенные, кажущиеся на первый взгляд совершенно разными, имеют одни и те же физические свойства. Существенным отличием от перевода с одного языка на другой является то, что эти дуальные описания могут привести к новым физическим результатам, например, к предсказаниям минимального размера циклического измерения или переходов с изменением топологии в теории струн.

    В своей лекции на конференции «Струны-95» Виттен привёл пример нового и фундаментального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращённых в сторону одного теоретического фундамента.

    До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шёпотом — настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развитием теории струн появляются всё более убедительные свидетельства в пользу того, что все пять теорий струн являются дуальными. Кроме того, как будет пояснено ниже, из доводов Виттена следует, что в физике есть место и для шестой теории.

    Эти результаты тесно переплетены с вопросами о применимости методов теории возмущений, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие слабой связи, т. е. если константа связи меньше 1. Долгое время физики опирались на теорию возмущений, в рамках которой невозможна постановка вопроса о том, какими будут свойства любой из теорий, если окажется, что константа связи в этой теории больше 1, т. е. связь будет сильной. По утверждениям Виттена и других исследователей, сейчас можно ответить на этот важнейший вопрос. Их результаты убедительно свидетельствуют о том, что для сильной связи в каждой из теорий (включая шестую теорию, которую мы опишем ниже) есть дуальное описание в терминах слабой связи в другой теории, и наоборот.

    Чтобы яснее понять смысл последнего утверждения, можно взять на вооружение следующую аналогию. Представим себе двух, мягко говоря, слегка чудаковатых индивидуумов. Один из них обожает лёд, но, как ни странно, никогда не видел воды. Второй обожает воду, но, что не менее странно, никогда не видел льда. Однажды они встречаются и решают отправиться в поход по пустыне. В начале похода каждый из них изумлён снаряжением другого. Любитель льда пленён гладкой поверхностью прозрачной жидкости, которую принёс с собой любитель воды, а любителя воды странным образом притягивают твёрдые кубики, принесённые любителем льда. Ни один из них и не подозревает о близком родстве между льдом и водой; для них эти субстанции совершенно различны. Но, продвигаясь по палящей жаре пустыни, они поражены тем, что лёд начинает медленно превращаться в воду. А позже, дрожа от дикого холода пустынной ночи, они столь же сильно поражены тем, что жидкая вода начинает медленно превращаться в твёрдый лёд. И тут до них доходит, что вода и лёд, которые они считали совершенно разными веществами, тесно связаны между собой.

    Дуальность в пяти теориях струн в чём-то похожа на этот пример: грубо говоря, константы связи струны играют роль, аналогичную температуре в пустыне. Подобно воде и льду, любые две из пяти теорий с первого взгляда кажутся совершенно различными. Но при изменении соответствующих констант связи эти теории превращаются одна в другую. Так же, как лёд превращается в воду при увеличении температуры, одна из теорий переходит в другую при увеличении константы связи. Эта аналогия, в конце концов, может привести нас к выводу о том, что все теории струн являются дуальными описаниями единой структуры — аналога H2O для воды и льда.

    Аргументация в пользу такого вывода почти целиком основана на принципах симметрии. Обсудим эти принципы.

    Мощь симметрии

    Никто и никогда даже не пытался изучить свойства любой из пяти теорий струн при больших значениях констант связи, потому что не было и намёка на то, как поступать вне рамок теории возмущений. Однако в конце 1980-х – начале 1990-х гг. физики начали делать первые, но твёрдые шаги к описанию конкретных свойств теорий (в частности, к вычислению отдельных масс и зарядов), проявляющихся в области физики сильной связи для данной теории, но всё же находящихся в пределах наших вычислительных возможностей. Такие вычисления, с необходимостью выходившие за рамки теории возмущений, сыграли главную роль во второй революции суперструн и стали возможными во многом благодаря соображениям симметрии.

    Принципы симметрии дают мощные средства для изучения многих свойств реального мира. Мы уже упоминали о том, что хорошо подтверждающаяся уверенность в том, что законы физики не выделяют никакое конкретное место во Вселенной и никакой конкретный момент времени, позволяет нам предположить, что законы «здесь и сейчас» будут теми же самыми, что и «там и тогда». Это всеобъемлющий пример; но принципы симметрии могут с тем же успехом применяться в более скромных случаях. Например, если свидетель ограбления разглядел лишь правую половину лица преступника, в полиции его информация всё равно окажется ценной для составления фоторобота. Симметрия тому причиной. Хотя правая и левая половина лица отличаются, большинство лиц достаточно симметричны для того, чтобы отражённый образ одной половины лица можно было бы с успехом использовать в качестве приближения для другой половины.

    В каждом из разнообразных применений роль симметрии состоит в возможности восстановления свойств по косвенным признакам, что часто гораздо проще прямого подхода. Для изучения законов физики в созвездии Андромеды можно было бы направить туда экспедицию, найти подходящую планету у одной из звёзд, построить там ускорители и проводить эксперименты, аналогичные экспериментам на Земле. Но косвенный подход с использованием симметрии при сдвиге места действия куда проще. Можно было бы в деталях ознакомиться с чертами левой половины лица грабителя, изловив преступника и отправив его в участок. Но часто гораздо проще сначала воспользоваться лево-правой симметрией человеческих лиц.{104}

    Суперсимметрия принадлежит к более абстрактным типам симметрии, который связывает физические свойства элементарных объектов с различными спинами. Эксперимент даёт лишь косвенные намёки на то, что в микромире реализуется такой механизм симметрии, но по описанным выше причинам физики твёрдо убеждены, что он действительно реализуется. Естественно, этот механизм является неотъемлемой частью теории струн. В 1990-е гг. после пионерской работы Натана Зайберга из Института перспективных исследований физики осознали, что суперсимметрия даёт мощный инструмент, используя который можно косвенным методом ответить на ряд очень сложных и важных вопросов.

    Одно то, что теория обладает суперсимметрией, позволяет даже без понимания всех тонкостей теории накладывать существенные ограничения на её допустимые свойства. Приведём пример из лингвистики. Пусть известно, что в некоторой последовательности букв буква «y» встречается ровно три раза, и задача состоит в том, чтобы угадать эту последовательность. Не имея дополнительной информации, невозможно найти однозначное решение: подойдёт любая последовательность с тремя буквами «y», например mvcfojziyxidqfqzyycdi и т. п. Но теперь допустим, что нам последовательно дают две подсказки: во-первых, ответ должен быть существующим английским словом, и, во-вторых, это слово должно содержать минимальное количество букв. Бесконечное количество первоначальных вариантов сокращается этими двумя подсказками сразу до одного кратчайшего английского слова с тремя «y»: syzygy (сизигия).

    Суперсимметрия также даёт подсказки, позволяющие конкретизировать ситуацию в теориях, которым свойственны такие принципы симметрии. Чтобы понять это, представьте, что вы столкнулись с физической задачей, аналогичной только что описанной задаче из лингвистики. Внутри чёрного ящика находится нечто неопознанное с определённым зарядом. Заряд может быть электрическим, магнитным, или иметь иную природу; для определённости примем, что этот заряд равен трём единицам электрического заряда. Без дополнительной информации определить содержимое ящика невозможно. В нём могут находиться три частицы с зарядом 1, подобные позитронам или протонам, или четыре частицы с зарядом 1 и одна частица с зарядом ?1 (например, электрон), или девять частиц с зарядом 1/3 (например, u-кварки) плюс любое число незаряженных частиц (например, фотонов) и т. д. Подходит любая комбинация частиц с суммарным зарядом 3. Как и в лингвистической задаче, где единственным условием было наличие трёх букв «y», число возможных вариантов содержимого чёрного ящика бесконечно.

    Но теперь, как и в примере из лингвистики, предположим, что нам даны ещё две подсказки: во-первых, теория, описывающая мир (а, следовательно, и содержимое чёрного ящика) является суперсимметричной, и, во-вторых, содержимое чёрного ящика должно иметь минимальную массу. Пользуясь результатами работ Е. Богомольного, Маноджа Прасада и Чарльза Соммерфилда, физики показали, что такая жёсткая структура формализма (формализм суперсимметрии — аналог английского языка) и «условие минимальности» (минимальность массы с данным электрическим зарядом — аналог минимальной длины слова с данным числом букв «y») приводят к тому, что скрытое содержимое определяется однозначно. То есть требование минимальности массы содержимого чёрного ящика при условии, что заряд внутри него будет равен заданному, позволяет однозначно определить это содержимое. Состояния с данным значением заряда, в которых суммарная масса частиц минимальна, называют БПС-состояниями в честь трёх открывших эти состояния учёных.{105}

    Важность БПС-состояний состоит в том, что их свойства однозначно, легко и точно определяются без привлечения теории возмущений. Это справедливо вне зависимости от значения констант связи. Даже если константа связи струны велика, и, следовательно, подход с использованием теории возмущений неприменим, всё равно можно вычислить точные параметры БПС-состояний. Эти параметры часто называют непертурбативными массами и зарядами, так как их значения вычислены вне рамок приближённого подхода по теории возмущений. Поэтому для читателя, владеющего английским языком, BPS можно расшифровать и как beyond perturbative states — состояния вне рамок теории возмущений.

    БПС-свойства описывают лишь малую долю всех физических явлений в конкретной теории струн при больших константах связи, но эти состояния позволяют чётко прояснить некоторые характеристики теории в области сильной связи. При выходе константы связи струны за рамки применимости теории возмущений, привязка к БПС-состояниям позволяет расширить границы нашего понимания теории. Как и знание лишь нескольких выборочных слов в иностранном языке, эти состояния могут нам помочь продвинуться довольно далеко.

    Дуальность в теории струн

    Следуя Виттену, начнём с анализа одной из пяти теорий, например теории струн типа I, и предположим, что все её девять пространственных измерений являются плоскими и несвёрнутыми. Такое предположение, разумеется, совершенно нереалистично, но оно делает анализ проще; случай свёрнутых измерений будет рассмотрен немного ниже. Примем сначала, что константа связи струны много меньше 1. В этом случае справедливы методы теории возмущений, и многие конкретные характеристики теории могут быть (и были) изучены довольно точно. Если мы будем увеличивать константу связи, но следить, чтобы она оставалась гораздо меньше 1, методы теории возмущений будут оставаться справедливыми. Однако конкретные характеристики теории несколько изменятся. Например, численные параметры рассеяния двух струн станут немного иными, так как изображённые на рис. 12.6 диаграммы с петлями при увеличении константы связи дадут бо?льшие вклады. Несмотря на эти изменения численных параметров, физическое содержание теории останется неизменным, если величина константы связи соответствует области применимости теории возмущений.

    Когда значение константы связи струны типа I превысит единицу, методы теории возмущений станут неприменимыми, так что мы сфокусируем наше внимание на ограниченном наборе масс и зарядов БПС-состояний, которые мы ещё будем в состоянии понять. Согласно гипотезе Виттена, подтверждённой затем в совместной работе с Джо Польчински из университета Санта Барбары, свойства теории струн типа I в области сильной связи в точности совпадут с известными свойствами теории O-гетеротической струны со слабой связью. Иными словами, если константа связи в теории струн типа I велика, конкретные массы и заряды, которые мы умеем вычислять, в точности совпадут с массами и зарядами в теории O-гетеротической струны с малой константой связи. Это явно указывает на то, что две теории струн, которые, подобно воде и льду, сначала казались совершенно разными, в действительности дуальны друг другу. При этом появляется убедительный довод в пользу того, что физические процессы в теории струн типа I для больших констант связи идентичны физическим процессам в теории O-гетеротической струны для малых констант связи. Схожие соображения наталкивают на мысль, что справедливо и обратное. Физические процессы в теории струн типа I для малых констант связи идентичны физическим процессам в теории O-гетеротической струны для больших констант связи.{106} Несмотря на то, что при анализе приближёнными методами теории возмущений две теории струн кажутся не связанными, при изменении констант связи происходит переход одной из них в другую, подобный взаимным превращениям воды и льда.

    Этот существенно новый результат — возможность описания физических свойств одной теории в области сильной связи в рамках другой теории в области слабой связи — называют дуальностью сильной и слабой связи. Как и рассмотренные выше примеры дуальности, эта дуальность показывает, что две теории на самом деле не являются разными. Точнее, они дают различные описания одной и той же лежащей в их основе теории. В отличие от «тривиальной» дуальности английского и китайского языков, дуальность сильной и слабой связи даёт мощный инструмент исследования теорий. Если константа связи в одной из двух теорий мала, можно анализировать физические свойства с помощью хорошо известных приёмов теории возмущений. Однако если константа связи велика, и теория возмущений неприменима, можно перейти к дуальной теории и вернуться к методам теории возмущений. Переход позволяет использовать количественные методы применительно к ситуациям, анализ которых, как казалось ранее, выходит за рамки наших возможностей.

    Строгое доказательство того, что физические процессы в теории струн типа I для малых констант связи идентичны физическим процессам в теории O-гетеротической струны для больших констант связи и обратно, является очень сложной и до сих пор не решённой задачей. Одна из двух предположительно дуальных теорий не может быть исследована по теории возмущений, так как её константа связи слишком велика. Это не позволяет провести прямой расчёт многих физических характеристик теории. И именно этим объясняется мощный потенциал предполагаемой дуальности: если гипотеза дуальности верна, она даёт новый инструмент исследования теории в области сильной связи. Нужно лишь использовать теорию возмущений для дуальной теории в области слабой связи.

    Даже если нельзя доказать, что две теории дуальны, полное согласие результатов, которые можно получить строго, является неоспоримым свидетельством в пользу гипотезы дуальности сильной и слабой связи теории типа I и теории O-гетеротической струны. Эта гипотеза проходила проверку с использованием всё более изощрённых вычислительных методов, и неизменно находила своё подтверждение. Большинство теоретиков, занимающихся струнами, убеждены в справедливости гипотезы дуальности.

    Тем же самым методом можно изучить свойства других теорий струн, например, типа IIB. Согласно первоначальному предположению Халла и Таунсенда, которое затем было подтверждено исследованиями ряда физиков, в этой теории происходит нечто столь же необычное. При увеличении константы связи те физические свойства, которые ещё можно определить, начинают совпадать со свойствами той же теории струн типа IIB в области слабой связи. Другими словами, теория струн типа IIB является самодуальной.{107} Тщательный анализ показывает, что теория струн типа IIB с константой связи, большей 1, совершенно идентична той же теории струн с константой связи, обратной изначальной (и, следовательно, меньшей 1). Ситуация аналогична рассмотренному выше стягиванию циклического измерения до планковской длины: если уменьшать значение константы связи в теории типа IIB до значения, меньшего 1, то вследствие самодуальности мы придём к эквивалентной теории типа IIB с константой связи, большей 1.

    Предварительные итоги

    Итак, посмотрим, где мы находимся. К середине 1980-х гг. физики построили пять теорий суперструн. При исследовании приближёнными методами теории возмущений свойства пяти теорий казались различными. Однако эти приближённые методы применимы лишь тогда, когда константа связи струны меньше 1. Ожидалось, что константу связи в каждой теории можно будет вычислить точно, но из вида приближённых уравнений для констант стало ясно, что такое вычисление в настоящее время невозможно. Поэтому физики направили свои усилия на изучение всех пяти теорий в допустимых диапазонах соответствующих констант связи, как для констант, меньших 1, так и больших 1, т. е. при слабой и при сильной связи. Однако попытки определить свойства любой из этих теорий в области сильной связи на основе традиционных методов теории возмущений оказались тщетными.

    В настоящее время физики научились рассчитывать определённые характеристики каждой теории струн в области сильной связи, используя мощный формализм суперсимметрии. Ко всеобщему изумлению всех теоретиков, свойства теории O-гетеротических струн в области сильной связи оказались идентичными свойствам теории струн типа I в области слабой связи, и наоборот. Более того, свойства теории струн типа IIB в области сильной связи оказались идентичными свойствам той же теории в области слабой связи. Эти неожиданные открытия побуждают нас, следуя Виттену, перейти к анализу двух оставшихся теорий струн, струн типа IIA и E-гетеротической струны, и выяснить, как эти теории вписываются в общую картину. И здесь нас ожидают ещё более удивительные неожиданности. Для того чтобы подготовиться к ним, необходимо совершить краткий исторический экскурс.

    Супергравитация

    В конце 1970-х – начале 1980-х гг., до всплеска бурного интереса к теории струн, многие физики-теоретики пытались объединить квантовую теорию, гравитацию и другие взаимодействия в формализме единой теории поля для точечных частиц. Они надеялись, что препятствия, возникающие при попытках объединить теории точечных частиц, включающие квантовую механику и гравитацию, будут устранены при исследовании теорий с высокой степенью симметрии. В 1976 г. сотрудники Нью-йоркского университета Стони Брук Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен обнаружили, что наиболее многообещающими являются теории на основе суперсимметрии, так как в них сокращения многих квантовых флуктуаций бозонов и фермионов помогают умиротворить хаос на микроскопических масштабах. В своей работе эти учёные дали название супергравитация суперсимметричным квантовым теориям, которые разрабатывались с целью включить общую теорию относительности в единый формализм. Попытки разработать такие теории не увенчались успехом. Тем не менее, как отмечено в главе 8, урок, предвосхитивший развитие теории струн, не прошёл даром.

    Урок, смысл которого, вероятно, стал более ясен после работы сотрудников Парижской высшей технической школы Юджина Креммера, Бернара Джулиа и Шерка (1978 г.) состоял в том, что успешнее остальных оказались попытки построить теории супергравитации не в четырёх, а в большем числе измерений. А именно, наиболее перспективными оказались варианты теорий в десяти или одиннадцати измерениях, при этом число одиннадцать оказалось максимально возможным числом измерений.{108} Связь с четырьмя наблюдаемыми измерениями в этих теориях также обеспечивалась путём использования формализма Калуцы–Клейна: лишние измерения сворачивались. В десятимерных теориях, как и в теории струн, сворачивалось шесть измерений, а в 11-мерной теории сворачивалось семь измерений.

