|
||||
|
Часть V. Реальность и воображение Глава 14. Вверх в небеса и вниз на землю Эксперименты с пространством и временем Мы прошли долгий путь со времён Эмпедокла из Агридженто, объяснявшего Вселенную с помощью земли, воздуха, огня и воды. И бо?льшая часть достигнутого нами прогресса, со времён Ньютона и до революционных открытий XX в., впечатляюще подкреплялась экспериментальным подтверждением точных и детальных теоретических предсказаний. Но с середины 80-х гг. XX в. мы стали жертвами собственного успеха. В непрестанном стремлении ещё дальше продвинуть границы понимания наши теории достигли областей, недостижимых для современной технологии. Тем не менее при должном усердии и удаче многие передовые идеи будут проверены в течение следующих десятилетий. Как мы увидим в данной главе, планируемые или проводимые сейчас эксперименты могут пролить свет на существование дополнительных измерений, на состав тёмной материи и тёмной энергии, на происхождение массы и на океан Хиггса, на космологию ранней Вселенной, на суперсимметрию и, возможно, на достоверность самой теории струн. И если нам чуть больше улыбнётся удача, то могут быть окончательно проверены некоторые многообещающие передовые идеи, касающиеся единой теории, природы пространства и времени и нашего космического начала. Эйнштейновское увлечение В течение десятилетий, направленных на создание общей теории относительности, Эйнштейн черпал своё вдохновение из множества источников. Самой влиятельной оказалась геометрия кривых поверхностей, разработанная в XIX в. рядом математических светил, включая Карла Фридриха Гаусса, Яноша Бояи, Николая Лобачевского и Георга Бернхарда Римана. Как мы говорили в главе 3, Эйнштейн также был вдохновлён идеями Эрнста Маха. Напомним, что Мах отстаивал реляционную концепцию пространства: в его представлении пространство служит языком для определения положения одного объекта по отношению к другому, но само оно не является независимой сущностью. Сначала Эйнштейн был твёрдым сторонником точки зрения Маха, поскольку она отражала крайнюю степень относительности, которая могла бы быть поддержана теорией относительности. Но со временем Эйнштейн осознал, что общая теория относительности не полностью включает в себя идеи Маха. Согласно общей теории относительности поверхность воды в ведре Ньютона, вращающемся в совершенно пустом пространстве, примет вогнутую форму, и это конфликтует с чисто реляционной точкой зрения, поскольку подразумевает концепцию абсолютного ускорения. Но всё же общая теория относительности действительно включает в себя некоторые элементы точки зрения Маха, и в ближайшие несколько лет планируется провести эксперимент, который разрабатывался в течение сорока лет и обойдётся в более чем 500 млн долларов. В этом эксперименте будет проверено одно из главных положений во взглядах Маха. Ещё в 1918 г. австрийские физики Джозеф Ленс и Ханс Тирринг на основе общей теории относительности показали, что, подобно тому как массивные объекты искривляют пространство и время (подобно шару для игры в боулинг, положенному на батут), так и вращающиеся предметы увлекают за собой пространство (и время), подобно вращающемуся камню, погружённому в ведро с сиропом. Этот эффект, названный эффектом увлечения инерциальной системы отсчёта, означает, к примеру, что астероид, свободно падающий на быстро вращающуюся нейтронную звезду или чёрную дыру, будет захвачен в воронку вращающегося пространства и начнёт двигаться по скрученной траектории. Название эффекта связано с тем, что с точки зрения астероида (в системе отсчёта, связанной с астероидом) его вовсе ничего никуда не увлекает, а падает он прямо вниз по координатной сетке. Но поскольку пространство закручено (как на рис. 14.1), то и сетка загибается, из-за чего понятие «прямо вниз» с точки зрения астероида отличается от этого понятия с точки зрения отдалённого наблюдателя.
Чтобы увидеть связь с точкой зрения Маха, подумайте об эффекте увлечения, вызываемом вращающимся массивным объектом, но полым внутри. Расчёты, начатые Эйнштейном в 1912 г. (ещё даже до завершения общей теории относительности), затем значительно продвинутые в 1965 г. Дитером Бриллом и Джеффри Коэном и окончательно завершённые в 1985 г. немецкими физиками Гербертом Пфистером и К. Брауном, показали, что пространство внутри полой сферы тоже будет захватываться вращательным движением и закручиваться как в водовороте.{184} Если неподвижное ведро с водой (неподвижное по отношению к удалённому наблюдателю) поместить внутрь такой вращающейся сферы, то, согласно расчётам, вращающееся пространство окажет силовое воздействие на неподвижную воду, вынудив её приподняться вблизи стенки ведра, из-за чего поверхность воды примет вогнутую форму. Этот результат безмерно порадовал бы Маха. Хотя ему могло бы не понравиться описание в терминах «вращающегося пространства» (поскольку эта фраза подразумевает, что пространство является некой сущностью), но его чрезвычайно обрадовал бы тот факт, что именно относительное вращательное движение между сферой и ведром вызывает изменение формы поверхности воды. Действительно, если масса сферической оболочки достаточно велика, так что оказываемое ею гравитационное воздействие сравнимо с гравитационным воздействием со стороны всей Вселенной, то, согласно расчётам, не важно, считать ли сферу вращающейся вокруг ведра или ведро вращающимся внутри сферы — результат от этого не изменится. Как и утверждал Мах, имеет значение лишь относительное вращение сферы и ведра. И поскольку в расчётах используются только уравнения общей теории относительности, то рассмотренный пример явно отражает точку зрения Маха в теории Эйнштейна. (Тем не менее общая теория относительности расходится со стандартным рассуждением в духе Маха, предсказывающим, что поверхность останется плоской, если ведро будет вращаться в совершенно пустой Вселенной. Пфистер и Браун показали лишь то, что достаточно массивная сфера может полностью блокировать обычное влияние пространства за пределами самой сферы.) В 1960 г. Леонард Шифф из Стэнфордского университета и Жорж Пью из Министерства обороны США независимо предположили, что эффект увлечения, предсказываемый общей теорией относительности, может быть экспериментально проверен с использованием вращательного движения Земли вокруг своей оси. Дело вот в чём. Согласно ньютоновской физике вращающийся гироскоп (вращающееся колесо, прикреплённое к оси), находящийся на орбите высоко над поверхностью Земли, будет указывать своей осью в неизменном направлении. Но согласно общей теории относительности ось гироскопа будет медленно смещаться из-за того, что Земля увлекает за собой пространство. Поскольку масса Земли ничтожна по сравнению с массой гипотетической полой сферы, принятой в расчётах Пфистера и Брауна, о которых говорилось выше, то и смещение оси, вызываемое эффектом увлечения, тоже будет ничтожным. Вычисления показали, что если ось гироскопа изначально была нацелена на некую удалённую опорную звезду, то год спустя из-за медленно вращающегося пространства ось гироскопа сместится на стотысячную долю градуса. На такой угол отклоняется секундная стрелка часов приблизительно за две миллионные доли секунды, так что обнаружение такого отклонения представляет собой труднейшую научную, технологическую и инженерную задачу. После сорока лет исследований и разработок, а также сотни докторских диссертаций на эту тему, группа из Стэнфордского университета, возглавляемая Фрэнсисом Эвериттом и финансируемая НАСА, готова провести этот эксперимент. В течение нескольких ближайших лет их спутник «Gravity Probe B», оснащённый четырьмя самыми стабильными гироскопами, будет выведен на околоземную орбиту с высотой около 700 км, где и попытается измерить эффект увлечения, вызванный вращением Земли. В случае удачи будет получено одно из самых точных подтверждений общей теории относительности, и оно явится первым прямым подтверждением взглядов Маха.{185} Равным образом интригует возможность того, что в экспериментах обнаружится отклонение от предсказаний общей теории относительности.[86] Такая микроскопическая трещина в фундаменте основания общей теории относительности может обернуться как раз тем, что нам требуется, чтобы экспериментально проникнуть в доселе скрытые свойства пространства-времени. Ловля волны Существенный вывод общей теории относительности состоит в том, что масса и энергия вызывают искажение ткани пространства-времени; мы проиллюстрировали это на рис. 3.10, показав искривлённую координатную сетку пространства вокруг Солнца. Однако на неподвижной иллюстрации невозможно отразить, как развиваются искажения и искривления пространства по мере движения массы и энергии или при изменении их взаимного расположения.{186} Общая теория относительности предсказывает, что, подобно тому как батут принимает фиксированную искривлённую форму, если вы неподвижно на нём стоите, но поднимается и опускается, когда вы прыгаете на нём, так и пространство принимает фиксированную искривлённую форму, если материя совершенно неподвижна, как на рис. 3.10, но по ткани пространства проносится рябь, когда материя движется вперёд-назад. Эйнштейн понял это между 1916 и 1918 гг., когда применил только что написанные уравнения общей теории относительности, чтобы показать, что — во многом подобно тому как колебание электрических зарядов в передающей антенне вызывает электромагнитные волны (так и возникают радиоволны и телевизионные волны) — подобное движение материи (например, при взрыве сверхновой звезды) вызывает гравитационные волны. А поскольку гравитация — суть искажение пространства, то гравитационные волны являются волнами кривизны. Подобно тому как брошенный в пруд камешек вызывает распространяющиеся от места падения волны на поверхности воды, так и вращающаяся по кругу материя вызывает распространяющиеся волны пространства; и согласно общей теории относительности взрыв отдалённой сверхновой тоже подобен космическому камню, брошенному в пруд пространства-времени, как показано на рис. 14.2. На рисунке подчёркивается важная отличительная особенность гравитационных волн: в отличие от электромагнитных, звуковых и поверхностных волн — волн, распространяющихся через пространство, — гравитационные волны распространяются в пространстве. Они являются распространяющимися искажениями геометрии самого пространства.