    Когда в 1984 г. теория струн увлекла многих физиков, виды на будущее у теорий супергравитации для точечных частиц резко ухудшились. Как уже неоднократно подчёркивалось, при точности, доступной сегодня и в обозримом будущем, струны выглядят, как точечные частицы. Это неформальное замечание можно сформулировать и в строгой форме: при изучении низкоэнергетических процессов в теории струн, т. е. процессов, в которых энергии недостаточно велики для того, чтобы прощупать протяжённую ультрамикроскопическую структуру струны, можно аппроксимировать струну бесструктурной точечной частицей в формализме квантовой теории поля. Для процессов на малых расстояниях или процессов при больших энергиях такое приближение не подходит, так как мы знаем, что протяжённость струны является важнейшим свойством, позволяющим разрешить конфликты между общей теорией относительности и квантовой теорией, которые теория точечных частиц разрешить не в состоянии. Однако при достаточно низких энергиях или на достаточно больших расстояниях эти проблемы не возникают, и такое приближение часто делается для удобства вычислений.

    Примечательно, что квантовой теорией поля, дающей наилучшее приближение теории струн в указанном смысле, является десятимерная теория супергравитации. Особые свойства этой теории, обнаруженные в 1970-х и 1980-х гг., теперь находят своё объяснение: они являются низкоэнергетическими отголосками свойств теории струн. Исследователи, изучавшие десятимерную супергравитацию, обнаружили лишь вершину огромного айсберга конструкции теории суперструн. В действительности оказывается, что существуют четыре различных теории десятимерной супергравитации, и эти теории отличаются в деталях конкретной реализации суперсимметрии. Три из них являются низкоэнергетическими приближениями струн типа IIA, типа IIB и E-гетеротических струн точечными частицами. Четвёртая теория является низкоэнергетическим пределом как струн типа I, так и O-гетеротических струн; в ретроспективе, этот факт был первым указанием на близость двух последних теорий.

    Схема выглядит безупречной, вот только 11-мерная супергравитация осталась не у дел. В теории струн, которая формулируется в десяти измерениях, кажется, нет места для 11-мерной теории. На протяжении нескольких лет большинство физиков за редким исключением рассматривали 11-мерную супергравитацию в качестве математического курьёза, не имеющего никакого отношения к физике теории струн.{109}

    Проблески M-теории

    Сегодня точка зрения радикально изменилась. На конференции «Струны-95» Виттен сделал следующее утверждение: если взять теорию струн типа IIA с константой связи, много меньшей 1, и увеличивать константу связи до значения, много большего 1, то физические свойства, которые мы ещё способны анализировать (по существу, свойства насыщенных БПС-состояний), в низкоэнергетическом пределе будут соответствовать свойствам 11-мерной супергравитации.

    Когда Виттен объявил о своём открытии, все присутствовавшие в аудитории потеряли дар речи, а позже весть об этом открытии громом пронеслась по всем институтам, где занимаются теорией струн. Почти для всех специалистов в этой области результат был полной неожиданностью. Первая реакция читателя этой книги, возможно, тоже будет напоминать реакцию большинства экспертов: какое отношение может иметь теория, характерная для одиннадцати измерений, к другой теории в десяти измерениях?

    Ответ несёт в себе глубокий смысл. Чтобы понять его, нужно описать результат Виттена более точно. На самом деле, сначала проще обратиться к другому тесно связанному с этим результату, полученному чуть позже Виттеном и стажёром Принстонского университета Петром Хофавой для теории E-гетеротической струны. Для этой теории в области сильной связи ими также было найдено описание в терминах 11-мерной теории; это поясняется на рис. 12.7. Слева на этом рисунке схематически показана теория E-гетеротической струны с константой связи, много меньшей 1. Эта область констант связи рассматривалась в предыдущих главах и изучалась теоретиками на протяжении более десяти лет. При переходе вправо на рис. 12.7 значение константы связи постепенно увеличивается. До 1995 г. теоретикам было известно, что при этом вклады петлевых диаграмм (см. рис. 12.6) будут становиться всё более важными, и при дальнейшем увеличении константы связи весь формализм теории возмущений перестаёт быть справедливым. Но никто не мог даже вообразить того, что при увеличении константы связи проявится новое измерение! На рис. 12.7 это измерение соответствует вертикали. Нужно помнить, что двумерная сетка на рисунке, с которого мы начали обсуждение, представляет все девять пространственных измерений E-гетеротической струны. Новое измерение по вертикали будет десятым пространственным, так что вместе с временным измерением в сумме получается одиннадцать пространственно-временных измерений.

    Рис. 12.7. При увеличении константы связи E-гетеротической струны появляется новое измерение, и сама струна вытягивается, принимая вид цилиндрической мембраны

    Кроме того, на рис. 12.7 иллюстрируется важнейшее следствие существования этого нового измерения. Структура E-гетеротической струны меняется по мере роста этого измерения. При увеличении константы связи из одномерной петли она растягивается в ленту, а затем — в деформированный цилиндр! Другими словами, E-гетеротическая струна становится двумерной мембраной, ширина которой (протяжённость по вертикали на рис. 12.7) определяется значением константы связи. Более десятилетия теоретики всегда использовали методы теории возмущений, основанные на предположении малости константы связи. Как показал Виттен, в этом предположении фундаментальные объекты микромира выглядят и ведут себя подобно струнам, даже если у них имеется скрытое второе пространственное измерение. Если отказаться от предположения о малости константы связи и рассмотреть физические характеристики E-гетеротической струны при больших константах связи, второе измерение станет явным.

    Это утверждение не обесценивает ни одного из выводов предыдущих глав, но побуждает рассмотреть их в рамках нового формализма. Возникает, например, вопрос, как можно состыковать новые результаты с тем, что в теории струн требуется одно временное и девять пространственных измерений? Что же, как обсуждалось в главе 8, это ограничение возникает при расчёте числа различных направлений, в которых может колебаться струна, и число измерений выбирается так, чтобы квантово-механические вероятности гарантированно имели осмысленные значения. Новое измерение не является измерением, в котором может колебаться E-гетеротическая струна, так как оно зафиксировано в самой структуре «струны». Кроме того, в формализме теории возмущений, который использовался физиками для вывода ограничения на число пространственно-временных измерений, предполагалось, что константа связи E-гетеротической струны мала. И хотя это было осознано гораздо позднее, в таком предположении неявно используются два взаимосогласованных приближения: малая ширина мембраны на рис. 12.7, при которой она выглядит, как струна, и малый размер одиннадцатого измерения, не влияющий на вид уравнений теории возмущений. В рамках этой приближённой схемы мы вынуждены представлять себе Вселенную десятимерной и заполненной одномерными струнами. Теперь мы видим, что она 11-мерная и заполнена двумерными мембранами.

    По техническим причинам, впервые Виттен столкнулся с одиннадцатым измерением при исследовании сильной связи струны типа IIA, для которой ситуация вполне аналогична. Как и в случае E-гетеротической струны, размер одиннадцатого измерения в случае струны типа IIA определяется значением её константы связи. При увеличении этого значения новое измерение расширяется. По мере расширения, однако, струна типа IIA превращается в «велосипедную камеру» (см. рис. 12.8), а не в ленту, как в случае E-гетеротической струны. И снова, согласно Виттену, традиционные представления физиков о струнах типа IIA как об одномерных объектах, имеющих длину, но не имеющих толщины, есть следствие использования ими формализма теории возмущений, в котором константа связи струны предполагается малой. Если законы природы требуют, чтобы константа связи действительно была малой, то это приближение оправдано. Однако результаты Виттена и других физиков, полученные в ходе второй революции в теории суперструн, убедительно свидетельствуют о том, что «струны» типа IIA и E-гетеротические «струны» имеют фундаментальную структуру двумерных мембран, живущих в 11-мерной вселенной.

    Рис. 12.8. По мере увеличения константы связи для струны типа IIA струны расширяются, превращаясь из одномерных петель в двумерные объекты, похожие на велосипедную камеру

    Но что представляет собой 11-мерная теория? Согласно Виттену и другим исследователям, при низких (по сравнению с планковской) энергиях она аппроксимируется почти позабытой всеми 11-мерной квантово-полевой теорией супергравитации. А как же тогда описать эту теорию при высоких энергиях? Сейчас этот вопрос тщательно исследуется. Как показано на рис. 12.7 и 12.8, в такой 11-мерной теории существуют двумерные протяжённые объекты — двумерные мембраны. Как мы вскоре увидим, важную роль играют и протяжённые объекты других размерностей. Однако об этой 11-мерной теории ничего не известно, кроме набора разнородных фактов. Являются ли мембраны её фундаментальными объектами? Каковы её определяющие свойства? Благодаря каким её свойствам она может быть связана со знакомой нам физикой? Если соответствующие константы связи малы, то лучшие ответы, которые можно дать сейчас, уже описаны в предыдущих главах, так как при малых константах связи мы возвращаемся обратно к теории струн. Но для больших констант связи в настоящее время ответов не знает никто.

    Для этой 11-мерной теории, что бы она собой ни представляла, Виттен придумал рабочее название: M-теория. Все расшифровывают это название по-разному. Вот примеры: мистическая теория, материнская теория («мать всех теорий»), мембранная теория (так как мембраны в любом случае играют в ней роль), матричная теория (после недавних работ Тома Бэнкса из университета Ратгерса, Вилли Фишлера из Техасского университета в Остине, Стивена Шенкера из университета Ратгерса, Сасскинда и других, предложивших новую интерпретацию теории). Однако и без точной расшифровки названия или знания её свойств уже сейчас ясно, что M-теория даёт основу для объединения всех пяти теорий струн.

    M-теория и паутина взаимосвязей

    Есть старая притча о трёх слепцах и слоне. Первый слепец ощупывает бивень слона и говорит, что чувствует что-то гладкое и твёрдое. Второй держится за ногу и описывает что-то шероховатое и мускулистое. Третий слепец держит слона за хвост и говорит о чём-то гибком и хилом. Слыша описания других слепцов, каждый из них думает, что держится за другое животное. Много лет физики были столь же слепы и думали, что разные теории струн действительно являются разными. Но теперь, благодаря второй революции в теории суперструн, наступило прозрение, и они поняли, что все пять теорий струн являются частями тела одного огромного «слона» — M-теории.

    В этой главе мы обсудили, как изменилось наше понимание теории струн при выходе за рамки теории возмущений, неявно использовавшейся в предыдущих главах. На рис. 12.9 подведён итог тем взаимосвязям, которые обсуждались до этого момента. Стрелками на этом рисунке обозначены дуальные теории. Видно, что мы имеем паутину взаимосвязей, но она соткана ещё не полностью. Включая дуальности из главы 10, можно довести дело до конца.

    Рис. 12.9. Стрелки обозначают отношения дуальности для теорий

    Вспомним о дуальности, возникающей при замене радиуса циклического измерения R на радиус 1/R. Выше мы слегка сгладили один аспект этой дуальности, но теперь его нужно рассмотреть подробнее. В главе 10 обсуждались свойства струн во вселенной с одним циклическим измерением; при этом не указывалось конкретно, с какой из пяти теорий струн мы работаем. Как утверждалось, взаимная замена колебательных мод струны на топологические позволяет переформулировать описание (в рамках теории струн) вселенной с циклическим измерением радиуса 1/R в терминах вселенной с циклическим измерением радиуса R. Факт, который был нами опущен, состоит в том, что теории струн типов IIA и IIB, а также теории E- и O-гетеротических струн в действительности не переходят сами в себя, а меняются местами при замене радиусов. Поэтому применительно к этим теориям точная формулировка дуальности при замене радиусов такова: законы физики в теории струн типа IIA во вселенной с циклическим измерением радиуса R идентичны законам физики в теории струн IIB во вселенной с циклическим измерением радиуса 1/R. Аналогичное утверждение справедливо для теорий E- и O-гетеротических струн. На выводах главы 10 такая формулировка не отражалась, но в данном обсуждении она играет важную роль.

    Дело в том, что с учётом дуальности при замене радиусов в теориях струн типов IIA и IIB, а также с учётом той же дуальности для теорий O- и E-гетеротических струн можно достроить до конца паутину взаимосвязей, как показано на рис. 12.10 пунктирными линиями. Видно, что все пять теорий, а также M-теория, дуальны друг другу. Все они скреплены в единую теоретическую конструкцию и дают пять разных подходов для описания одной и той же физики, лежащей в основе этой формулировки. Для различных приложений может быть более удобным язык той или иной теории. Например, с теорией O-гетеротических струн в случае слабой связи работать гораздо удобнее, чем с теорией струн типа I в случае сильной связи. Тем не менее эти теории описывают одни и те же физические явления.

    Рис. 12.10. С учётом дуальностей, включающих геометрию пространства-времени (как в главе 10) все пять теорий вместе с M-теорией связываются воедино паутиной дуальностей

    Общая панорама

    Теперь становятся более понятными рис. 12.1 и 12.2, приведённые в начале этой главы для иллюстрации важнейших черт теории. Как видно из рис. 12.1, до 1995 г., в отсутствие каких-либо сведений о дуальности, было пять не связанных между собой теорий. Над каждой из них работало много физиков, но без привлечения аргументов о дуальных свойствах эти теории казались различными. У каждой теории был свой набор характеристик: своя константа связи, геометрическая структура, радиусы свёрнутых измерений и т. д. Физики надеялись (и продолжают надеяться) на то, что фундаментальные свойства должны определяться в рамках самой теории. Однако, не имея возможности определить их при помощи известных приближённых уравнений, теоретики, естественно, начали исследовать физические свойства во всех возможных диапазонах. Это показано на рис. 12.1, где каждая точка затушёванной области соответствует конкретному выбору константы связи и геометрии свёрнутых измерений. Без учёта дуальности при этом всё равно оставалось пять несвязанных (наборов) теорий.

    Но сейчас, когда рассмотренные выше дуальности учтены, при изменении констант связи и геометрии можно переходить от одной теории к другой, если при этом включить в анализ и объединяющую их центральную область — M-теорию (рис. 12.2). И хотя наши познания в области M-теории очень скудны, приведённые косвенные соображения дают веские аргументы в пользу того, что M-теория является основой объединения пяти на первый взгляд различных теорий струн. Более того, выясняется, что M-теория тесно связана с шестой теорией — 11-мерной супергравитацией. Это отражено на рис. 12.11, более точном варианте рис. 12.2.{110}

    Рис. 12.11. С учётом дуальностей все пять теорий струн, 11-мерная супергравитация и M-теория сливаются вместе в единую схему

    Как показано на рис. 12.11, несмотря на то, что сегодня фундаментальные идеи и уравнения M-теории ещё мало исследованы, они объединяют все формулировки теории струн. Могущественная M-теория указала физикам дорогу к новой и гораздо более глубокой единой формулировке.

    Сюрприз в M-теории: демократия в протяжении

    Когда на территории одного из пяти полуостровов на теоретической карте рис. 12.11 константа связи струны мала, фундаментальный объект в этой теории выглядит как одномерная струна. Сейчас, однако, у нас появилась новая точка зрения. Если начать двигаться из области E-гетеротических струн или струн типа IIA, увеличивая значения соответствующих констант связи, то постепенно мы сместимся к центру карты рис. 12.11, и объекты, казавшиеся одномерными струнами, начнут вытягиваться, превращаясь в двумерные мембраны. Более того, в результате более сложной последовательности преобразований дуальности, включающих как изменения констант связи струн, так и изменения вида свёрнутых измерений, можно беспрепятственно перейти из любой точки на рис. 12.11 к любой другой её точке. А так как двумерные мембраны, которые мы открыли, рассматривая E-гетеротические струны и струны типа IIA, нам будут сопутствовать при переходе к любой из трёх других формулировок, мы приходим к выводу, что двумерные мембраны на самом деле присущи любой из пяти формулировок теорий струн.

    Возникают два вопроса. Во-первых, являются ли двумерные мембраны подлинно фундаментальными объектами теории струн? Во-вторых, если вспомнить о смелом рывке от нульмерных точечных частиц к одномерным струнам в 1970-х и начале 1980-х гг. и учесть только что обсуждённые результаты о существовании двумерных мембран в теории струн, возможно ли, что в теории присутствуют объекты старших размерностей? На момент написания этой книги точные ответы ещё не известны, но ситуация, похоже, следующая.

    Чтобы разобраться в каждой из формулировок теории струн, не прибегая к теории возмущений, теоретики во многом опирались на принципы суперсимметрии. В частности, характеристики БПС-состояний, массы и заряды частиц в этих состояниях, однозначно определяются суперсимметрией, и это позволило понять некоторые свойства теории в области сильной связи без необходимости проведения прямых вычислений невообразимой сложности. На самом деле, благодаря пионерским работам Хоровица и Строминджера, а также последующей замечательной работе Польчински, о БПС-состояниях мы знаем даже больше. В частности, нам не только известны их заряды и массы, но имеется ясное представление о том, как эти состояния выглядят. И последнее, возможно, самое удивительное. Некоторые из БПС-состояний — одномерные струны. Другие представляют собой двумерные мембраны. Пока все действующие лица знакомы. И вот — сюрприз: некоторые состояния трёхмерны, четырёхмерны,... На самом деле диапазон возможных пространственных размерностей включает все значения до девяти включительно. Теория струн или теория, которую сейчас называют M-теорией (какое бы окончательное название ей ни дали), в действительности содержит протяжённые объекты целого ряда пространственных измерений. Протяжённые трёхмерные объекты физики назвали 3-бранами, протяжённые четырёхмерные — 4-бранами, и так далее до 9-бран (в общем случае для протяжённого объекта, имеющего p пространственных измерений, физики придумали не очень благозвучный термин p-брана). Иногда, используя эту терминологию, струны называют 1-бранами, а мембраны — 2-бранами. Тот факт, что все эти протяжённые объекты являются равноправными объектами теории, побудил Пола Таунсенда провозгласить «демократию бран».