Хотя гравитационные волны сейчас воспринимаются как следствие общей теории относительности, но в течение многих лет этот вопрос тонул в путанице и разногласиях, по крайней мере отчасти из-за слишком большой приверженности философии Маха. Если бы общая теория относительности полностью включала бы в себя идеи Маха, то «геометрия пространства» явилась бы просто удобным языком для описания положения и движения массивных объектов по отношению друг к другу. В таком представлении пустое пространство было бы просто пустой концепцией, так какой же смысл был бы в волнообразном движении пустого пространства? Многие физики пытались доказать, что предполагаемые волны в пространстве — это всего лишь неверная интерпретация математики общей теории относительности. Но при должном подходе теоретические рассмотрения сходятся на одном верном выводе: гравитационные волны реальны, и по пространству могут распространяться волны. С каждым проходящим пиком и впадиной гравитационная волна будет растягивать пространство (и всё в нём) в одном направлении и сжимать пространство (и всё в нём) в перпендикулярном направлении, как это показано на рис. 14.3. В принципе, можно обнаружить прохождение гравитационных волн, периодически измеряя расстояние между различными точками и обнаружив, что отношение этих расстояний периодически меняется.
Но на практике ещё никто не сумел сделать это, так что никто прямо гравитационные волны пока не обнаружил. (Однако есть веское, пусть и косвенное, подтверждение их существования.){187} Трудность состоит в том, что возмущение от проходящей гравитационной волны обычно чрезвычайно мало. Атомная бомба «Тринити», испытанная 16 июля 1945 г. и равная по мощности 20 тыс. т тротила, вызвала столь яркое свечение, что наблюдателям, находившимся на расстоянии многих километров от места взрыва, нужно было защищать глаза, чтобы не повредить их электромагнитными волнами, которые сгенерировал взрыв. И всё же, даже если бы вы стояли прямо под тридцатиметровой стальной вышкой, на которой была взорвана бомба, то гравитационные волны, порождённые взрывом, растянули бы ваше тело в каком-либо направлении всего лишь на ничтожную долю размера атома. Вот насколько слабы гравитационные возмущения. Это даёт представление о трудности технологических проблем, связанных с обнаружением гравитационных волн. (Поскольку гравитационную волну можно также рассматривать как громадное количество гравитонов, движущихся скоординированным образом, — точно так же, как электромагнитную волну можно считать состоящей из громадного количества скоординированных фотонов, — то это также даёт представление о трудности обнаружения отдельного гравитона). Конечно, у нас нет никакого специального интереса искать гравитационные волны от взрыва атомного оружия, но ситуация с астрономическими наблюдениями ничуть не легче. Чем ближе к нам и чем массивнее астрономический объект, а также с чем большим ускорением он движется, тем сильнее излучаемые им гравитационные волны. Но даже если взорвётся и станет сверхновой звезда, удалённая от нас на расстояние 10 000 световых лет, то достигшая Земли гравитационная волна растянет метровый стержень лишь на миллионную от миллиардной доли сантиметра, что составляет примерно сотую часть размера атомного ядра. Так что если только не произойдёт невероятное астрономическое событие катастрофического характера относительно недалеко от нас, то обнаружение гравитационной волны потребует аппаратуры, способной регистрировать чрезвычайно малые изменения расстояний. Учёные, спроектировавшие и построившие лазерный интерферометр LIGO (Laser Interferometer Gravitational Wave Observatory — лазерный интерферометр гравитационно-волновой обсерватории), приняли этот вызов. (Этот проект был запущен совместно Калифорнийским технологическим институтом и Массачусетским технологическим институтом и финансировался Национальным фондом науки США). LIGO является впечатляющей установкой, а ожидаемая чувствительность поражает всяческое воображение. Она состоит из двух полых труб, каждая из которых составляет четыре километра в длину и чуть более метра в ширину; эти трубы расположены в виде гигантской буквы L. Для достижения огромной точности измерения относительной длины труб используется лазерный свет, одновременно посылаемый в вакуумные туннели внутри каждой трубы и отражаемый безупречно отшлифованными зеркалами на концах труб. Идея состоит в том, что если гравитационная волна пройдёт через установку, то она растянет одну трубу относительно другой, и если это растяжение будет достаточно большим, то учёные смогут обнаружить его. Трубы сделаны столь длинными из-за того, что растяжение и сжатие, вызываемое гравитационной волной, пропорционально длине объекта. Если гравитационная волна растягивает четырёхметровый стержень, скажем, на 10?20 м, то она вытянет четырёхкилометровый стержень уже на 10?17 м, т. е. в тысячу раз больше. Поэтому чем длиннее объект, тем легче обнаружить изменение его длины. С целью усиления этого эффекта в экспериментах LIGO лазерные лучи совершают более сотни пробегов между зеркалами на противоположных концах каждой трубы, что увеличивает «эффективную длину» до 800 км. Благодаря таким уловкам и инженерному искусству установка LIGO сможет обнаружить изменение длины трубы, превосходящее триллионную долю толщины человеческого волоса или сто миллионную долю размера атома. Но это ещё не всё: на самом деле есть две такие L-образные установки. Одна находится Ливингстоне (штат Луизиана), а другая примерно на расстоянии 3500 км от неё в Хэнфорде (штат Вашингтон).[87] Если гравитационная волна от некоего удалённого астрофизического взрыва докатится до Земли, то она должна оказать одинаковое воздействие на каждый детектор, так что любая волна, пойманная в одной экспериментальной установке, должна обнаружиться и в другой. Это важная проверка на состоятельность, поскольку при всех принятых мерах предосторожности возмущения из повседневной жизни (громыхание проезжающего грузовика, скрежет бензопилы, сотрясение от упавшего дерева и т. д.) могут быть приняты за воздействие гравитационных волн. Требование соответствия показаний удалённых детекторов обеспечивает исключение таких ложных проявлений. Исследователи также аккуратно рассчитали частоты гравитационных волн — количество пиков и впадин, которые должны проходить через детектор каждую секунду, — вызываемых рядом астрофизических явлений, включая взрывы сверхновых, вращательное движение несферических нейтронных звёзд и столкновения чёрных дыр. Без этой информации эксперименты уподобились бы поиску иголки в стоге сена; располагая этой информацией, учёные могут настроить свои детекторы на узкий диапазон частот, представляющий физический интерес. Любопытно, что расчёты показали: частоты некоторых гравитационных волн должны находиться в диапазоне нескольких тысяч колебаний в секунду; если бы это были звуковые волны, они попали бы в диапазон восприимчивости человеческого уха. Объединяющиеся нейтронные звёзды зазвучали бы как щебетание с быстро растущим тоном, а пара сталкивающихся чёрных дыр имитировала бы чириканье воробья, получившего резкий удар в грудь. Существует запутанная какофония гравитационных волн, прокатывающихся по ткани пространства-времени, и если всё пойдёт по плану, то установка LIGO будет первым инструментом, настроившимся на неё.{188} Самое волнующее заключается в том, что гравитационные волны наследуют два основных свойства гравитации: слабость и вездесущность. Из всех четырёх видов взаимодействий гравитация слабее всего взаимодействует с материей. Это означает, что гравитационные волны могут проходить через материалы, непроницаемые для света, и тем самым открыть доступ в астрофизические области, остававшиеся доселе скрытыми. Более того, поскольку всё подвержено гравитации (тогда как, например, электромагнитная сила воздействует только на объекты, несущие электрический заряд), то всё в состоянии генерировать гравитационные волны и, следовательно, заявлять о своём существовании. Тем самым LIGO знаменует важную поворотную точку в наших способах исследования космоса. Было время, когда мы могли наблюдать небо лишь невооружённым глазом. В XVII в. Ганс Липпершей и Галилео Галилей изменили такое положение дел; благодаря телескопу перед взором человечества развернулась великая панорама космоса. Но со временем мы поняли, что видимый свет представляет лишь узкий диапазон электромагнитных волн. В XX в. благодаря инфракрасным, радио, рентгеновским и гамма-телескопам космос раскрыл нам чудеса, невидимые в диапазоне длин волн, которые могут воспринимать наши глаза. Теперь, в XXI в., мы снова открываем небеса. С помощью установки LIGO и её дальнейших модернизаций[88] мы увидим космос совершенно по-новому. Вместо электромагнитных мы будем использовать гравитационные волны; вместо электромагнитной мы будем использовать гравитационную силу. Чтобы оценить революционность этой новой технологии, представьте мир, в котором инопланетные учёные только что открыли, как обнаруживать электромагнитные волны (свет), и подумайте о том, сколь глубоко изменится вскоре их представление о Вселенной. Мы находимся