    Несмотря на «демократию бран», струны, т. е. протяжённые одномерные объекты, всё-таки уникальны по следующей причине. Физики показали, что массы протяжённых объектов любой размерности, кроме одномерных струн, обратно пропорциональны значению соответствующей константы связи струны, если мы работаем в рамках любой из пяти теорий струн на рис. 12.11. Это означает, что в пределе слабой связи во всех пяти формулировках все объекты, кроме струн, будут иметь огромные массы, на порядки превышающие планковскую. Поэтому из формулы E = mc2 следует, что для их рождения потребуются огромные энергии, и они будут оказывать ничтожное влияние на законы физики (но не на все, как будет показано в следующей главе). Однако если двигаться вглубь от полуостровных областей на рис. 12.11, то браны старших размерностей станут легче, и будут играть всё более важную роль.{111}

    Таким образом, следует представлять себе такую картину: в центральной области на рис. 12.11 фундаментальными объектами теории являются не только струны и мембраны, а «браны» различных размерностей, и все они более или менее равноправны. Сейчас у нас нет ясного понимания многих свойств этой богатой теории. Одно мы знаем твёрдо: при движении от центральной области в сторону любого из полуостровов только струны или свёрнутые мембраны в обличье струн (рис. 12.7 и 12.8) оказываются достаточно лёгкими, чтобы сохраниться и привести к известной нам физике — частицам из табл. 1.1 и четырём типам взаимодействий. Подход теории возмущений, который физики использовали почти два десятилетия, был недостаточно гибок для того, чтобы выявить существование протяжённых объектов огромной массы и других размерностей. Центральным объектом анализа были струны, и теория получила далеко не демократическое название теории струн. Отметим ещё раз, что в этих областях рис. 12.11 для большинства исследований можно с полным основанием пренебречь всеми объектами, кроме струн. По существу, в предыдущих главах этой книги мы так и поступали. Однако сейчас мы видим, что теория оказалась в действительности богаче, чем кто-либо ранее предполагал.

    Помогает ли это в неразрешённых вопросах теории струн?

    И да, и нет. Нам удалось достичь более глубокого понимания, освободившись от некоторых выводов, которые, как стало ясно теперь, были следствиями использования теории возмущений, а не истинных принципов теории струн. Однако в настоящее время методы, позволяющие работать вне рамок теории возмущений, весьма ограничены. Открытие замечательной системы дуальных связей позволяет глубже постичь теорию струн, но многие вопросы остаются неразрешёнными. Например, мы ещё не знаем, как выйти за рамки приближённых уравнений для определения значения константы связи струны. Как обсуждалось выше, эти уравнения слишком грубые, чтобы из них можно было извлечь хоть какую-то полезную информацию. Нет у нас и существенных продвижений по вопросам о том, почему протяжённых пространственных измерений именно три или каким должен быть точный вид многообразия для свёрнутых измерений. Для ответа на эти вопросы нужны более отточенные инструменты исследований вне рамок теории возмущений, чем те, которыми мы сегодня обладаем.

    То, что действительно появилось, — это гораздо более глубокое понимание логической структуры и исследовательского диапазона теории струн. До открытий, итог которым подведён на рис. 12.11, поведение каждой теории струн в области сильной связи было полной загадкой. Как на средневековых картах, царство сильной связи было белым пятном, на которое, сообразно фантазии картографа, наносились изображения драконов и морских чудовищ. Но сейчас мы видим, что хотя путешествие в это царство может завести нас в неизведанные просторы M-теории, в конце концов мы снова выйдем в курортную зону слабой связи, где говорят на дуальном языке другой теории струн, ранее считавшейся совершенно непохожей.

    Дуальность и M-теория объединяют пять теорий струн, подталкивая к важному выводу. Может оказаться и так, что нас больше не поджидают удивительные открытия, сравнимые с описанными выше. Как только картограф обозначил все точки на глобусе Земли, глобус готов, и география исчерпана. Это не означает, что разведка местности в Антарктиде или на необитаемых островах в Микронезии лишены всякой научной или культурной ценности. Это означает лишь, что век географических открытий подошёл к концу. И свидетельством тому — отсутствие белых пятен на карте. «Теоретическая карта» на рис. 12.11 имеет для теоретиков, занимающихся струнами, такое же значение. Она покрывает все сферы теории, в которые можно попасть, отправляясь из области любой из пяти формулировок струн. И хотя нам далеко до полного понимания неизведанной M-теории, на карте нет белых пятен. Как и картограф, теоретик может теперь со сдержанным оптимизмом заявить, что весь спектр логически обоснованных теорий, вбирающих в себя все важные открытия прошлого века — специальную и общую теории относительности, квантовую механику, калибровочные теории сильного, слабого и электромагнитного взаимодействий, суперсимметрию, дополнительные измерения Калуцы и Клейна, — уже нанесён на карту рис. 12.11.

    Задача струнного теоретика (возможно, его уже нужно называть M-теоретиком) — показать, что некая точка на теоретической карте рис. 12.11 действительно описывает нашу Вселенную. Чтобы осуществить это, нужно найти исчерпывающие и точные уравнения, решения которых позволили бы поймать эту неуловимую точку на карте, а затем добиться понимания соответствующих физических явлений, достаточного для сравнения с экспериментом. По словам Виттена, «понимание того, чем в действительности является M-теория, т. е. какую физику она несёт в себе, повлияет на наше понимание природы не менее сильно, чем любое из главных научных потрясений прошлого».{112} В этом суть программы построения объединённой теории в XXI в.

    Глава 13. Чёрные дыры с точки зрения теории струн и M-теории

    Противоречия между общей теорией относительности и квантовой теорией, существовавшие до эры теории струн, были оскорблением наших врождённых эстетических представлений о том, что законы природы должны складываться в безупречно стройную и целостную систему. Но суть этих противоречий не сводилась к вопиющему несоответствию абстрактных принципов. Существовавшие в момент Большого взрыва и существующие сейчас внутри чёрных дыр экстремальные физические условия нельзя объяснить без помощи квантовой формулировки гравитационного взаимодействия. С появлением теории струн появилась и надежда устранить глубокий антагонизм между квантовой теорией и гравитацией. В этой и следующей главах мы опишем, насколько далеко удалось продвинуться физикам в понимании чёрных дыр и проблемы происхождения Вселенной.

    Чёрные дыры и элементарные частицы

    С первого взгляда трудно себе представить два более разобщённых понятия, чем чёрные дыры и элементарные частицы. Обычно мы представляем себе чёрные дыры самыми ненасытными из небесных тел, а элементарные частицы — самыми незаметными частицами материи. Однако исследования конца 1960-х и начала 1970-х гг., включая работы Деметриоса Христодулу, Вернера Израэля, Ричарда Прайса, Брендона Картера, Роя Керра, Дэвида Робинсона, Хокинга и Пенроуза, показали, что, возможно, чёрные дыры и элементарные частицы не так уж и различны, как это может показаться. Эти физики обнаружили весьма веские свидетельства в пользу того, что Джон Уилер суммировал фразой: «У чёрных дыр нет волос». Уилер имел в виду, что за вычетом небольшого числа отличительных особенностей все чёрные дыры выглядят одинаково. Какие же это отличительные особенности? Первая, конечно, это масса чёрной дыры. А остальные? Исследования показали, что ими являются электрический заряд и некоторые другие возможные заряды, а также её скорость вращения. И это всё. Любые две чёрные дыры с одинаковыми массами, зарядами и спинами совершенно идентичны. У чёрных дыр нет модных «причёсок», т. е. других присущих им свойств, по которым одну из них можно было бы отличить от другой. Для физика этот факт — удары в набат. Вспомним, что именно этими свойствами — массой, зарядом и спином — отличаются друг от друга элементарные частицы. Схожесть определяющих характеристик неоднократно приводила некоторых физиков к мысли о том, что чёрные дыры, в действительности, могут быть гигантскими элементарными частицами.

    Действительно, в теории Эйнштейна не существует ограничений на минимальную массу чёрной дыры. Согласно теории относительности, если сжать кусок вещества любой массы до достаточно малых размеров, то он превратится в чёрную дыру (чем меньше масса, тем сильнее его нужно сдавливать). Можно придумать мысленный эксперимент, в котором берутся сгустки материи всё меньшей массы, эти сгустки сжимаются до чёрных дыр всё меньших размеров и свойства таких чёрных дыр сравниваются со свойствами элементарных частиц. Из утверждения Уилера об отсутствии волос можно сделать вывод о том, что образованные таким способом чёрные дыры будут очень похожи на элементарные частицы. И те и другие выглядят как мельчайшие сгустки материи, полностью характеризующиеся массами, зарядами и спинами.

    Однако есть небольшая загвоздка. Чёрные дыры во Вселенной, массы которых во много раз больше массы Солнца, так велики и тяжелы, что для описания их свойств не нужна квантовая механика, и вполне достаточно уравнений общей теории относительности. (Здесь обсуждается общая структура чёрной дыры, а не область сингулярности внутри неё. Ввиду крошечных размеров этой области, здесь, несомненно, потребуется квантово-механическое описание.) Но размеры чёрных дыр уменьшаются по мере уменьшения их масс в нашем мысленном эксперименте, и в какой-то момент квантовая механика начинает играть роль. Это происходит, когда масса чёрной дыры становится порядка планковской. (С точки зрения физики элементарных частиц планковская масса велика и равна примерно 1019 массы протона, но с точки зрения физики чёрных дыр эта масса крайне мала.) Поэтому физики, рассуждавшие о возможном близком родстве между элементарными частицами и чёрными дырами, сразу же натыкались на несовместимость квантовой теории с теорией относительности, лежащей в основе описания чёрных дыр. В прошлом эта несовместимость парализовала продвижение теоретиков в таком захватывающе интересном направлении.

    Позволяет ли теория струн продвигаться вперёд?

    Да. Совершенно неожиданный и весьма утончённый подход к изучению чёрных дыр в рамках теории струн начинает давать первые теоретические обоснования взаимосвязи между чёрными дырами и элементарными частицами. Дорога к установлению этой взаимосвязи не всегда прямая, но она проходит по просторам ярких открытий в теории струн, и путешествие по ней не будет скучным.

    В качестве отправной точки рассмотрим похоже совсем несвязанный вопрос, который теоретики долбили со всех сторон с конца 1980-х гг. Математикам и физикам было давно известно, что при свёртывании шести пространственных измерений в многообразие Калаби–Яу существует два типа сфер, вложенных в структуру пространства. Сферы первого типа двумерные и похожи на поверхность надувного мяча. Они играли большую роль в обсуждении флоп-перестроек с разрывом пространства в главе 11. Другие сферы представить сложнее, но они встречаются столь же часто. Это трёхмерные сферы, подобные поверхностям надувных мячей, в которые играют на песчаных океанских пляжах во вселенной с четырьмя протяжёнными пространственными измерениями. Обычный же надувной мяч, естественно, является трёхмерным, и только его поверхность, как и поверхность Садового шланга, имеет два измерения. Любую точку на этой поверхности можно задать с помощью двух координат, например широты и долготы. Но сейчас мы хотим представить себе ещё одно измерение, так что мяч окажется четырёхмерным, а его поверхность — трёхмерной. А так как представить это визуально почти невозможно, мы, как правило, будем прибегать к наглядной аналогии в случае меньшего числа измерений. Однако, как мы сейчас увидим, одна черта трёхмерной природы сферических поверхностей имеет важнейшее значение.

    Изучая уравнения теории струн, физики осознали возможность и даже высокую вероятность того, что в процессе эволюции во времени эти трёхмерные сферы могут стягиваться, коллапсировать до исчезающе малых размеров. Но что произойдёт, задавались вопросом физики, если и структура пространства будет стягиваться аналогичным образом? Не приведёт ли такое сжатие пространства к каким-нибудь катастрофическим эффектам? Подобный вопрос уже ставился и был решён нами в главе 11, но там рассматривался только коллапс двумерных сфер, а сейчас наше внимание сосредоточено на изучении трёхмерных сфер. (Так же, как и в главе 11, поскольку стягивается лишь часть многообразия Калаби–Яу, а не всё пространство, то аргументы главы 10, позволяющие отождествить малые и большие радиусы, неприменимы.) И вот в чём состоит качественное отличие, связанное с изменением числа измерений.{113} Как описывалось в главе 11, важнейшим свойством движущихся струн является их способность экранировать двумерные сферы. Иными словами, двумерная мировая поверхность струны может целиком окружить двумерную сферу, как показано на рис. 11.6. Этого оказывается достаточно для защиты от катастрофических последствий, возможных при коллапсе двумерной сферы. Но сейчас мы рассматриваем другой тип сфер в пространстве Калаби–Яу, и у этих сфер слишком много измерений, чтобы движущаяся струна могла их окружить. Если понимание последнего утверждения вызывает у читателя сложности, можно без проблем рассмотреть аналогию с числом размерностей на единицу меньше. Трёхмерные сферы можно представлять себе в виде двумерных поверхностей надувного мяча, если при этом одномерные струны рассматривать в качестве нульмерных точечных частиц. Ясно, что нульмерная точечная частица не сможет окружить двумерную сферу, поэтому одномерная струна не сможет опоясать трёхмерную сферу.

    Подобные рассуждения привели теоретиков к выводу, что при коллапсе трёхмерной сферы внутри пространства Калаби–Яу (который вполне допускается приближёнными уравнениями, если вообще не является рядовым явлением в теории струн) возможны катастрофические последствия. Действительно, из известных к середине 1990-х гг. приближённых уравнений теории струн, казалось бы, следовало, что если такой коллапс случится, Вселенной придёт конец: некоторые расходимости, которые сокращаются в теории струн, в случае подобного перетягивания структуры пространства перестанут сокращаться. Несколько лет физикам приходилось мириться с этим неприятным, хотя и не окончательно установленным фактом. Но в 1995 г. Эндрю Строминджер показал, что подобные предсказания неверны, и конец света ещё далёк.

    Строминджер, следуя более ранней потрясающей работе Виттена и Зайберга, опирался на то, что теория струн в свете новых открытий, сделанных во время второй революции в теории суперструн, не есть лишь теория одномерных струн. Он рассуждал так. Одномерная струна, т. е. 1-брана на новом языке теоретиков, может полностью окружить одномерный пространственный объект, например изображённую на рис. 13.1 окружность. (Отметим различие с рис. 11.6, где одномерная движущаяся во времени струна опоясывала двумерную сферу. Рис. 13.1 можно рассматривать в качестве мгновенной фотографии.) Аналогично, на рис. 13.1 видно, что двумерная мембрана, т. е. 2-брана, может обернуть и полностью покрыть собой двумерную сферу, подобно тому, как полиэтиленовая плёнка плотно обёртывает поверхность апельсина. По аналогии Строминджер предположил, что открытые недавно трёхмерные объекты теории струн, т. е. 3-браны, могут окутывать и полностью покрывать собой трёхмерные сферы, хотя это и сложно представить себе наглядно. Ясно ощутив эту аналогию и выполнив простые стандартные расчёты, Строминджер показал, что 3-брана является как на заказ скроенным экраном, в точности компенсирующим потенциально катастрофические последствия возможного коллапса трёхмерной сферы, которых так боялись физики.

    Рис. 13.1. Струна может обернуть одномерный свёрнутый элемент пространства, а двумерной мембраной можно обернуть двумерный объект

    Это был прекрасный и важный результат. Но вся его сила открылась лишь некоторое время спустя.

    Убеждённо разрывая ткань пространства

    У физики есть одна захватывающая особенность: уровень понимания этой науки может измениться буквально за одну ночь. На следующее утро после того, как Строминджер послал свою статью в электронную базу данных, я скачал её из Интернета и прочёл в своём кабинете в Корнелле. Используя новые достижения теории струн, Строминджер одним махом разрешил считавшийся одним из самых запутанных вопрос о свёртывании лишних измерений в пространство Калаби–Яу. Но после того как я разобрался в статье, мне пришло в голову, что он, возможно, раскрыл лишь половину того, что могло стоять за этой проблемой.

    В описанной в главе 11 более ранней работе о флоп-перестройках с разрывом пространства мы исследовали двухэтапный процесс, в котором двумерная сфера стягивается в точку, приводя к разрыву структуры пространства, а затем раздувается по другим законам, приводя к восстановлению этой структуры. В своей статье Строминджер исследовал, что происходит при сжатии в точку трёхмерной сферы; он показал, что благодаря открытым недавно протяжённым объектам в теории струн физические свойства остаются хорошо определёнными. И на этом его работа заканчивалась. Но нельзя ли исследовать второй этап, включающий, как и ранее, разрыв пространства и его последующее восстановление путём раздутия сфер?

    Во время весеннего семестра 1995 г. у меня в Корнелле гостил Дейв Моррисон, и в тот день мы встретились, чтобы обсудить статью Строминджера. Через пару часов нам в общих чертах уже было понятно, что представляет собой второй этап. Вспомнив как Канделас, Грин и Тристан Хюбш (в то время работавший в Техасском университете в Остине) использовали некоторые результаты конца 1980-х гг., полученные математиками Гербом Клеменсом из университета штата Юта, Робертом Фридманом из Колумбийского университета и Майлсом Рейдом из университета в Уорвике, мы поняли, что при коллапсе трёхмерной сферы возможен разрыв пространства Калаби–Яу и его последующее восстановление при повторном раздутии сферы. Но здесь нас ожидал сюрприз. Коллапсирующая сфера имела три измерения, а раздувающаяся — всего лишь два. Сложно описать, как это выглядит, но можно проиллюстрировать идею, пользуясь аналогией с меньшим числом измерений. Вместо того чтобы пытаться представить коллапс трёхмерной сферы и её замещение двумерной сферой, представим себе коллапс одномерной сферы и её замещение нульмерной.

    Прежде всего, что такое одномерная или нульмерная сфера? Будем рассуждать по аналогии. Двумерная сфера — это совокупность точек трёхмерного пространства, расположенных на одинаковых расстояниях от выбранного центра, как показано на рис. 13.2а. По аналогии с этим, одномерная сфера есть совокупность точек двумерного пространства (например, поверхности этой страницы), расположенных на одинаковых расстояниях от выбранного центра. Как показано на рис. 13.2б, это просто окружность. Наконец, согласно той же аналогии нульмерная сфера есть совокупность точек одномерного пространства (прямой линии), расположенных на одинаковых расстояниях от общего центра. Таким образом, аналогия с меньшим числом измерений, упоминавшаяся в предыдущем параграфе, приводит к окружности (одномерной сфере), которая стягивается, затем происходит разрыв пространства, и окружность замещается нульмерной сферой (двумя точками). На рис. 13.3 иллюстрируется конкретная реализация этой абстрактной идеи.