на грани первого обнаружения гравитационных волн и поэтому можем оказаться в аналогичном положении. Тысячелетиями мы вглядывались в космос; теперь, словно впервые в человеческой истории, мы будем вслушиваться в него. Поиск дополнительных измерений До 1996 г. в большинстве теоретических моделей, включающих дополнительные измерения, представлялось, что их пространственная протяжённость имеет порядок планковской длины (10?33 см). Поскольку это на семнадцать порядков меньше предела, разрешимого с помощью современного оборудования, то без открытия новой чудодейственной технологии планковская физика будет оставаться вне досягаемости. Но если дополнительные измерения «велики», т. е. их протяжённость превышает сотую от миллиардной от миллиардной доли метра (10?20 м), что примерно равно миллионной доли размера атомного ядра, то есть надежда. Как мы говорили в главе 13, если одно из дополнительных измерений «очень велико» (порядка миллиметра), то точные измерения силы гравитации должны вскрыть их существование. Такие эксперименты проводились в течение ряда лет, и их методика быстро совершенствовалась. До сих пор отклонений от закона обратных квадратов, характерного для трёх пространственных измерений, выявлено не было, так что исследователи переходят ко всё более мелким масштабам расстояний. Обнаруженное отклонение потрясло бы, если не сказать большего, основания физики. Оно послужило бы веским доказательством существования дополнительных измерений, доступных только для гравитации, и дало бы косвенное подтверждение сценария мира на бране в теории струн / M-теории. Если дополнительные измерения велики, но недостаточно велики, то вряд ли они будут обнаружены в экспериментах с гравитацией, однако остаются и другие, косвенные подходы, указывающие на их существование. Например, мы уже указывали на то, что из существования больших дополнительных измерений следовало бы, что «исконная» сила гравитации больше, чем мы полагали. Наблюдаемая слабость гравитационного взаимодействия могла бы быть приписана «утечке» в дополнительные измерения, а не его исходной слабости; и на коротких расстояниях, когда ещё нет этой «утечки», гравитация могла бы быть сильной. Среди прочего это означает, что порождение миниатюрных чёрных дыр потребовало бы гораздо меньше массы и энергии, чем во Вселенной со значительно более слабой гравитацией. В главе 13 мы обсуждали возможность того, что такие микроскопические чёрные дыры могли бы быть порождены высокоэнергетическими столкновениями протонов в Большом адронном коллайлере (LHC) — ускорителе частиц, который строится сейчас в Женеве (Швейцария) и по плану должен быть запущен в 2007 г.[89] Это волнующая перспектива. Но есть и другая соблазнительная возможность, указанная Альфредом Шапиром из университета Кентукки и Джонатаном Фенгом из университета Калифорнии в Ирвине. Эти исследователи заметили, что космические лучи — элементарные частицы, приходящие из космоса и постоянно бомбардирующие нашу атмосферу, — также могут порождать микроскопические чёрные дыры. Космические лучи были открыты в 1912 г. австрийским учёным Виктором Хессом; спустя более чем девяносто лет они всё ещё окутаны множеством тайн. Космические лучи ежесекундно вторгаются в атмосферу и вызывают целый каскад миллиардов частиц, низвергающихся на Землю и проходящих через наши тела; некоторые из них обнаруживаются с помощью ряда специальных приборов. Однако никто полностью не уверен, из каких частиц состоят космические лучи (хотя учёные всё больше приходят к соглашению, что они состоят из протонов), и несмотря на тот факт, что некоторые из этих высокоэнергетических частиц являются, по-видимому, отголосками взрывов сверхновых звёзд, ни у кого нет ни малейшего представления, откуда исходят космические лучи. Например, 15 октября 1991 г. детектор космических лучей «Мушиный глаз» («Fly’s Eye») в пустыне Юта зафиксировал частицу, пронёсшуюся по небу с энергией, эквивалентной 30 млрд масс протона.[90] В этой единственной субатомной частице содержится примерно столько же энергии, как в мяче, мчащемся от удара бейсболиста Мариано Риверы, что в 100 млн раз превосходит характерную энергию частиц, которые будут рождаться в Большом адронном коллайдере.{189} Самое загадочное состоит в том, что ни один из известных нам астрофизических процессов не смог бы породить частицы с такой высокой энергией; надеясь решить эту загадку, экспериментаторы собирают всё больше данных с помощью всё более чувствительных детекторов. Но происхождение высокоэнергетических частиц космических лучей мало заботило Шапира и Фенга. Они подметили, что если гравитация на микроскопических масштабах гораздо сильнее, чем считалось ранее, то безотносительно к тому, откуда приходят такие частицы, у них могло бы хватить энергии, чтобы порождать миниатюрные чёрные дыры при соударениях в верхних слоях атмосферы. Такие миниатюрные чёрные дыры (порождаемые хоть космическими лучами, хоть в ускорителях частиц) не могут представлять никакой опасности ни для экспериментаторов, ни для мира в целом. После своего порождения они быстро бы разрушались, посылая характерный каскад других, более привычных частиц. В действительности микроскопические чёрные дыры столь короткоживущие, что экспериментаторы даже не будут пытаться непосредственно обнаруживать их; вместо этого они будут искать доказательства краткого существования чёрных дыр путём тщательного изучения каскада частиц, обрушивающегося на их детекторы. Самый чувствительный в мире детектор космических лучей — обсерватория имени Пьера Оже («Pierre Auger Observatory», с площадью наблюдения размером порядка Род Айленда, 4 тыс. кв. км) строится в настоящее время в обширной местности в западной Аргентине. По оценкам Шапира и Фенга, если все дополнительные измерения доходят до размера порядка 10?14 м, то после годичного сбора данных на детекторе Оже обнаружатся характерные следы от приблизительно дюжины миниатюрных чёрных дыр, рождавшихся в верхних слоях атмосферы.[91] Если эти следы не обнаружатся, значит, дополнительные измерения меньше. Поиск следов чёрных дыр, рождаемых космическими лучами, является, несомненно, очень непростым делом, но в случае успеха появится первое экспериментальное подтверждение существования дополнительных измерений и микроскопических чёрных дыр, а также теоретических построений теории струн и квантовой гравитации. Помимо рождения чёрных дыр существует и другой способ обнаружения дополнительных измерений, который будет задействован в следующем десятилетии с помощью ускорителей частиц. Идея этого способа представляет собой изощрённый вариант объяснения пропажи монет из вашего кармана, заваливающихся за подкладку пиджака. Главным принципом физики является закон сохранения энергии. Энергия может проявляться во многих формах — в кинетической энергии мяча, летящего по бейсбольной площадке, в гравитационной потенциальной энергии, когда мяч набирает высоту, в звуковой и тепловой энергии, когда мяч ударяется о землю и возбуждает разнообразные колебательные движения, в энергии массы, заключённой в самом мяче, и т. д. — но при учёте всех составляющих энергии полная энергия всегда сохраняется.{190} До сих пор ни в одном эксперименте не было обнаружено нарушения этого закона совершенного баланса энергии. Но в зависимости от точного размера предполагаемых дополнительных измерений высокоэнергетические эксперименты, которые должны быть проведены с вновь усовершенствованным оборудованием в Фермилабе (лаборатория Fermilab — Fermi National Accelerator Laboratory) и на LHC, могут вскрыть процессы, которые на первый взгляд будут нарушать закон сохранения энергии: энергия после столкновения может оказаться меньше энергии до столкновения. Причина, напоминающая причину пропажи монет из кармана, состоит в том, что энергия (переносимая гравитонами) может ускользнуть в щель — микроскопическое дополнительное пространство, — возникающую из-за существования дополнительных измерений, и оказаться неучтённой при расчёте баланса энергии. Возможное обнаружение такого «сигнала пропажи энергии» даст ещё один способ установления того, что ткань космоса намного сложнее, чем мы можем видеть непосредственно. Несомненно, я пристрастен, когда речь заходит о дополнительных измерениях. В течение более чем пятнадцати лет я работал над различными проявлениями дополнительных измерений, так что они занимают особое место в моём сердце. Но всё же, даже с учётом этого признания, мне трудно представить более завораживающее открытие, чем обнаружение доказательства существования дополнительных измерений помимо трёх, известных всем нам. По моему мнению, в настоящее время нет других серьёзных предположений, подтверждение которых столь основательно бы потрясло устои физики и столь основательно бы установило, что мы должны ставить под сомнение базисные элементы реальности, кажущиеся самоочевидными. Океан Хиггса, суперсимметрия и теория струн Помимо научного вызова, состоящего в поиске неизвестного и шанса обнаружения доказательства существования дополнительных измерений, есть ещё пара специфических мотивов для усовершенствования ускорителя в Фермилабе и построения гигантского