    Рис. 13.2. Сферы разных размерностей, допускающих наглядное изображение: а) двумерная, б) одномерная, в) нульмерная

    Рис. 13.3. Окружность в обхвате баранки (тора) коллапсирует в точку. Поверхность рвётся, и образуются два прокола. В них «вклеивается» нульмерная сфера (две точки), которая замещает исходную одномерную сферу (окружность) и восстанавливает порванную поверхность. При этом становится возможным преобразование в фигуру совершенно иной формы — надувной мяч

    Предположим, что сначала имеется поверхность тора (баранки), в которую вложена одномерная сфера (окружность) — она выделена на рис. 13.3. Теперь представим, что с течением времени эта окружность стягивается, и структура пространства рвётся. Можно восстановить пространство, позволив ему разорваться лишь на мгновение и заменив сжатую одномерную сферу (стянутую окружность) нульмерной сферой — двумя точками, затыкающими отверстия в верхней и нижней части образовавшейся после разрыва фигуры. Как показано на рис. 13.3, в результате получится фигура, похожая на кривой банан, которую затем можно постепенно и гладко (без разрывов пространства) продеформировать в поверхность надувного мяча. В итоге мы видим, что при коллапсе одномерной сферы и замещении её нульмерной топология исходного тора, т. е. его фундаментальная форма, радикально изменяется. В контексте свёрнутых пространственных измерений эволюция с разрывом пространства, изображённая на рис. 13.3, привела бы вселенную, показанную на рис. 8.8, к виду на рис. 8.7.

    И хотя всё это лишь аналогия с меньшим числом измерений, здесь улавливаются основные идеи нашей с Моррисоном гипотезы о втором этапе, продолжающем исследования Строминджера. Нам казалось, что после коллапса трёхмерной сферы внутри пространства Калаби–Яу пространство должно разорваться, а затем само собой восстановиться путём отращивания двумерной сферы, приводя к гораздо более серьёзным изменениям топологии, чем те, которые Виттен и мы обнаружили в наших предыдущих работах (см. главу 11). При этом одно многообразие Калаби–Яу может, по существу, превратиться в совершенно иное многообразие Калаби–Яу (подобно тому, как тор превратился в сферу на рис. 13.3), но физические характеристики будут по-прежнему хорошо определены. Хотя картина начала вырисовываться, мы знали, что потребуется проработать некоторые важные моменты до того, как можно будет заявить о том, что на нашем втором этапе не возникают сингулярности, т. е. пагубные и неприемлемые для физики последствия. В тот вечер мы оба отправились домой в приподнятом настроении, ощущая близость нового важного результата.

    Шквал электронной почты

    На следующее утро я получил по электронной почте письмо от Строминджера, спрашивавшего о моей реакции на его статью. Он упомянул, что эта статья «должна быть как-то связана с Вашей работой вместе с Аспинуоллом и Моррисоном». Как выяснилось, он тоже исследовал возможную связь с эффектом изменения топологии. Я немедленно написал ему, очертив грубую схему, к которой мы с Моррисоном пришли накануне. Его ответ показал, что он возбуждён не меньше, чем мы с Моррисоном после вчерашней встречи.

    На протяжении следующих нескольких дней между нами троими циркулировал непрерывный поток электронной почты: мы лихорадочно пытались строго на цифрах обосновать идею о радикальном изменении топологии при разрыве пространства. Медленно, но верно, всё вставало на свои места. К следующей среде, через неделю после того, как Строминджер опубликовал свой результат в Интернете, у нас был набросок совместной статьи, в котором описывалось новое поразительное преобразование структуры пространства после коллапса трёхмерной сферы.

    На следующий день у Строминджера был запланирован доклад на семинаре в Гарварде, и рано утром он вылетел из Санта-Барбары. Мы договорились, что Моррисон и я будем оттачивать последние детали нашей статьи и к вечеру пошлём её в электронный архив. К 23:45 я проверил и перепроверил все наши вычисления — всё прекрасно сходилось. Поэтому я отослал статью и отправился в корпус физики. Пока мы с Моррисоном шли к машине (я собирался подбросить его до дома, который он снял до конца семестра), наш разговор перешёл в спор, в котором мы сами для себя играли роль критиков, изо всех сил пытающихся доказать, что наши результаты неверны. Пока мы выруливали со стоянки и выезжали с территории университета, мы поняли, что при всей силе и убедительности нашей аргументации, она не является совершенно пуленепробиваемой. Никто из нас не сомневался, что работа безошибочна, но нам пришлось признать, что сила наших доводов и отдельные выбранные нами словесные формулировки в некоторых местах статьи могут дать повод для яростных споров, завуалировав важность полученных результатов. Мы сошлись на том, что при подготовке статьи следует придерживаться более скромной позиции и снизить напор наших доводов: это позволило бы физикам самим оценить достоинства статьи, не втягиваясь в возможные дискуссии по поводу того, в какой форме наши результаты представлены.

    По дороге Моррисон напомнил мне, что по правилам электронного архива мы можем редактировать статью до двух ночи, после чего она будет выложена для общего доступа. Я немедленно повернул машину, и мы помчались обратно в корпус физики. Мы забрали первоначальный вариант статьи и стали думать о том, как смягчить её стиль. К счастью, всё было довольно просто. Замена нескольких слов в особо ответственных параграфах сгладила резкие углы нашей аргументации без ущерба для содержания работы. Через час мы отослали статью снова и договорились не упоминать о ней всю дорогу до дома Моррисона.

    Ещё до полудня следующего дня стало ясно, что реакция на статью весьма активная. Среди многих ответов по электронной почте было и письмо Плессера. В нём содержалась наивысшая похвала, которой один физик может удостоить другого: «Как жаль, что эта мысль пришла в голову не мне!». Несмотря на наши опасения предыдущей ночи, нам удалось убедить сообщество физиков в том, что структура пространства может подвергаться не только открытым ранее умеренным разрывам (см. главу 11), но и гораздо более сильным, изображённым на рис. 13.3.

    Снова о чёрных дырах и элементарных частицах

    Есть ли у всего этого какая-нибудь связь с чёрными дырами и элементарными частицами? Таких связей множество. Чтобы это понять, нужно задаться тем же вопросом, что и в главе 11. К каким наблюдаемым следствиям приведут такие разрывы структуры пространства? Для флоп-перестроек, обсуждавшихся выше, неожиданно оказывается, что нет практически никаких наблюдаемых последствий. В случае конифолдных переходов — такое название мы дали недавно переходам с сильным разрывом пространства, — как и ранее, не происходит никакой физической катастрофы (она случилась бы в традиционной теории относительности), но здесь имеется больше ярко выраженных наблюдаемых последствий.

    Наблюдаемые последствия основаны на двух связанных идеях. Рассмотрим их по очереди. Во-первых, как обсуждалось выше, суть исходной работы Строминджера состояла в открытии того, что трёхмерная сфера внутри пространства Калаби–Яу может коллапсировать без возникновения катастрофы, так как обёртывающая её 3-брана служит надёжным защитным экраном. Но как выглядит эта конструкция с обёрнутой вокруг сферы 3-браной? Ответ даёт более ранняя работа Хоровица и Строминджера, в которой показано, что для существ типа нас с вами, органам чувств которых прямо доступны лишь три развёрнутых пространственных измерения, «оборачивающиеся» вокруг трёхмерной сферы 3-браны предстанут в виде гравитационного поля сродни полю чёрной дыры.{114} Этот факт не очевиден, и становится ясен только после тщательного изучения описывающих браны уравнений. Здесь, как и выше, сложно изобразить многомерную конфигурацию на двумерном рисунке, но примерное представление по аналогии с двумерными сферами можно получить из рис. 13.4. Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби–Яу, находящегося в некоторой точке пространства развёрнутых измерений). Некто, наблюдающий эту точку сквозь развёрнутые измерения, почувствует брану по её массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним чёрная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса чёрной дыры, пропорциональна объёму трёхмерной сферы, которую она обёртывает. Чем больше объём сферы, тем больше должна быть обёртывающая её 3-брана, и тем больше её масса. Аналогично, чем меньше объём сферы, тем меньше масса обёртывающей её 3-браны. По мере сжатия сферы обёртывающая её 3-брана, которая выглядит, как чёрная дыра, становится легче. В момент, когда трёхмерная сфера стягивается в точку, соответствующая чёрная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это ещё за безмассовая чёрная дыра?), но чуть ниже мы свяжем этот загадочный феномен со знакомой физикой струн.

    Рис. 13.4. Когда брана обёртывает сферу, покоящуюся в свёрнутых измерениях, она выглядит как чёрная дыра в обычных пространственных измерениях

    Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби–Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трёхмерной сферы в свёрнутых измерениях Калаби–Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведённый на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)

    Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби–Яу при постепенном уменьшении размеров некоторой сидящей внутри трёхмерной сферы. Из первой идеи следует, что масса 3-браны, обёртывающей трёхмерную сферу и кажущейся нам чёрной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства, на микроскопических масштабах описывает безмассовую частицу, в которую превращается чёрная дыра. Вывод такой: при эволюции многообразия Калаби–Яу, сопровождающейся конифолдным переходом с разрывом пространства, изначально ненулевая масса чёрной дыры уменьшается до нуля, после чего чёрная дыра превращается в безмассовую частицу (подобную фотону), которая на языке теории струн описывается определённой колебательной модой струны. Таким образом, в теории струн впервые удаётся установить прямую, точную и количественно неопровержимую связь между чёрными дырами и элементарными частицами.

    «Таяние» чёрных дыр

    Найденная связь между чёрными дырами и элементарными частицами по своей природе близка классу явлений, которые мы наблюдаем в повседневной жизни, и которые в физике называют фазовыми переходами. Простой пример фазового перехода упоминался в предыдущей главе: вода может существовать в твёрдом состоянии (лёд), в жидком состоянии (жидкая вода) или в газообразном состоянии (пар). Эти состояния называют фазами воды, а превращения из одного состояния в другое — фазовыми переходами. Моррисон, Строминджер и я показали, что между фазовыми переходами и конифолдными переходами многообразий Калаби–Яу существует тесная математическая и физическая связь. Так же, как не видевшее жидкой воды или твёрдого льда существо не поймёт, что перед ним две фазы одного вещества, физики ранее не понимали, что изучавшиеся ими чёрные дыры и элементарные частицы являются двумя фазами одной струнной материи. Подобно тому, как температура определяет фазу, в которой при нормальном давлении находится вода, топологический вид дополнительных измерений Калаби–Яу определяет то, в каком обличии предстанут перед нами определённые физические конфигурации в теории струн: как чёрные дыры или как элементарные частицы. В первой фазе — исходное многообразие Калаби–Яу (для определённости, аналог льда) — будет обнаружено присутствие чёрных дыр. Во второй фазе — другое многообразие Калаби–Яу (аналог воды) — чёрные дыры подверглись фазовому переходу, «растаяли», и перешли в фундаментальные колебательные моды струны. Разрывы пространства при конифолдных переходах переводят многообразия Калаби–Яу из одной фазы в другую. Так что чёрные дыры и элементарные частицы, как вода и лёд, являются двумя сторонами одной монеты. Мы видим, что чёрные дыры хорошо вписываются в формализм теории струн.

    Для кардинальных переходов с разрывом пространства и для переходов от одной из пяти формулировок теории струн к другой (см. главу 12) умышленно использовалась одна и та же аналогия с водой, так как эти переходы тесно связаны. Вспомним (см. рис. 12.11), что пять теорий струн дуальны друг другу и, следовательно, объединены под эгидой охватывающей их единой теории. Но сохранится ли возможность непрерывного перехода от одного описания к другому, т. е. возможность попасть в любую точку карты рис. 12.11 из любой другой, и после того, как мы будем свёртывать лишние измерения в разные многообразия Калаби–Яу? До открытия переходов с кардинальным изменением топологии ожидаемый ответ был отрицательным, так как до этого открытия не было известно, как деформировать одно многообразие Калаби–Яу в другое. Однако сейчас мы видим, что ответ положительный. Путём физически допустимых конифолдных переходов с разрывом пространства можно непрерывно преобразовать любое заданное многообразие Калаби–Яу в любое другое. Все струнные модели, полученные изменениями константы связи и геометрии пространства Калаби–Яу, будут разными фазами единой теории. Целостность схемы рис. 12.11 сохранится даже после сворачивания всех дополнительных измерений.

    Энтропия чёрной дыры

    Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между чёрными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является энтропия чёрной дыры. Именно в области изучения энтропии чёрной дыры теория струн наиболее выразительно продемонстрировала свою гибкость и дала возможность разрешить важнейшую проблему, поставленную ещё четверть века назад.

    Энтропия — это мера беспорядка или хаотичности. Например, если рабочее место завалено открытыми книгами, недочитанными статьями, старыми газетами и ещё не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет высокую энтропию. И наоборот, если статьи рассортированы по темам в разные папки, газеты аккуратно разложены по номерам, книги расставлены по алфавиту, а все ручки и карандаши стоят в своих подставках, то рабочее место находится в хорошем порядке, и имеет низкую энтропию. Этот пример иллюстрирует суть понятия энтропии, однако учёные дали ей строгое количественное определение, позволяющее описывать энтропию тел с помощью численных значений. Чем больше численное значение, тем больше энтропия, и наоборот. Хотя подробности вычислений не очень просты, это число, грубо говоря, равно числу всевозможных перегруппировок элементов данной физической системы, при которых её общий вид не изменяется. Если рабочее место прибрано, то почти всякая перестановка — изменение порядка газет, книг, статей, или перемещение ручки из держателя на стол — приведёт к нарушению порядка. С другой стороны, если на рабочем месте беспорядок, то при множестве вариантов перекладываний газет, статей и т. д. беспорядок так и останется беспорядком, и общий вид рабочего места не изменится. Поэтому в последнем случае энтропия велика.

    Конечно, примеру перегруппировки предметов на рабочем месте с его нечётким определением того, какие именно перегруппировки «не изменяют общий вид», не достаёт научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово-механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах.

    В 1970 г. Якоб Бекенштейн, в то время учившийся в аспирантуре Принстонского университета у Джона Уилера, сделал смелое предположение. Он выдвинул замечательную идею о том, что чёрные дыры обладают энтропией, которая очень велика. Бекенштейн опирался на общепризнанное и хорошо проверенное второе начало термодинамики, согласно которому энтропия системы постоянно растёт. Всё движется в направлении ещё большего беспорядка. Даже если физик сделает, наконец, уборку своего рабочего места, уменьшив энтропию, полная энтропия, в которую входит энтропия самого физика и энтропия воздуха в комнате, увеличится. Действительно, на уборку рабочего места уходит энергия, и эта энергия вырабатывается внутри тела физика при расщеплении молекул в упорядоченных жировых складках тела, переходя в мускульную силу. Кроме того, при уборке его тело отдаёт теплоту, и окружающие молекулы воздуха увеличивают скорость, приводя к увеличению беспорядка. Если учесть все подобные эффекты, они с лихвой компенсируют уменьшение энтропии рабочего места, так что полная энтропия возрастёт.

    Но что произойдёт, рассуждал далее Бекенштейн, если сделать уборку рабочего места вблизи горизонта событий чёрной дыры и откачать насосом все разогнанные молекулы, образовавшиеся во время уборки, в бездонный омут чёрной дыры? Можно поступить ещё более радикально: откачать весь воздух, всё содержимое рабочего стола вместе со столом, да и самого бедного физика, оставив пустую, зато идеально прибранную комнату. Так как очевидно, что энтропия в комнате уменьшится, Бекенштейн пришёл к выводу, что второе начало термодинамики не будет нарушено лишь в случае, если у чёрной дыры тоже есть энтропия, и эта энтропия постоянно растёт по мере засасывания в чёрную дыру материи, компенсируя наблюдаемое уменьшение энтропии снаружи чёрной дыры.

    На самом деле Бекенштейну для усиления своей аргументации удалось даже привлечь знаменитый результат Стивена Хокинга, который показал, что площадь горизонта событий чёрной дыры, т. е. площадь поверхности вокруг чёрной дыры, после пересечения которой нет пути назад, всегда увеличивается при любых физических взаимодействиях. Хокинг продемонстрировал, что если в чёрную дыру попадёт астероид, или если на чёрную дыру попадёт излучение с поверхности близкой звезды, или если две чёрные дыры столкнутся и объединятся, то полная площадь горизонта событий чёрной дыры обязательно увеличится. Для Бекенштейна неуёмный рост этой площади был связующим звеном с неумолимым ростом энтропии согласно второму началу термодинамики. Он предположил, что площадь горизонта событий чёрной дыры и есть точная мера её энтропии.

    Однако при ближайшем рассмотрении можно найти два объяснения тому, почему большинство физиков считали, что идея Бекенштейна неверна. Во-первых, чёрные дыры кажутся одними из наиболее упорядоченных и организованных объектов во всей Вселенной. Как только измерена масса, заряд и спин чёрной дыры, её точную идентификацию можно считать завершённой. При столь малом числе определяющих свойств кажется, что у чёрных дыр нет достаточной структуры, в которой мог бы возникнуть беспорядок. Чёрные дыры казались слишком простыми для поддержания беспорядка: если на столе лежат лишь книга и карандаш, трудно разгуляться и устроить на нём хаос. Вторая причина того, что аргументы Бекенштейна воспринимались плохо, заключается в следующем. Как обсуждалось выше, энтропия является квантово-механическом понятием, а чёрные дыры до последнего времени относили к враждебному лагерю традиционной общей теории относительности. В начале 1970-х гг., когда ещё не был известен способ объединения теории относительности и квантовой теории, обсуждение энтропии чёрной дыры казалось, по меньшей мере, нелепым.

    Насколько черно чёрное?

    Оказалось, что Хокинг тоже думал о схожести закона об увеличении площади горизонта чёрной дыры и закона о неминуемом росте энтропии, но решил, что эта аналогия есть просто совпадение, и выбросил её из головы. В конце концов, рассуждал Хокинг, если принимать аналогию между чёрными дырами и термодинамикой всерьёз, придётся не только отождествить площадь горизонта событий чёрной дыры с энтропией, но при этом, как следовало из его работ и совместных работ с Джеймсом Бардином и Брендоном Картером, приписать чёрной дыре температуру (точное значение которой определялось бы напряжённостью гравитационного поля на горизонте событий). А если у чёрной дыры есть сколь угодно малая ненулевая температура, то она, в соответствии с фундаментальными и хорошо установленными физическими принципами, должна излучать энергию, подобно раскалённому металлическому пруту. Но чёрные дыры — чёрные, и по определению не могут ничего излучать. Хокинг и почти все остальные сошлись на том, что данный факт, несомненно, позволяет исключить из рассмотрения утверждение Бекенштейна. И Хокинг начал склоняться к мысли о том, что если несущая энтропию материя попадает в чёрную дыру, то энтропия теряется, и дело с концом. Так что нечего говорить о втором начале термодинамики.

    Так продолжалось до конца 1974 г., когда Хокинг обнаружил нечто совершенно поразительное. Чёрные дыры, объявил Хокинг, не совсем чёрные. Если пренебречь квантовыми эффектами и опираться только на традиционную общую теорию относительности, то чёрные дыры, как было обнаружено ещё шестьдесят лет назад, конечно, не дадут ничему, даже свету, вырваться из своих гравитационных объятий. Но учёт квантово-механических эффектов сильно меняет картину. Даже не обладая квантово-механическим вариантом общей теории относительности, путём ухищрённых приёмов Хокинг сумел построить частичное объединение двух теорий: оно было применимо лишь к небольшому числу ситуаций, но давало надёжные результаты. И наиболее важным из них был результат о том, что на квантовом уровне чёрные дыры действительно излучают.

    Расчёты очень длинны и сложны, но основная идея Хокинга проста. Как обсуждалось выше, согласно соотношению неопределённостей даже в пустом пространстве кишит рой виртуальных частиц, на мгновение вырывающихся из вакуума и аннигилирующих друг с другом. Этот хаотический процесс происходит и снаружи чёрной дыры, рядом с её горизонтом событий. И Хокинг понял, что гравитационная сила чёрной дыры может передать энергию паре виртуальных частиц, засасывая внутрь себя одну частицу из пары. Если одна из частиц исчезла в бездне чёрной дыры, то вторая остаётся без партнёра, с которым она может аннигилировать. Вместо этого, как показал Хокинг, уцелевшей частице передаётся энергия гравитационного поля чёрной дыры и, пока её партнёра засасывает в бездну, она выталкивается прочь от чёрной дыры. Хокинг понял, что для наблюдателя, уютно устроившегося на безопасном расстоянии от чёрной дыры, и регистрирующего совокупный результат этого непрерывно происходящего вокруг чёрной дыры разлучения пар, будет казаться, что из чёрной дыры исходит непрерывное излучение. Чёрные дыры светятся.

    Более того, Хокингу удалось вычислить температуру, которую наблюдатель приписал бы этому излучению: оказалось, что она определяется напряжённостью гравитационного поля на горизонте чёрной дыры, в точном согласии с аналогией между чёрными дырами и термодинамикой.{115} Бекенштейн был прав, и результаты Хокинга показали, что его аналогию следует воспринимать всерьёз. На самом деле результаты показали, что это даже не аналогия — это тождественность. У чёрной дыры есть энтропия. У чёрной дыры есть температура. И законы физики гравитации чёрной дыры — не что иное, как законы термодинамики в крайне необычных условиях. В этом состоял ошеломляющий результат исследований Хокинга 1974 г.

    Чтобы читатель понял, о каких масштабах величин идёт речь, приведём пример: чёрная дыра с массой, втрое превышающей массу Солнца, будет, после учёта всех эффектов, иметь температуру примерно 10?8 K. Не нуль — но только чуть теплее. Чёрные дыры не точно черны — но только чуть светлее. К сожалению, по этой причине излучение чёрной дыры очень слабое, и его невозможно обнаружить экспериментально. Однако есть исключение. Из вычислений Хокинга следует ещё один факт: чем меньше масса чёрной дыры, тем выше её температура, и тем сильнее её излучение. Например, излучение чёрной дыры массой с небольшой астероид сравнимо с излучением водородной бомбы мощностью в миллион мегатонн, причём это излучение сконцентрировано на шкале электромагнитных волн в гамма-области. Ночами астрономы пытались поймать такое излучение, но улов был невелик: лишь несколько кандидатов с малыми шансами на успех. Это наводит на мысль, что если чёрные дыры с такими малыми массами и существуют, то они крайне редки.{116} Как часто шутит Хокинг, это плохо, так как если бы предсказанное излучение чёрных дыр обнаружили, Нобелевская премия была бы ему гарантирована.{117}

    По сравнению с этой мизерной температурой в миллионные доли градуса, вычисление энтропии чёрной дыры массой три массы Солнца даёт грандиозное число: единицу с 78 нулями! И чем массивнее дыра, тем энтропия больше. Успех расчётов Хокинга недвусмысленно показывает, какой несусветный беспорядок творится внутри чёрной дыры.

    Но беспорядок чего? Как мы видели, чёрные дыры — крайне примитивные объекты, в чём же причина этого беспорядка? Здесь расчёты Хокинга полностью немы. Его частичное объединение теории относительности и квантовой теории можно использовать для вычисления значения энтропии чёрной дыры, но постичь её микроскопический смысл с помощью такой теории невозможно. Почти четверть века величайшие физики пытались понять, какими микроскопическими свойствами чёрных дыр можно объяснить такое значение их энтропии. Без действительно надёжного сплава общей теории относительности и квантовой теории могли возникать проблески ответа, но тайна так и оставалась нераскрытой.

    Ваш выход, теория струн!

    Но так было до конца 1996 г., пока Строминджер и Вафа, опираясь на более ранние результаты Сасскинда и Сена, не написали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга», появившуюся в электронном архиве статей по физике. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга и наносил последние штрихи на картину, начатую более двадцати лет назад.

    Строминджер и Вафа сосредоточили внимание на так называемых экстремальных чёрных дырах. Такие чёрные дыры наделены зарядом (можно считать его электрическим зарядом) и, кроме того, имеют наименьшую возможную массу, совместимую с этим зарядом. Как видно из приведённого определения, подобные чёрные дыры тесно связаны с рассмотренными в главе 12 БПС-состояниями. И Строминджер с Вафой выжали из этой связи всё, что могли. Они продемонстрировали, что можно построить (теоретически, разумеется) экстремальные чёрные дыры, если выбрать конкретный набор БПС-бран (определённых размерностей), а затем связать эти браны, действуя по точной математической схеме. Строминджер и Вафа показали, что подобно тому, как можно построить (ещё раз, теоретически!) атом, если взять набор кварков и электронов, а затем точно сгруппировать их в протоны и нейтроны с вращающимися по орбитам электронами, некоторые из недавно обнаруженных компонентов теории струн можно слепить вместе и получить определённые чёрные дыры.

    В реальном мире образование чёрных дыр является только одним из возможных вариантов гибели звёзд. После того, как за миллиарды лет ядерного синтеза звезда сжигает весь запас ядерного топлива, она оказывается неспособной далее компенсировать сжимающую громадную силу гравитации направленным наружу давлением. Для широкого класса условий это приводит к катастрофическому взрыву огромной массы звезды: под действием собственной силы тяжести она коллапсирует, образуя чёрную дыру. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили «конструктивный» подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать (в воображении теоретика) по строгому набору правил — путём кропотливой, неспешной и дотошной сборки в один механизм точного набора бран, открытых во время второй революции в теории суперструн.

    Сила этого подхода сразу стала очевидной. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры, Строминджер и Вафа смогли легко вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией, предсказанной Бекенштейном и Хокингом. При этом обнаружилось идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена.{118}

    Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Наше понимание теории струн до сих пор остаётся слишком грубым для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Но сейчас видно, что теория струн даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. И это свойство чёрных дыр тесно связано с предсказанием Хокинга об их излучении, которое, в принципе, может быть проверено экспериментально. Последнее, разумеется, означает, что сначала нужно точно зарегистрировать на небе чёрную дыру, а затем сконструировать оборудование, достаточно чувствительное для регистрации её излучения. Если бы чёрные дыры были не такими чёрными, то сделать это можно было бы уже сегодня. Несмотря на то, что экспериментальная программа ещё не увенчалась успехом, полученный результат говорит о том, что пропасть между теорией струн и реальностью можно преодолеть. Даже Шелдон Глэшоу, убеждённый противник теории струн в 1980-е гг., недавно признался, что «когда струнные теоретики говорят о чёрных дырах, речь идёт едва ли не о наблюдаемых явлениях, и это впечатляет».{119}

    Нераскрытые тайны чёрных дыр

    Даже после этого впечатляющего прогресса остаются две важнейшие проблемы, связанные с чёрными дырами. Первая связана с тем, что понятие чёрной дыры изменяет наши представления о детерминизме. В начале XIX в. французский математик Пьер Симон Лаплас огласил строгие и далеко идущие последствия для нашей Вселенной, вытекающие из законов Ньютона: «Знание, которое в данный момент способно было бы узреть все силы, движущие природой, как и их обстоятельства у истоков сего движения, будь знание это к тому же столь велико, что все данные можно было бы подвергнуть анализу, охватило бы одной формулой и движения величайших тел во Вселенной, и движения легчайших атомов. Для знания такого ничто не было бы неясным, и будущее, равно как и прошлое, открылось бы его взору».{120}

    Другими словами, если в некоторый момент известны положения и скорости всех частиц во Вселенной, с помощью законов Ньютона можно определить (по крайней мере, в принципе) их положения и скорости для любого момента времени в прошлом или в будущем. С этой точки зрения все без исключения события, будь то образование Солнца, распятие Христа или все наши телодвижения в этом мире, строго вытекают из точных значений координат и скоростей частиц Вселенной в момент после Большого взрыва. В этой жёсткой, не допускающей отклонений модели эволюции Вселенной встаёт множество запутанных философских проблем, связанных с вопросом о свободе выбора, но их актуальность сильно снизилась после открытия квантовой механики. Как обсуждалось, соотношение неопределённостей Гейзенберга подрывает детерминизм Лапласа, так как в принципе нельзя узнать точные положения и скорости элементов Вселенной. На смену классическому пришло описание в терминах волновых функций, в котором можно рассуждать лишь о вероятностях того, что данная частица находится в том или ином месте, либо имеет ту или иную скорость.

    Однако низвержение аргументов Лапласа не было полным крахом концепции детерминизма. Волновые функции, описывающие вероятности в квантовой механике, изменяются во времени по совершенно определённым математическим правилам, таким, как уравнение Шрёдингера (или его более точные релятивистские обобщения, например уравнение Дирака и уравнение Клейна–Гордона). Это говорит о том, что классический детерминизм Лапласа заменяется квантовым детерминизмом. Зная волновые функции всех фундаментальных объектов Вселенной в определённый момент времени, «достаточно обширный разум» может определить волновые функции в любой предшествующий или последующий момент. Квантовый детерминизм утверждает, что вероятность определённого события в выбранный момент времени в будущем полностью определяется знанием волновых функций в любой предшествующий момент. Вероятностная картина квантовой механики существенно смягчает детерминизм Лапласа, замещая неизбежность исходов их возможностью, однако последняя полностью определяется в общепринятом формализме квантовой теории.

    В 1976 г. Хокинг объявил, что даже этот смягчённый вариант детерминизма нарушается из-за существования чёрных дыр. Эти вычисления, как и вычисления энтропии, были невероятно сложными, но главная мысль легко уловима. Если какой-нибудь объект попадает в чёрную дыру, туда же отправляется и его волновая функция. Но это означает, что наш «достаточно обширный разум», пытающийся определить волновые функции для будущих моментов, будет фатально сбит с толку чёрной дырой. Чтобы полностью предсказать то, что будет завтра, сегодня нам нужно знать все волновые функции. И если некоторые из них сгинули в омуте чёрной дыры, то содержащаяся в них информация потеряна.

    На первый взгляд это осложнение, вызванное существованием чёрных дыр, может показаться несущественным. Всё, что скрылось за горизонтом событий чёрной дыры, отрезано от остального мира — так не проще ли вообще забыть об объектах, которых угораздило туда попасть? Кроме того, рассуждая философски, разве нельзя представить себе, что информация, которую переносили попавшие в дыру объекты, не потеряна для Вселенной, а просто скрыта в области пространства, которую мы, разумные существа, решили избегать любой ценой? До открытия Хокингом того, что чёрные дыры не совсем чёрные, ответ на эти вопросы был бы положительным. Но результат Хокинга об излучении чёрных дыр всё меняет. Излучение переносит энергию, и поэтому при излучении чёрной дыры её масса медленно уменьшается — дыра медленно испаряется. При этом расстояние от центра дыры до горизонта событий постепенно сокращается, и когда завеса отступает, прежде отрезанные от мира области снова оказываются на сцене космического бытия. Вот тут-то мы со своими философскими доводами и наступаем на грабли: восстановится ли информация, которую переносили проглоченные дырой объекты и которая, как мы представляли, хранится внутри чёрной дыры, после того, как чёрная дыра испарится? Без этой информации квантовый детерминизм будет нарушен, так что последний вопрос приобретает глубокий смысл: не могут ли чёрные дыры вносить ещё больший элемент случайности в эволюцию Вселенной?

    В момент, когда писалась эта глава, у физиков не было единодушного мнения по данному вопросу. Многие годы Хокинг настойчиво утверждал, что информация не восстанавливается: чёрные дыры разрушают её, «вводя новый уровень неопределённости в физику, усугубляющий общеизвестную неопределённость в квантовой теории».{121} Хокинг и Кип Торн из Калифорнийского технологического института даже поспорили с Джоном Прескиллом из того же института о том, что произойдёт с информацией, захваченной чёрной дырой. Хокинг и Торн ставили на то, что информация будет потеряна, а Прескилл — на то, что информация восстановится при излучении и уменьшении чёрной дыры. Угадайте, на что они спорили? На саму информацию: «Проигравший(е) обязуется приобрести для победителя(ей) энциклопедию на выбор победителя(ей)».

    И хотя спор всё ещё не разрешён, недавно Хокинг признал, что в свете обсуждавшегося нового понимания чёрных дыр в теории струн может существовать способ восстановления информации.{122} Идея состоит в том, что для типов чёрных дыр, изученных Строминджером и Вафой (а также многими физиками, вовлечёнными в подобные исследования их статьёй), информацию можно хранить в компонентных бранах, а затем извлекать из них. По выражению Строминджера, этот результат «возбудил у некоторых теоретиков желание заявить о победе, о том, что при испарении чёрных дыр информация восстанавливается. По-моему, этот вывод является преждевременным, и предстоит сделать ещё немало, чтобы определить, правильный он или нет».{123} Так же считает и Вафа, заявляя, что он «в этом вопросе агностик: здесь всё ещё возможен любой исход».{124} Ответ на поставленный вопрос является главной задачей текущих исследований. Приведём слова Хокинга: «Большинство физиков хотят верить, что информация не теряется, так как в этом случае мир будет надёжным и предсказуемым. Но я считаю, что если принимать эйнштейновскую теорию относительности всерьёз, придётся допустить, что пространство-время может само связываться в узлы, приводя к потере информации в их складках. Определение того, может ли информация теряться на самом деле, является одним из важнейших вопросов современной теоретической физики».{125}

    Вторая нераскрытая тайна чёрных дыр связана с природой пространства-времени в центре чёрной дыры.{126} Прямо применяя формулы общей теории относительности, которыми пользовался Шварцшильд ещё в 1916 г., можно показать, что огромные масса и энергия, сосредоточенные в чёрной дыре, приводят к возникновению разрушительных разрывов ткани пространства-времени, в результате которых оно должно будет закручиваться в конфигурацию с бесконечной кривизной, образуя прокол пространства-времени. Один из выводов, которые делали физики из существования таких сингулярностей, состоял в том, что вся материя, пересекающая горизонт событий чёрной дыры, будет безвозвратно затянута к центру чёрной дыры, и с этого момента материя перестанет существовать — внутри чёрной дыры исчезнет само время. Другие физики, долгое время исследовавшие чёрные дыры с помощью уравнений Эйнштейна, открыли не укладывающуюся в голове возможность того, что чёрная дыра может быть окном в другую вселенную, связанную с нашей лишь в центре чёрной дыры. Грубо говоря, там, где останавливаются стрелки часов нашей Вселенной, начинается отсчёт времени вселенной, которая прикреплена к нашей.

    Некоторые из следствий этой поразительной перспективы будут рассмотрены в следующей главе, здесь же хочется отметить один важный момент. Нужно вспомнить главный вывод: в экстремальных ситуациях, возникающих при чрезвычайно высоких плотностях ввиду огромных масс и малых размеров, классическая теория Эйнштейна становится неприменимой, и для описания таких ситуаций необходимо её квантовое обобщение. Здесь напрашивается вопрос о том, может ли для анализа сингулярностей в центре чёрной дыры оказаться полезной теория струн? Этот вопрос в настоящее время интенсивно исследуется, но из-за возникшей проблемы потери информации он всё ещё не решён. Теория струн ловко расправляется с множеством сингулярностей других типов, возникающих, например, при разрывах пространства, которые обсуждались в главе 11 и в начале этой главы.{127} Но если обнаружен один тип сингулярности, это не значит, что все остальные будут иметь тот же характер. Структура пространства может рваться, прокалываться и раздираться многими разными способами. Теория струн дала нам глубокое понимание одних типов сингулярностей, но другие, среди которых и сингулярности чёрной дыры, до сих пор не поддаются теоретическому описанию. И снова, главная причина этого — невозможность выхода за рамки теории возмущений, которая, в данном случае, затрудняет проведение всестороннего и достоверного анализа того, что происходит внутри чёрной дыры.

    Тем не менее, с учётом последних грандиозных достижений в разработке методов, не опирающихся на теорию возмущений, и успешных применений этих методов к другим задачам теории чёрных дыр, у теоретиков появились большие надежды на то, что разгадка тайн происходящих в глубине чёрной дыры явлений уже не за горами.