Большого адронного коллайдера. Один из этих мотивов — обнаружение частиц Хиггса. Как мы уже говорили в главе 9, неуловимые частицы Хиггса явились бы мельчайшими составляющими поля Хиггса — поля, которое, по предположению физиков, образует океан Хиггса и тем самым придаёт массу другим фундаментальным видам частиц. Согласно современным теоретическим и экспериментальным представлениям частицы Хиггса должны обладать массой в диапазоне от ста до тысячи масс протона. Если верна нижняя оценка, то у Фермилаба есть достаточно хорошие шансы открыть частицы Хиггса в самом ближайшем будущем. А если Фермилаб постигнет неудача, но всё же указанная оценка диапазона массы верна, то в конце десятилетия Большой адронный коллайдер должен будет рождать частицы Хиггса в изобилии. Обнаружение частиц Хиггса явится крупной вехой, поскольку подтвердит существование поля, на которое специалисты по элементарным частицам и космологи ссылались в течение десятилетий, не имея для него никаких экспериментальных подтверждений. Другой крупной целью как Фермилаба, так и Большого адронного коллайдера является обнаружение суперсимметрии. Вспомним из главы 12, что идея суперсимметричных пар частиц, спины которых отличаются на половинку единицы, изначально в теории струн возникла в начале 1970-х гг. Если суперсимметрия реализуется в реальном мире, то для каждой известной частицы со спином, равным 1/2, должна существовать частица-партнёр с нулевым спином; для каждой известной частицы со спином, равным 1, должна существовать частица-партнёр со спином, равным 1/2. Например, в паре с электроном, обладающим спином 1/2, должна существовать частица с нулевым спином, названная суперсимметричным электроном или, для краткости, сэлектроном; в паре с кварками, имеющими спин 1/2, должны существовать суперсимметричные кварки, или скварки; в паре с нейтрино, имеющим спин 1/2, должно существовать снейтрино с нулевым спином; в паре с глюонами, фотонами, W- и Z-частицами, обладающими спином 1, должны существовать глюино, фотино, вино и зино со спином 1/2. (Да, физики вошли в раж). Никто никогда не обнаруживал ни одну из таких парных частиц, и физики надеются, что причина состоит в том, что суперсимметричные частицы значительно тяжелее своих партнёров. Теоретические соображения наводят на мысль, что суперсимметричные частицы могут быть в тысячи раз тяжелее протона, и в этом случае нет ничего загадочного в том, что их до сих пор не удалось обнаружить экспериментально: у существующих ускорителей частиц просто не хватает мощности. В грядущем десятилетии это изменится. Уже у усовершенствованного ускорителя в Фермилабе есть шанс открыть некоторые из суперсимметричных частиц. И, как и в случае с частицами Хиггса, если Фермилаб постигнет неудача, то LHC с лёгкостью должен их породить, при условии, конечно, что порядок массы суперсимметричных частиц оценён достаточно точно. Подтверждение суперсимметрии явилось бы самым важным достижением в физике элементарных частиц за более чем два десятилетия. Оно ознаменовало бы новый шаг за рамки стандартной модели физики частиц и дало бы косвенное подтверждение тому, что теория струн находится на верном пути. Но, заметьте, это не подтвердило бы саму теорию струн. Хотя суперсимметрия была открыта в ходе разработки теории струн, но физики уже давно поняли, что суперсимметрия является более общим принципом, который может быть легко включён в традиционные подходы на основе представлений о точечных частицах. Подтверждение суперсимметрии установило бы важный элемент теории струн и задало бы направление множеству последующих исследований, но оно не явилось бы «лакмусовой бумажкой», подтверждающей справедливость теории струн. С другой стороны, если верен сценарий мира на бране, то действительно есть возможность, что в будущих экспериментах с ускорителями будет подтверждена теория струн. Как было кратко упомянуто в главе 13, если дополнительные измерения в сценарии мира на бране достигают порядка 10?16 см, то не только гравитация может оказаться значительно сильнее, чем думали раньше, но и сами струны могли бы быть существенно длиннее. Такие длинные струны менее жёсткие, так что для их возбуждения требуется меньше энергии. Тогда как в стандартной теории струн моды колеблющихся струн обладают энергиями, более чем в миллион миллиардов раз превосходящими предел достижимого в наших экспериментальных установках, в сценарии мира на бране энергии мод колеблющихся струн могут лишь в тысячу раз превосходить массу протона. В таком случае высокоэнергетические столкновения в LHC окажутся сродни мячику