    Глава 14. Размышления о космологии

    На протяжении многих веков истории человечества люди стремились постичь тайну происхождения Вселенной. Возможно, это единственный вопрос, для которого не существует ни культурных, ни временны?х границ, вдохновляющий фантазии наших первобытных предков и побуждающий современных учёных заниматься космологией. В его основе — жажда всех людей понять, почему существует Вселенная, как она приняла свой современный облик, какие принципы движут её эволюцией. Поразительно, что сегодня человечество вступило в ту стадию развития, на которой начинает вырисовываться схема, в рамках которой на некоторые вопросы можно будет дать научный ответ.

    Согласно общепринятой сегодня теории, в первые моменты эволюции Вселенная находилась в экстремальных условиях огромных энергий, температур и плотностей. Сейчас ясно, что для описания таких условий требуется и общая теория относительности, и квантовая теория, поэтому проблема возникновения Вселенной является хорошим полигоном для применения идей теории суперструн. Вскоре мы рассмотрим эти новые применения, но сначала обсудим космологическую теорию, существовавшую до открытия теории струн, так называемую стандартную космологическую модель.

    Стандартная космологическая модель

    Современная теория сотворения мира возникла примерно через пятнадцать лет после создания Эйнштейном общей теории относительности. Хотя сам Эйнштейн отказался посмотреть правде в глаза и признать, что из его теории следует невозможность существования вечной и статической Вселенной, за него это сделал Александр Фридман. Как обсуждалось в главе 3, Фридман нашёл так называемое решение Большого взрыва для уравнений Эйнштейна, т. е. решение, в котором Вселенная развивается из начального состояния бесконечного сжатия и в настоящий момент находится в стадии расширения после этого исходного взрыва. Эйнштейн был так уверен в невозможности подобных меняющихся во времени решений его уравнений, что даже опубликовал короткую статью о якобы найденной им грубой ошибке в работе Фридмана. Однако примерно через восемь месяцев Фридману всё же удалось убедить Эйнштейна в том, что в действительности никакой ошибки не было; Эйнштейн публично, но кратко, снял свои возражения. Очевидно, однако, что Эйнштейн не считал результаты Фридмана имеющими какое-либо отношение к нашей Вселенной. Однако пять лет спустя кропотливые наблюдения Хаббла за несколькими десятками галактик, проводившиеся с помощью стодюймового телескопа в обсерватории Маунт Вильсон, показали, что Вселенная действительно расширяется. Работа Фридмана, переписанная в более систематическом и удобном виде Говардом Робертсоном и Артуром Уокером, до сих пор является основой современной космологии.

    Подробнее современная теория космической эволюции выглядит так. Около 15 миллиардов лет назад Вселенная изверглась в результате мощного сингулярного взрыва, разметавшего в стороны всё пространство и материю. (Можно не искать точку, в которой произошёл Большой взрыв: она там, где вы находитесь сейчас, и где находятся все остальные — изначально все различаемые нами отдельные точки пространства находились в одном месте.) Вычисления температуры, которая была у Вселенной лишь спустя 10?43 с после Большого взрыва (так называемое планковское время), приводят к значению порядка 1032 K, что примерно в 1025 раз выше температуры в недрах Солнца. С течением времени Вселенная расширялась и охлаждалась, и в ходе этого процесса в первоначально однородной и горячей первичной космической плазме стали возникать вихри и скопления. Через 10?5 с после Большого взрыва Вселенная достаточно охладилась (примерно до 1013 K, что в миллион раз больше температуры внутри Солнца) для того, чтобы из групп трёх кварков стало возможно образование протонов и нейтронов. Примерно через сотую долю секунды условия стали такими, что в охлаждающейся плазме элементарных частиц уже могли формироваться ядра некоторых лёгких элементов периодической таблицы. В течение следующих трёх минут, пока кипящая Вселенная охлаждалась примерно до 109 K, основная доля образовавшихся ядер приходилась на ядра водорода и гелия и включала небольшую добавку дейтерия («тяжёлого» водорода) и лития. Этот интервал времени получил название периода первичного нуклеосинтеза.

    Затем в течение нескольких сотен тысяч лет было мало событий, кроме дальнейшего расширения и охлаждения. Но в конце этого этапа, когда температура упала до нескольких тысяч градусов, летавшие до этого с бешеной скоростью электроны замедлились до скорости, позволяющей атомным ядрам (в основном, ядрам водорода и гелия) захватывать их, образуя электрически нейтральные атомы. Это явилось поворотным моментом: начиная с него Вселенная, в общем и целом, становится прозрачной. До эры захвата электронов она была заполнена плотной плазмой электрически заряженных частиц, одни из которых (например, ядра) несли положительный заряд, а другие (например, электроны) — отрицательный. Фотоны, взаимодействующие лишь с заряженными частицами, испытывали постоянные пинки и толчки со стороны кишащих заряженных частиц и не могли пролететь достаточно далеко, не будучи отклонёнными или поглощёнными этими частицами. Из-за таких препятствий свободному движению фотонов, Вселенная предстала бы перед наблюдателем совершенно непрозрачной, подобной густому утреннему туману или снежной буре. Но когда отрицательно заряженные электроны были рассажены по орбитам вокруг положительно заряженных ядер и образовались электрически нейтральные атомы, препятствия исчезли и густой туман рассеялся. С этого момента фотоны от Большого взрыва стали свободно путешествовать по Вселенной, и постепенно она полностью стала доступной взору.

    Примерно миллиард лет спустя, когда Вселенная достаточно успокоилась после неистового начала, из сжатых гравитацией комков первичных элементов стали формироваться галактики, звёзды, а затем и планеты. Сегодня, через 15 миллиардов лет после Большого взрыва, мы можем восхищаться как величием космоса, так и нашей способностью построить разумную и экспериментально проверяемую теорию происхождения космоса.

    Но до какой степени можно действительно доверять теории Большого взрыва?

    Проверка модели Большого взрыва

    Изучая Вселенную с помощью мощнейших телескопов, астрономы могут видеть свет, испущенный галактиками и квазарами через несколько миллиардов лет после Большого взрыва. Это позволяет им проверить предсказания теории Большого взрыва о расширении Вселенной вплоть до столь ранних этапов её эволюции, и результаты всех проверок оказываются положительными. Чтобы проверить теорию для ещё более ранних этапов, физики и астрономы вынуждены пользоваться менее прямыми методами. Один из наиболее тонких подходов опирается на понятие реликтового космического излучения.

    Если читателю приходилось когда-нибудь ощупывать только что накачанную до предела велосипедную шину, он знает, что шина кажется тёплой. Часть энергии, израсходованная на накачку колеса насосом, перешла в теплоту, и температура шины увеличилась. Это есть следствие общего принципа: для широкого класса условий при сжатии тел происходит их нагревание. И наоборот, если не препятствовать расширению, произойдёт охлаждение. На этих принципах устроены кондиционеры и холодильники, в которых вещества типа фреона периодически подвергаются сжатию и расширению (сопровождающимся парообразованием и конденсацией), направляя поток теплоты в нужную сторону. Хотя речь идёт о простых явлениях земной физики, оказывается, что они обладают глубоким смыслом в космосе как целом.

    Выше говорилось о том, что после объединения электронов и ядер в атомы фотоны могут беспрепятственно путешествовать во Вселенной. Это означает, что Вселенная заполнена «газом» фотонов, движущихся во всевозможных направлениях и равномерно распределённых в космическом пространстве. Когда Вселенная расширяется, газ свободно летящих фотонов расширяется вместе с ней, так как Вселенная, по существу, является резервуаром для этого газа. Подобно тому, как температуры более привычных для нас газов (например, воздуха в колесе) понижаются при расширении, температура этого фотонного газа тоже падает при расширении Вселенной. Уже давно, после работ Георгия Гамова и его студентов Ральфа Альфера и Роберта Хермана в 1950-х гг., а также Роберта Дикке и Джима Пиблза в середине 1960-х гг., физики поняли, что современная Вселенная должна быть наполнена почти однородным составом из первичных фотонов, охладившимся до нескольких градусов выше абсолютного нуля за 15 миллиардов лет космического расширения.{128} В 1965 г. Арно Пензиас и Роберт Вильсон из Лаборатории им. Белла в штате Нью-Джерси случайно сделали одно из важнейших открытий нашей эпохи. Работая с антенной, предназначенной для спутниковой связи, они зарегистрировали послесвечение Большого взрыва! Позднее и теория, и эксперимент были усовершенствованы, и эти исследования завершились измерениями, полученными с помощью спутника COBE (Cosmic Background Explorer, «зонда космического фона») агентства NASA в 1990-е гг. На основе полученных данных физики и астрономы точно установили, что Вселенная действительно заполнена микроволновым излучением с температурой примерно на 2,7 K выше абсолютного нуля (если бы наши глаза были чувствительны к микроволнам, мы увидели бы рассеянное свечение вокруг нас), что в точности совпадает с предсказаниями теории Большого взрыва. Более точно, в каждом кубическом метре Вселенной (включая тот объём, который вы сейчас занимаете) находится около 400 миллионов фотонов, образующих огромное космическое море микроволнового излучения — эхо сотворения. Часть «снега» на экране телевизора, когда вы переключаетесь на канал, на котором закончилось вещание, объясняется именно этим туманным откликом Большого взрыва. Согласие между теорией и экспериментом служит подтверждением космологической картины Большого взрыва до момента времени, когда фотоны начали свободное движение по Вселенной, т. е. примерно до нескольких сотен тысяч лет после Большого взрыва.

    Можно ли в наших исследованиях теории Большого взрыва продвинуться ещё дальше вглубь времён? Можно. Используя законы обычной ядерной физики и термодинамики, можно сделать определённые предсказания об относительном проценте лёгких элементов, образованных во время первичного нуклеосинтеза, т. е. в период примерно от сотых долей секунды до нескольких минут после Большого взрыва. Например, теория говорит о том, что Вселенная примерно на 23% должна состоять из гелия. Измерения содержания гелия в звёздах и туманностях действительно подтверждают это предсказание. Возможно, ещё более впечатляющим является подтверждение предсказания о содержании дейтерия, так как его малое, но ощутимое присутствие в космосе не может объясняться никакими другими астрофизическими явлениями, кроме Большого взрыва. Подтверждение этих предсказаний, а также более позднее подтверждение предсказания содержания лития говорят об успешной проверке гипотез о физике ранней Вселенной вплоть до момента первичного синтеза.

    Всё это настолько впечатляет, что хочется возгордиться успехами. Все данные, которыми мы располагаем, подтверждают космологическую теорию, описывающую эволюцию Вселенной от сотых долей секунды после Большого взрыва до настоящего времени, отделённого от начала интервалом времени в 15 миллиардов лет. Однако не следует забывать о том, что новорождённая Вселенная развивалась с феноменальной скоростью. Мельчайшие доли секунды, гораздо меньшие сотых долей, суть космические эпохи, в течение которых формировались кажущиеся нам неизменными свойства окружающего мира. Поэтому физики продолжали движение вперёд, пытаясь объяснить, что происходило во Вселенной в ещё более ранние моменты. Так как при движении вспять во времени Вселенная становится всё горячее, меньше и плотнее, всё очевиднее потребность в квантовом описании материи и взаимодействий. Как мы видели с других точек зрения в предыдущих главах, квантовая теория поля точечных частиц справедлива лишь тогда, когда средние энергии частиц не превышают планковскую энергию. С точки зрения космологии этот предел соответствует моменту, когда вся окружающая нас Вселенная была сжата до размера мельчайшего зерна планковских размеров, а плотность была так высока, что сложно подыскать подходящую метафору, которая проиллюстрировала бы эту ситуацию: плотность Вселенной в эти моменты времени была просто колоссальной. При таких энергиях и плотностях гравитация и квантовая теория уже не могут рассматриваться как две различных сущности, каковыми они являлись в квантовой теории поля точечных частиц. Вместо этого — и в этом состоит смысл содержания данной книги — анализ должен базироваться на теории струн. На временной шкале такие энергии и плотности соответствуют точкам, удалённым от Большого взрыва менее чем на планковское время 10?43 с, следовательно, эта сверхранняя эпоха является космологической ареной теории струн.

    Мы начнём экскурсию в эту эпоху с обсуждения предсказаний стандартной космологической модели о Вселенной в моменты времени, меньшие сотых долей секунды, но бо?льшие планковского времени.

    От планковских времён до сотых долей секунды после Большого взрыва

    Вспомним из главы 7 (обратите особое внимание на рис. 7.1), что в раскалённой среде ранней Вселенной три негравитационных взаимодействия оказываются связанными воедино. Расчёты зависимости силы этих взаимодействий от энергии и температуры показывают, что до моментов примерно через 10?35 с после Большого взрыва сильные, слабые и электромагнитные взаимодействия были одним «великим объединённым» взаимодействием. В этом состоянии Вселенная была гораздо более симметричной, чем сейчас. Подобно тому, как при плавке нескольких предметов из различных металлов получается однородная расплавленная смесь, при огромных температурах и энергиях ранней Вселенной все наблюдаемые различия между этими взаимодействиями пропадали. Но по мере того как Вселенная расширялась и охлаждалась, такая симметрия, как следует из формализма квантовой теории поля, разрушалась довольно резкими скачками и, в конце концов, привела к знакомой нам сравнительно асимметричной форме.

    Нетрудно понять физический смысл этого понижения или нарушения симметрии, как его называют физики. Когда в резервуаре равномерно распределены молекулы H2O, вода выглядит одинаково вне зависимости от того, под каким углом на неё смотреть. Рассмотрим, однако, что происходит при уменьшении температуры. Сначала всё выглядит как обычно. На микроскопических масштабах уменьшается средняя скорость молекул воды — только и всего. Однако при понижении температуры до 0° C внезапно происходят радикальные перемены. Жидкая вода замерзает и превращается в лёд. Как обсуждалось в предыдущей главе, это простой пример фазового перехода. Но сейчас для нас важно то, что при уменьшении температуры происходит уменьшение симметрии, которую проявляют молекулы H2O. В то время как жидкая вода выглядит одинаково под любым углом наблюдения, демонстрируя симметрию относительно вращений, твёрдый лёд выглядит совершенно иначе. Он обладает кристаллической структурой, т. е. если исследовать лёд с должной точностью, он, как и любой кристалл, будет выглядеть по-разному при наблюдении под разными углами. Фазовый переход приводит к явному уменьшению вращательной симметрии.

    И хотя мы рассмотрели лишь один знакомый пример, это утверждение справедливо в более общем случае: при понижении температуры во многих физических системах происходит фазовый переход, который обычно сопровождается уменьшением или «нарушением» некоторых исходных симметрий системы. В действительности система может испытывать последовательность фазовых переходов при изменении температуры в достаточно широких пределах. Простейшим примером снова служит вода. При температурах выше 100° C она представляет собой газ (пар). В этом состоянии у системы даже больше симметрий, чем в жидком, так как в этом случае молекулы H2O не связаны вместе в одну плотную жидкую упаковку, а предоставлены сами себе. Все они равноправны и носятся по всему резервуару, не образуя скоплений или групп, по которым молекулы можно было бы различать исходя из близости к соседям. При высоких температурах господствует полная демократия и симметрия. При понижении температуры за 100-градусную отметку, естественно, начинают формироваться капли, и симметрия уменьшается. Дальнейшее понижение температуры не приводит к серьёзным последствиям, пока не перейдена нулевая отметка, и в этот момент происходит фазовый переход из жидкости в лёд, который также сопровождается резким уменьшением симметрии.

    По мнению физиков, в моменты между планковским временем и сотыми долями секунды после Большого взрыва Вселенная вела себя аналогичным образом, испытав, по крайней мере, два подобных фазовых перехода. При температурах выше 1028 K все три негравитационные взаимодействия кажутся единым взаимодействием. Ситуация максимально симметрична. (В конце главы обсуждается как с помощью теории струн можно включить в этот высокотемпературный союз гравитационное взаимодействие.) Однако при понижении температуры ниже черты 1028 K во Вселенной происходит фазовый переход, при котором три силы природы выкристаллизовываются по-разному в разные типы взаимодействий. Их относительные величины и детали того, как они воздействуют на материю, начинают различаться. Очевидная при высоких температурах симметрия этих взаимодействий разрушается при охлаждении Вселенной. Однако, как показали Вайнберг, Салам и Глэшоу (см. главу 5), пропадает не вся высокотемпературная симметрия: между слабыми и электромагнитными взаимодействиями сохраняется глубокая связь. По мере дальнейшего понижения температуры ничего необычного не происходит до отметки 1015 K (в 100 миллионов раз больше температуры Солнца), когда во Вселенной происходит ещё один переход, разъединяющий электромагнитные и слабые взаимодействия. Они тоже обособляются, разрушая более симметричный союз, и различие между ними растёт с понижением температуры Вселенной. Этими двумя фазовыми переходами определяется наличие трёх разных типов негравитационного взаимодействия, хотя приведённый обзор истории Вселенной говорит об их близком родстве.

    Космологическая загадка

    Рассмотренная космология пост-планковской эры даёт элегантный, самосогласованный и пригодный для вычислений формализм, позволяющий понять структуру, которую имела Вселенная через малые доли секунды после Большого взрыва и вплоть до нашего времени. Но, как это обычно бывает с удачными теориями, новые результаты приводят ко всё более обстоятельным вопросам. Оказывается, что некоторые из этих вопросов, не умаляя важности представленного стандартного космологического сценария, всё же высвечивают ряд нелепостей, вызывающих необходимость создания более глубокой теории. Остановимся на одной из них, так называемой проблеме горизонта, являющейся одним из важнейших вопросов современной космологии.

    Скрупулёзные исследования реликтового излучения показывают, что с точностью до тысячной доли процента температура излучения одинакова для всех точек неба, на которые направлена измерительная антенна. Если немного задуматься над этим фактом, он может показаться странным. С какой стати температуры различных точек Вселенной, разделённых огромными расстояниями, должны совпадать так точно? Напрашивается естественное на первый взгляд разрешение парадокса: не важно, что эти точки находятся сегодня в диаметрально противоположных областях неба, подобно разлучённым близнецам, они (как и все остальные точки) находились очень близко друг к другу в первые моменты после Большого взрыва. И так как все области образовались из общей начальной точки, совсем не удивительно, что у них одни и те же физические характеристики, в частности их температура.

    В стандартной космологии Большого взрыва это объяснение не годится. И вот почему. Тарелка горячего супа постепенно охлаждается до комнатной температуры, так как она соприкасается с более холодным воздухом. Но если суп находится в термосе, он, разумеется, останется горячим гораздо дольше, так как его контакт с окружающей средой намного слабее. Это говорит о том, что выравнивание температур двух тел происходит при длительном и беспрепятственном контакте. Поэтому для проверки того, что ныне далеко удалённые области должны иметь одинаковые температуры из-за их исходного контакта, нужно оценить интенсивность обмена между ними на ранней стадии эволюции Вселенной. Здесь тоже можно сначала предположить, что из-за непосредственной близости в начальные моменты контакт между областями был даже ещё сильнее. Однако пространственная близость — это только полдела. Вторая половина — это длительность контакта.

    Чтобы лучше разобраться в этой ситуации, представим себе, что мы смотрим фильм, в котором запечатлено космическое расширение, но плёнку крутят в обратную сторону, и мы возвращаемся в прошлое к моменту Большого взрыва. Так как скорость передачи любого сигнала или любых характеристик ограничена скоростью света, обмен тепловой энергией между материей в двух областях пространства, приводящий к выравниванию температур, может происходить лишь тогда, когда расстояние между областями в данный момент меньше, чем расстояние, которое мог бы пройти свет с момента Большого взрыва. И теперь, прокручивая назад плёнку, мы видим, что существует соревнование между расстоянием, которым разделены две области, и временем, на которое нужно повернуть назад часы, чтобы эти области оказались объединёнными вместе. Например, если для разделения областей на 300 000 км мы должны отмотать плёнку до момента времени, меньшего одной секунды после Большого взрыва, то, несмотря на близость областей в тот момент, у них не будет возможности для контакта, ибо свету нужна целая секунда, чтобы пройти это расстояние.{129} Если расстояние гораздо меньше, например 300 км, но для этого плёнку нужно промотать до момента времени, меньшего тысячной доли секунды после Большого взрыва, вывод тот же: эти области не могут влиять друг на друга, так как свет не сможет преодолеть эти 300 км менее чем за тысячную доли секунды. И так далее: если расстояние равно 30 см, но требуется промотать плёнку до момента, меньшего миллиардной доли секунды, влияние снова невозможно. Пример демонстрирует, что из непосредственной близости двух точек в первые моменты после Большого взрыва не обязательно следует то, что между ними, как между супом и воздухом, возможен тепловой контакт, необходимый для выравнивания температур.

    Физики обнаружили, что та же проблема возникает и в модели Большого взрыва. Детальные расчёты показывают, что для областей пространства, разделённых сейчас огромными расстояниями, не было возможности обмена тепловой энергией в ранние моменты времени, которым объяснялось бы равенство их температур сейчас. А так как слово горизонт относится к кругу видимых нами объектов, образно говоря, к точкам, куда может дойти свет, физики назвали неожиданную однородность температур в космических просторах «парадоксом горизонта». Он не означает, что стандартная космологическая модель неверна. Но однородность температур говорит о том, что в описании космологии не достаёт какой-то важной детали. В 1979 г. физик Алан Гут, работающий сейчас в Массачусетсом технологическом институте, дописал недостающую главу.

    Инфляция

    Причина возникновения парадокса горизонта заключается в том, что для сближения двух удалённых областей Вселенной приходится прокручивать плёнку фильма о космической эволюции назад во времени. Так далеко назад, что для передачи какого-либо физического воздействия времени остаётся слишком мало. И проблема возникает из-за того, что при обратной прокрутке к моменту Большого взрыва Вселенная сжимается недостаточно быстро.

    Конечно, это лишь грубая идея, так что имеет смысл рассмотреть вопрос чуть подробнее. Эффект, вызывающий парадокс горизонта, подобен замедлению брошенного вверх мяча: под действием гравитационного притяжения скорость расширения Вселенной уменьшается. Из этого, в частности, следует, что для сокращения расстояния между двумя точками вдвое необходимо прокрутить плёнку не к середине отрезка от начала фильма, а ещё ближе к началу. В свою очередь, чтобы уменьшить вполовину пространственное разделение, придётся более чем вполовину разделить время с момента Большого взрыва. Чем меньше времени прошло с момента Большого взрыва, тем меньше возможности для передачи воздействия между двумя областями, несмотря на то, что эти области будут ближе друг к другу.

    Теперь несложно дать объяснение парадокса горизонта, предложенное Гутом. Он нашёл другое решение уравнений Эйнштейна, в котором ранняя Вселенная проходит очень короткий этап чрезвычайно быстрого расширения, внезапно раздуваясь по экспоненциальному закону. В отличие от примера с мячом, замедляющимся при движении вверх, при экспоненциальном законе скорость расширения увеличивается. Если теперь прокручивать назад нашу плёнку, то ускоренное расширение станет замедленным сжатием. Поэтому для сокращения расстояния вдвое (в период экспоненциальной эры) понадобится прокрутить плёнку меньше, чем до середины отрезка с начала фильма, на самом деле гораздо меньше. Меньшая обратная прокрутка означает, что у двух областей будет больше времени на тепловой контакт и у них, как у супа и воздуха, будет достаточно времени, чтобы выровнять температуры.

    После открытия Гута и последовавших важных усовершенствований Андрея Линде, работающего ныне в Стенфордском университете[19], Пола Стейнхарда и Андреаса Альбрехта, работавших в то время в университете штата Пенсильвания, а также многих других физиков, стандартная космологическая модель была переформулирована в инфляционную космологическую модель. Этот подход внёс поправки в стандартную модель, изменяющие её поведение на крайне малом временном отрезке примерно от 10?36 до 10?34 с после Большого взрыва. В рамках новой модели Вселенная подверглась колоссальному расширению минимум в 1030 раз, а не в сотню раз, как в стандартной схеме. За этот мизерный отрезок времени после Большого взрыва размер Вселенной увеличился больше, чем за все последующие 15 миллиардов лет. До начала такого расширения материя, разделённая сейчас огромными пространствами, была гораздо ближе, чем это предсказывает стандартная космологическая модель, так что температура легко могла сравняться. Затем, в ходе молниеносной космологической инфляции по Гуту и в ходе последовавшего обычного расширения согласно стандартной модели области пространства, где находилась эта материя, могли разойтись на громадные наблюдаемые нами сейчас расстояния. Таким образом, модификация стандартной космологической модели на очень коротком отрезке времени, приводящая, однако, к очень серьёзным последствиям, позволяет разрешить парадокс горизонта (а также ряд других важных проблем, которые здесь не описаны). Новая теория получила широкое признание теоретиков, занимающихся космологией.{130}

    Итак, согласно современной теории, эволюция Вселенной на временном интервале от момента сразу за планковским временем до настоящего времени выглядит так, как показано на рис. 14.1.

    Рис. 14.1. Временная шкала эволюции и ключевые моменты в истории Вселенной

    Космология и теория суперструн

    Нам осталось выяснить, что происходит на коротком отрезке времени от момента Большого взрыва до планковского времени на рис. 14.1. Если непосредственно применять уравнения общей теории относительности к этой области, они будут свидетельствовать о том, что по мере приближения к моменту Большого взрыва Вселенная продолжает сжиматься, а её температура и плотность продолжают увеличиваться. В нулевой момент времени размер Вселенной становится равным нулю, а температура и плотность обращаются в бесконечность, и это явный признак того, что данная теоретическая модель Вселенной, прочно базирующаяся на классическом описании гравитации в общей теории относительности, теряет всякий смысл.

    Природа настойчиво указывает, что при таких условиях мы должны объединить общую теорию относительности с квантовой теорией, другими словами, использовать теорию струн. В настоящее время космологические исследования в рамках теории струн находятся на раннем этапе развития. Методы теории возмущений могут, в лучшем случае, дать самое смутное представление о происходящем, так как анализ экстремальных энергий, температур и плотностей требует большей точности. И хотя в ходе второй революции в теории суперструн были предложены методы, позволяющие обойти теорию возмущений, пройдёт некоторое время до того, как эти методы будут достаточно развиты, и их можно будет применять к расчётам космологических эффектов. Однако, как мы сейчас обсудим, в последнее десятилетие физики уже сделали первые шаги к пониманию струнной космологии. Вот что они обнаружили.

    Оказывается, есть три важнейших пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод оказывает огромное влияние на наше понимание структуры Вселенной в сам момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, как мы вскоре увидим, крайне важно и в космологии. И, наконец, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Обсудим эти три пункта более подробно.

    В начале был комок планковских размеров

    В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведёт использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. Но в этот момент температура достигнет максимума и начнёт уменьшаться. На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты (следуя Бранденбергеру и Вафе), что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Но из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. А так как температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и её дальнейшему снижению. Подробные вычисления Бранденбергера и Вафы подтверждают, что так оно и происходит на самом деле.

    В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свёрнуты до минимальных размеров, грубо говоря, до планковской длины. Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свёрнуты в многомерный комок планковских размеров. Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции, изображённой на рис. 14.1, принимают наблюдаемую ныне форму.

    Почему три?

    Здесь сразу же возникает вопрос: в чём причина того, что при понижении симметрии для расширения отбираются ровно три пространственных измерения? Иными словами, кроме имеющегося экспериментального факта, что лишь три пространственных измерения расширились до наблюдаемого огромного размера, есть ли в теории струн фундаментальный принцип, объясняющий почему не расширилось никакое другое число измерений (четыре, пять, шесть и т. д.) или даже, что более симметрично, всё пространство? Бранденбергер и Вафа предложили возможное объяснение. Вспомним, что дуальность больших и малых радиусов в теории струн основана на том, что если измерение является циклическим, на него может наматываться струна. Бранденбергер и Вафа осознали, что такие намотанные струны могут сдерживать расширение измерений, на которые они намотаны, подобно резиновым лентам, обёрнутым вокруг велосипедной камеры. С первого взгляда может показаться, что в результате все измерения будут скованы, так как струны могут наматываться, и наматываются, на любое из них. Но тут есть лазейка: если намотанная струна вдруг встретит своего анти-струнного партнёра (грубо говоря, струну, намотанную в другом направлении), обе струны моментально аннигилируют и образуют ненамотанную струну. Если этот процесс будет достаточно активным, то будет уничтожено достаточно много «резиновой ленты», и измерения смогут расширяться. Бранденбергер и Вафа предположили, что снижение сдерживающего действия намотанных струн может иметь место лишь в случае трёх пространственных измерений. И вот почему.

    Представим себе две частицы, которые катятся по одномерной линии, подобной пространственному измерению Линляндии. За исключением случая, когда их скорости равны, рано или поздно одна из частиц догонит другую, и они столкнутся. Заметим, однако, что если те же точечные частицы будут двигаться по двумерной поверхности, весьма вероятно, что столкновение никогда не произойдёт. Второе пространственное измерение открывает окно в новый мир траекторий каждой частицы, и большинство траекторий двух миров не пересекаются в одной и той же точке в один момент времени. В трёх, четырёх или большем числе измерений становится всё менее вероятно, что частицы когда-либо столкнутся. Бранденбергер и Вафа поняли, что аналогичное утверждение справедливо, если заменить точечные частицы струнными петлями, намотанными вокруг пространственных измерений. И хотя их вывод гораздо сложнее представить себе наглядно, но в трёх (или менее) циклических пространственных измерениях две намотанные струны, скорее всего, столкнутся, как две точечные частицы в одном измерении. Но в четырёх и в большем числе измерений вероятность столкновения двух намотанных струн уменьшается, как и в случае частиц в двух и большем числе измерений.{131}

    Вырисовывается следующая картина. В первый момент существования Вселенной в неразберихе высоких, но конечных температур все циклические измерения пытаются расшириться. Намотанные струны их сдерживают в границах исходных планковских размеров. Однако рано или поздно случайная температурная флуктуация приведёт к тому, что три из этих измерений станут больше других и, согласно нашему обсуждению, вероятность столкновения намотанных вокруг этих измерений струн резко увеличится. Примерно в половине этих столкновений будут участвовать пары струна/антиструна, и такие пары аннигилируют, значительно ослабляя сдерживающую силу и позволяя этим трём измерениям расширяться всё больше. А чем больше они расширяются, тем менее вероятно, что их обмотают другие струны, так как для этого от струн будет требоваться всё больше энергии. Таким образом, расширение подстёгивается само собой, и при увеличении размеров становится всё меньше препятствий к дальнейшему расширению. Теперь мы можем представить, что эти три пространственных измерения будут эволюционировать по описанному выше сценарию и достигнут размеров наблюдаемой Вселенной.

    Космология и вид пространств Калаби–Яу

    Для простоты Бранденбергер и Вафа считали все пространственные измерения циклическими. Это допущение оправдано. Как отмечалось в главе 8, если циклические измерения достаточно велики и замыкаются на себя за границами современных возможностей наблюдения, циклической вид совместим с видом наблюдаемой нами Вселенной. Но для измерений, размер которых остаётся малым, более реалистичный исход заключается в их свёртывании в более сложное пространство Калаби–Яу. Ключевой вопрос, безусловно, в том, в какое именно пространство. Каким образом осуществляется выбор конкретного пространства? Никому не удалось пока что на это ответить. Однако, объединяя результаты об изменении топологии, описанные в предыдущей главе, с подобными космологическими прозрениями, можно предложить схему ответа на данный вопрос. Мы знаем, что многообразия Калаби–Яу можно связать друг с другом посредством конифолдных переходов с разрывом пространства. Можно представить себе, что в моменты хаоса и огромных температур после Большого взрыва свёрнутые компоненты пространства Калаби–Яу остаются малыми, но участвуют в безумном карнавале стремительных превращений, принимая облик различных пространств Калаби–Яу в процессе беспрестанных разрывов и восстановлений ткани пространства. По мере того как Вселенная охлаждается, а три измерения становятся всё больше, переходы от одного пространства Калаби–Яу к другому происходят реже и дополнительные измерения в конце концов упаковываются в определённое многообразие Калаби–Яу, предположительно ответственное за физические свойства наблюдаемого нами мира. Дело чести для физиков — подробно описать эволюцию компоненты Калаби–Яу нашего пространства, чтобы современный её вид можно было вывести из теоретических принципов. Мы видим, что с учётом новых результатов о возможности непрерывного преобразования пространств Калаби–Яу друг в друга выбор одного многообразия Калаби–Яу из множества других может, на самом деле, быть сведён к задаче из космологии.{132}

    До начала?

    Так как точные уравнения теории струн неизвестны, Бранденбергеру и Вафе пришлось делать немало допущений и приближений в своих космологических исследованиях. Недавно Вафа сказал: «В нашей работе показано, что теория струн позволяет по-новому подойти к давним проблемам стандартного подхода в космологии. Мы видим, например, что в теории струн можно искоренить само понятие исходной сингулярности. Однако на современном уровне понимания теории струн выполнить абсолютно надёжный расчёт для таких экстремальных условий очень сложно, и наша работа даёт лишь первое представление о струнной космологии, очень далёкое от окончательного понимания».{133}

    После этой работы физики непрерывно продвигаются вперёд к пониманию струнной космологии. В числе тех, кто идёт во главе этих исследований — Габриэле Венециано и его коллега Маурицио Гасперини из Туринского университета. Эти учёные представили свой, очень красивый, вариант струнной космологии, который в ряде мест соприкасается с описанным выше сценарием, но в других местах принципиально отличается от него. Как Бранденбергер и Вафа, для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели, они опирались на существование минимальной длины в теории струн. Однако вместо вывода о том, что в силу этого свойства Вселенная рождается из комка планковских размеров, Гасперини и Венециано предположили, что существовала доисторическая Вселенная, родившаяся задолго до момента, который мы называем нулевой точкой, и зачавшая этот космический эмбрион планковских размеров.

    Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень сильно различаются. Согласно Гасперини и Венециано, Вселенная не являлась раскалённым и плотно скрученным клубком измерений, а была холодной и имела бесконечную протяжённость. Затем, как следует из уравнений теории струн, во Вселенную вторглась нестабильность, и все её точки стали, как и в эпоху инфляции по Гуту, стремительно разбегаться в стороны. Гасперини и Венециано показали, что из-за этого пространство становилось всё более искривлённым и в результате произошёл резкий скачок температуры и плотности энергии.{134} Прошло немного времени, и трёхмерная область миллиметровых размеров внутри этих бескрайних просторов преобразилась в раскалённое и плотное пятно, тождественное пятну, которое образуется при инфляционном расширении по Гуту. Затем всё пошло по стандартному сценарию космологии Большого взрыва, и расширяющееся пятно превратилось в наблюдаемую Вселенную. И так как в эпоху до Большого взрыва происходило своё инфляционное расширение, решение парадокса горизонта, предложенное Гутом, оказывается автоматически встроенным в этот космологический сценарий. По выражению Венециано, «теория струн преподносит нам, как на блюдечке, вариант инфляционной космологии».{135}

    Изучение струнной космологии быстро становится областью активных и продуктивных исследований. Например, сценарий эволюции до Большого взрыва уже не раз был поводом горячих, но плодотворных споров, а его место в будущей космологической формулировке, к которой мы, в конце концов, придём в рамках теории струн, далеко не очевидно. Однако нет сомнений, что эта космологическая формулировка будет твёрдо опираться на понимание физиками результатов, открытых во время второй революции суперструн. Например, сейчас ещё не ясны космологические следствия существования многомерных мембран, или то, как изменятся рассмотренные законы космологии, если окажется, что значения констант связи в теории струн соответствуют центральным областям рис. 12.11, а не одному из полуостровов на этой карте. Иными словами, как изменит наше понимание первых моментов существования Вселенной анализ законченной M-теории? Эти важнейшие вопросы сейчас интенсивно исследуются. И уже появился один важный результат.

    M-теория и слияние всех сил природы

    На рис. 7.1 показано, что все три негравитационные взаимодействия сливаются воедино, если температура Вселенной достаточно велика. Как можно вписать в эту картину гравитационное взаимодействие? До открытия M-теории теоретикам удалось показать, что для простейших выборов компоненты Калаби–Яу гравитационное взаимодействие почти, но не полностью, сливается с тремя другими (рис. 14.2). Теоретики обнаружили, что несогласование можно устранить, слегка «подогнав» выбранное многообразие Калаби–Яу и выполнив серию математических трюков, но подобные тонкие настройки задним числом всегда вызывают у физиков ощущение дискомфорта. Так как сейчас никто не способен точно предсказать вид измерений Калаби–Яу, полагаться на решения проблем, столь чувствительные к детальному описанию этих измерений, довольно рискованно.

    Рис. 14.2. В M-теории все четыре типа взаимодействий объединяются естественным образом

    Однако Виттен показал, что результаты второй революции в теории суперструн приводят к более надёжному решению. Исследуя то, как меняются силы взаимодействий в областях, где константа связи струны может быть большой, Виттен обнаружил, что кривую гравитационного взаимодействия можно слегка изменить без какой-либо особой подгонки пространства Калаби–Яу, и она соединится с кривыми других взаимодействий, как показано на рис. 14.2. И хотя очень рано делать окончательные выводы, этот факт может быть признаком того, что единства в космологическом описании достичь проще, если работать в более общем формализме M-теории.

    Результаты, рассмотренные в этом и предыдущих пунктах, являются первыми пробными шагами к пониманию космологических следствий теории струн и M-теории. Физики ожидают новых глубоких результатов в недалёком будущем, когда будут усилены и применены к решению космологических проблем методы теории струн/M-теории, не опирающиеся на теорию возмущений.

    Но так как сегодня эти методы недостаточно эффективны для того, чтобы с их помощью можно было понять космологию на основе теории струн, стоит обсудить некоторые общие соображения о возможной роли космологии в поисках окончательной теории. Нужно предупредить читателя, что некоторые из этих соображений имеют более гипотетический характер, чем те, что описывались выше, однако эти соображения позволяют поставить вопросы, с которыми в будущем может столкнуться любая окончательная теория, какой бы она ни оказалась.

    Рассуждения о космологии и окончательная теория

    Космология оказывает на нас глубочайшее, почти гипнотическое, воздействие. Понимание того, как всё происходило в начале, является, по крайней мере для некоторых из нас, наиболее близким прикосновением к тайне того, почему всё это началось. Здесь не утверждается, что современная наука устанавливает связь между вопросом «Как?», и вопросом «Почему?» — она этого не делает, и вполне может оказаться, что подобная научная связь никогда не будет установлена. Но космология держит своё слово и постепенно ведёт нас к наиболее полному пониманию арены действия «почему» — к пониманию рождения Вселенной. И это, по крайней мере, позволяет нам развивать научный подход, в рамках которого такие вопросы могут ставиться. Иногда глубокая осведомлённость в вопросе — лучшая замена отсутствующего ответа.

    В процессе поисков окончательной теории эти высокопарные фразы уступают место более конкретным соображениям. Наше сегодняшнее видение Вселенной, безусловно, зависит от фундаментальных законов физики, но может зависеть и от факторов космической эволюции (т. е. от того, что находится слева на рис. 14.1), и, вообще говоря, может лежать за рамками обсуждения даже самой фундаментальной теории, описывающей то, что находится на этом рисунке на самом правом крае.

    В этом несложно убедиться. Рассмотрим, например, что происходит при бросании мяча. Его движение будет определяться законами гравитации, но, пользуясь лишь этими законами, нельзя предсказать, где упадёт мяч. Нам также нужно знать величину и направление его скорости в момент броска. Иначе говоря, мы должны знать начальные условия. Во Вселенной также возможны аналогичные исторические взаимосвязи: то, почему звезда образовалась в одном месте, а планета в другом, определяется сложной цепью событий. По крайней мере, в принципе, эту цепь можно раскрутить назад во времени, и объяснить определённым событием при рождении Вселенной. Возможно, однако, что и более фундаментальные свойства Вселенной, например фундаментальные свойства частиц материи или частиц, передающих взаимодействие, могут прямо зависеть от эволюции, которая, в свою очередь, зависит от начальных условий во Вселенной.

    В самом деле, мы уже упоминали об одном возможном воплощении этой идеи в теории струн. В процессе эволюции ранней Вселенной дополнительные измерения могли трансформироваться от одного вида к другому и в конце концов, когда температура достаточно спала, принять вид одного конкретного пространства Калаби–Яу. Но, как и в случае брошенного мяча, результат многочисленных изменений пространств Калаби–Яу может зависеть и от конкретных условий в начале этого процесса. А так как вид окончательного многообразия Калаби–Яу влияет на массы частиц и свойства взаимодействий, то космологическая эволюция и состояние в момент рождения Вселенной сильно влияют на наблюдаемые сегодня физические явления.

    Мы не знаем, какими были начальные условия во Вселенной. У нас даже нет идей, понятий и языка, которые нужно использовать для их описания. По нашему мнению, безумные начальные условия с бесконечной энергией, плотностью и температурой в стандартной и инфляционной моделях есть признак того, что эти модели неверны и дают неправильное описание действительно существовавших начальных условий. Теория струн позволяет улучшить описание, доказывая, что такие экстремальные условия можно обойти. Однако ни у кого так и нет ответа на вопрос, как всё начиналось на самом деле. Недостаточность наших знаний распространяется даже на более грубый уровень: мы не знаем, можно ли вообще ставить вопрос об определении начальных условий, или будет ли этот вопрос всегда лежать за рамками любой теории, и задавать его столь же бессмысленно, сколь бессмысленно пытаться с помощью теории относительности пролить свет на то, с какой силой бросили мяч. Некоторые физики, такие как Хокинг и Джеймс Хартл из Калифорнийского университета, предпринимали отчаянные попытки направить вопрос о начальных космологических условиях в русло теоретической физики, но все эти попытки заканчивались плачевно. В настоящее время наш уровень понимания космологии в контексте теории струн/M-теории слишком примитивен для того, чтобы определить, достоин ли кандидат на «теорию всего» своего высокого предназначения, и определяются ли в его рамках начальные космологические условия, которые могут быть возведены затем в ранг физических законов. Это — главная тема будущих исследований.

    Однако, даже безотносительно от проблемы начальных условий и их влияния на последующие зигзаги космической эволюции, в последнее время высказываются спекулятивные предположения о том, что существуют и другие потенциальные ограничения на способность объяснения мира любой окончательной теорией. Неизвестно, верны эти предположения или нет; на современном уровне развития науки это, разумеется, не важно. Однако сам факт провоцирует умозрительные доводы о том, что в любой окончательной теории могут возникнуть серьёзные препятствия.

    Идея основана на следующей возможности. Представим себе, что то, что мы называем нашей Вселенной, есть лишь крошечная часть гораздо более широких космологических просторов, один из бесчисленного множества островов грандиозного космологического архипелага вселенных. Конечно, такое предположение может показаться искусственным (и оказаться, в конце концов, неверным), но существует конкретный механизм, который приводит к такой ситуации. Этот механизм был предложен Андреем Линде, обнаружившим, что рассмотренный выше резкий и кардинальный взрыв с инфляционным расширением мог быть не однократным. Напротив, согласно Линде, условия для возникновения инфляционного расширения могли создаваться многократно в рассеянных по пространству изолированных областях, каждая из которых затем проходила свою стадию расширения и формировала свою вселенную. И в каждой из этих вселенных процесс продолжается: в удалённых областях старых вселенных появляются ростки новых, и паутина расширяющихся вселенных продолжает разрастаться до бесконечности. Терминология становится немного громоздкой, но в духе веяний моды, дадим этому существенно обобщённому понятию вселенной название мульти-вселенная[20], а компоненты мульти-вселенной будем называть вселенными.

    Важно отметить, что из утверждения главы 7 о единстве и согласованности законов физики во всей нашей Вселенной не следует то, что на эти законы будут влиять законы физики в других вселенных, коль скоро эти вселенные отделены от нашей или, по крайней мере, находятся так далеко, что свет из этих вселенных ещё не дошёл до нас. Поэтому можно допустить, что физика в разных вселенных разная. В некоторых вселенных различия могут быть небольшими. Например, масса электрона или константа связи сильных взаимодействий могут отличаться на тысячные доли процента. В других вселенных могут быть более существенные различия. Например, u-кварк может весить в 10 раз больше, чем u-кварк в нашей Вселенной, а электромагнитное взаимодействие может быть в 10 раз сильнее, чем у нас, со всеми вытекающими последствиями для жизни звёзд и для свойств окружающего мира, рассмотренных в главе 1. Наконец, могут быть вселенные, разительно отличающиеся от нашей: набор элементарных частиц и взаимодействий может быть совершенно иным; даже число протяжённых измерений может отличаться. Для некоторых вселенных это число может быть равно нулю или единице, а для других — восьми, девяти или даже десяти. Если дать волю фантазии, даже сами законы могут быть совершенно разными в разных вселенных. Число возможностей бесконечно.

    Но в этом-то и дело. Если перебрать вселенные из этого огромного архипелага, окажется, что в большинстве из них нет благоприятных условий для жизни, по крайней мере в нашем её понимании. Для вселенных с существенно иными характеристиками это ясно: если бы наша Вселенная действительно выглядела, как вселенная Садового шланга, жизнь на ней, в нашем понимании, была бы невозможной. Однако даже очень слабые различия с нашим физическим миром повлияли бы на процесс образования звёзд и, например, на их способность служить космическими фабриками по производству сложных жизненно-важных атомов (таких, как углерод или кислород), которые разлетаются по всей Вселенной в результате взрывов сверхновых. Если, учитывая высокую чувствительность жизни к деталям физической конструкции, задаться теперь вопросом о том, почему взаимодействия и частицы в природе именно такие, какими мы их наблюдаем, то напрашивается следующий возможный ответ. На просторах мульти-вселенной они могут сильно отличаться, так что физические свойства в других вселенных могут быть и являются другими. Уникальность наблюдаемых нами свойств как раз в том, что в этих условиях возможно возникновение жизни. А жизнь, точнее жизнь разумных существ, есть необходимая предпосылка самого вопроса о том, почему свойства нашей Вселенной именно такие. Или, выражаясь яснее, они такие, потому что если бы они были другими, некому было бы задавать этот вопрос. Подобно тому, как удивление игрока, выигравшего в смертельную русскую рулетку с ничтожным шансом выжить, ослабевает с осознанием того, что в случае проигрыша некому было бы удивляться, принятие гипотезы мульти-вселенной снижает потребность получить объяснение, почему наша Вселенная выглядит так, а не иначе.

    Эта аргументация является одним из вариантов идеи, давно известной под названием антропного принципа. Так, как она излагается, эта позиция диаметрально расходится с грёзами о единой и жёсткой теории с абсолютной предсказательной силой, в которой все выглядят так потому, что по-другому во Вселенной быть не может. Вместо того, чтобы быть воплощением поэтической красоты, где всё идеально связано друг с другом с неизменным изяществом, мульти-вселенная и антропный принцип приводят к чудовищному переизбытку вселенных с неутолимой жаждой к изменениям. Установить справедливость гипотезы о мульти-вселенной будет крайне сложно, если вообще возможно. Даже если другие вселенные и существуют, вполне возможно, что мы никогда не вступим с ними в контакт. Однако безграничное расширение просторов «снаружи» в концепции мульти-вселенной, созвучное с выводом Хаббла о том, что Млечный путь есть лишь одна из многих галактик, по крайней мере, предостерегает нас, не слишком ли многого мы ожидаем от окончательной теории?

    Мы должны требовать, чтобы окончательная теория давала непротиворечивое квантово-механическое описание всех взаимодействий и всей материи. Мы должны требовать, чтобы окончательная теория приводила к неоспоримой космологической модели для нашей Вселенной. Однако если картина мульти-вселенной верна (а это ещё большой вопрос), то требовать от окончательной теории ещё и объяснения детальных свойств природы (например, масс и зарядов частиц) может означать требовать слишком многого.

    Необходимо подчеркнуть, что даже если принять гипотезу о мульти-вселенной, вывод о том, что это снизит предсказательную силу теории далеко не бесспорен. Причина, если объяснять её на пальцах, состоит в следующем. Если дать волю фантазии и взять на вооружение гипотезу мульти-вселенной, следует также напрячь воображение и рассмотреть способы, как можно обуздать столь явный произвол, присущий этой гипотезе. Размышляя в консервативном духе, мы можем предположить (считая верной картину мульти-вселенной), что было бы возможным расширить окончательную теорию до её максимальных границ, и тогда «расширенная окончательная теория» сможет точно ответить на вопросы, как и почему значения фундаментальных параметров разбросаны именно так во всех составляющих вселенных.

    И одним из умеренных способов будет предположение о возможности обобщения окончательной теории на все вселенные, в котором «обобщённая окончательная теория» сможет точно ответить на вопросы о значениях фундаментальных параметров во всех составляющих вселенных.

    Более радикальный способ следует из предположения Ли Смолина из университета штата Пенсильвания. Под впечатлением схожести условий в момент Большого взрыва и в центре чёрных дыр, которые характеризуются колоссальной плотностью сжатой материи, он предположил, что чёрная дыра есть семя новой вселенной, рождающейся в муках Большого взрыва, но навеки спрятанной от нас за горизонтом событий чёрной дыры. Тем самым, предложив другой механизм образования мульти-вселенной, Смолин внёс и новый элемент — космический вариант генетической мутации, — устраняющий теоретические ограничения антропного принципа.{136} Допустим, рассуждает он, что свойства дочерней вселенной, распустившейся из почки чёрной дыры, близки, но не тождественны свойствам породившей её вселенной. Так как чёрные дыры образуются из потухших звёзд, а интенсивность образования звёзд определяется точными значениями масс и зарядов, то плодовитость конкретной вселенной сильно зависит от этих параметров. Следовательно, небольшие изменения параметров в дочерних вселенных приведут к появлению отпрысков, ещё более приспособленных к воспроизводству чёрных дыр, число дочерних вселенных в которых будет ещё больше.{137} За многие поколения вселенные будут настолько оптимизированы к воспроизводству чёрных дыр, что заполонят мульти-вселенную. Таким образом, Смолин предложил расходящийся с антропным принципом динамический механизм, в котором параметры следующих поколений вселенных будут всё ближе к значениям, оптимальным для образования чёрных дыр.

    Даже в контексте мульти-вселенной этот подход приводит к новому способу объяснения характеристик материи и взаимодействий. Если теория Смолина верна, и если наша Вселенная является типичным элементом зрелой мульти-вселенной (конечно, оба эти «если» можно оспорить с многих точек зрения), то наблюдаемые нами характеристики частиц и взаимодействий должны быть оптимизированы для воспроизводства чёрных дыр. Иными словами, любое отклонение от этих параметров должно уменьшить эффективность образования чёрных дыр. Физики начали исследовать это утверждение, но в настоящее время они не пришли к согласию по этому вопросу. Однако даже если предположение Смолина окажется неверным, оно показывает, что окончательная теория может принять ещё один облик. С первого взгляда, этой теории может не хватать строгой определённости. Может оказаться, что она будет описывать огромное царство вселенных, большинство из которых не имеет отношения к нашей. Более того, можно предположить, что это обилие вселенных действительно реализуется физически и образует мульти-вселенную — нечто, на первый взгляд, навсегда ограничивающее нашу предсказательную силу. Однако данное обсуждение иллюстрирует, что окончательное объяснение всё же возможно, если нам удастся не только найти окончательные законы, но и установить их влияние на космологическую эволюцию в непредсказуемо широких масштабах.

    Изучение космологических следствий из теории струн/M-теории будет, несомненно, главной темой исследований в XXI в. Не обладая ускорителями, способными разгонять частицы до энергий порядка планковской, мы будем вынуждены постоянно опираться на данные экспериментов «космологического ускорителя» Большого взрыва — на то, что разбросано этим взрывом по всей Вселенной. И если мы будем настойчивы, и нам будет сопутствовать удача, в конце концов нам удастся ответить на вопросы о том, что происходило при рождении Вселенной, или о том, почему она преобразовалась к виду, который предстаёт перед нами на земле и на небе. Конечно, от области, где зарыты разгадки фундаментальных проблем, нас отделяет пропасть неизведанного. Однако развитие квантовой теории гравитации в рамках теории суперструн усиливает уверенность в том, что современный теоретический аппарат поможет преодолеть эту пропасть и, после многих лет напряжённой работы, найти ответы на глубочайшие из когда-либо ставившихся вопросов.


    Примечания:



    1

    Подразумевается, что заряды частиц выражены в единицах элементарного заряда e = 1,6 • 10?19 Кл. (Прим. перев.)



    2

    От английского «glue» — «клей, склеивать». (Прим. перев.)



    14

    Некоторые идеи этого и нескольких следующих разделов довольно нетривиальны, так что читателя не должно смущать то, что какие-то логические звенья в цепочке объяснений могут оказаться непонятными (особенно при первом чтении).



    15

    Английский термин «winding number» переводят по-разному: «число намоток», «индекс намотки», «топологический индекс», «топологическое число» и т. д. Мы будем переводить его как «топологическое число», подчёркивая связь с различными конфигурациями струны, которые нельзя получить одну из другой путём непрерывной деформации. (Прим. перев.)



    16

    В русскоязычной литературе более распространённым является термин «кротовые норы». (Прим. ред.)



    17

    В оригинале «flop-transition». Некоторые термины, используемые автором в этой и следующих главах, не являются общепринятыми (и/или ещё не имеют русского эквивалента): мы подошли к обсуждению вопросов, касающихся последних достижений в физике и математике. (Прим. перев.)



    18

    Читателям, пропустившим раздел «Более точный ответ» в главе 6, рекомендуется пролистать его начало.



    19

    В то время Андрей Линде работал в Физическом институте АН СССР. (Прим. ред.)



    20

    В оригинале «multiverse» (в противовес «universe»). (Прим. ред.)