для гольфа, влетевшему внутрь фортепьяно; в них хватит энергии для возбуждения множества «октав» гаммы колеблющихся струн. Экспериментаторы обнаружат изобилие новых, не виданных ранее частиц — т. е. новых, невиданных ранее мод колеблющихся струн, — энергии которых будут соответствовать гармоническим резонансам теории струн. Свойства этих частиц и взаимосвязи между ними безошибочно укажут на то, что все они составляют часть одной и той же космической партитуры, что при всём своём различии они являются связанными нотами, что все они являются отдельными колебательными модами одного и того же объекта — струны. Это наиболее вероятный сценарий прямого подтверждения теории струн в обозримом будущем. Космические истоки Как мы уже видели, реликтовое излучение играло доминирующую роль в космологических исследованиях с момента его открытия в середине 60-х гг. XX в. Причина ясна: на ранних этапах эволюции Вселенной пространство было заполнено смесью электрически заряженных частиц — электронов и протонов, — которые посредством электромагнитного взаимодействия расшвыривали фотоны во всех направлениях. Но всего через 300 000 лет после Большого взрыва Вселенная уже достаточно охладилась для того, чтобы электроны и протоны соединились в электрически нейтральные атомы, — и начиная с этого момента излучение стало почти беспрепятственно пронизывать пространство, запечатлев чёткий снимок ранней Вселенной. Каждый кубический метр пространства пронизывает около 400 млн этих изначальных фотонов, нетронутых реликтов ранней Вселенной. Первоначальные измерения реликтового излучения показали, что его температура на удивление однородна, но, как мы обсуждали в главе 11, при более тщательном обследовании, проведённом сначала в 1992 г. с помощью спутника COBE и с тех пор усовершенствованном в ряде наблюдений, были выявлены небольшие температурные вариации, представленные на рис. 14.4а. Данные отмечены разными оттенками серого цвета, причём наибольшая разница между самыми светлыми и самыми тёмными пятнами составляет всего лишь несколько десятитысячных долей градуса. Пятнистость рисунка указывает на мельчайшую, но неоспоримо реальную неоднородность распределения температуры излучения по всему небу. Результаты эксперимента COBE сами по себе являются впечатляющим открытием, но они также отметили существенное изменение в характере космологических исследований. До эксперимента COBE космологические данные были грубыми. В свою очередь, космологическая теория имела право на существование, если она соответствовала этим приблизительным данным астрономических наблюдений. Теоретики могли выдвигать схему за схемой с минимальной оглядкой на ограничения, накладываемые данными наблюдений. Этих ограничений было попросту немного, а существовавшие не были особенно точными. Но эксперимент COBE положил начало новой эре, в которой стандарты значительно ужесточились. Теперь появляется всё больше точных данных, которым должна соответствовать любая теория, прежде чем с нею начнут серьёзно считаться. В 2001 г. был запущен спутник WMAP (Wilkinson Microwave Anisotropy Probe — зонд для изучения реликтового излучения имени Вилкинсона), совместный венчурный проект НАСА и Принстонского университета, для измерения реликтового излучения с примерно в 40 раз большей точностью и разрешением. Сравнивая первоначальные результаты WMAP (рис. 14.4б) с результатами COBE (рис. 14.4а), можно сразу заметить, сколь более тонкую и более детальную картину может дать WMAP. Запуск другого спутника под названием «Планк» («Planck»), разрабатываемого Европейским космическим агентством (European Space Agency), намечен на 2007 г.[92] и, если всё пойдёт по плану, он даст картину с вдесятеро лучшим разрешением, чем WMAP.
Наплыв точных данных сузил поле космологических предположений, среди которых ведущее место, несомненно, занимает инфляционная модель. Но, как мы упоминали в главе 10, инфляционная теория является не единственным кандидатом. Теоретики предложили множество различных версий (старая инфляция, новая инфляция, тёплая инфляция, гибридная инфляция, гиперинфляция, вспомогательная инфляция, вечная инфляция, расширенная инфляция, хаотическая инфляция, двойная инфляция, маломасштабная инфляция, гипернатуральная инфляция — и это ещё не всё), каждая из которых характеризуется кратким периодом быстрого расширения, но все они разнятся в деталях (количеством полей, формой их потенциальной энергии и т. д.). Эти различия ведут к немного разным предсказаниям свойств реликтового излучения (различные поля с различными энергиями испытывают немного разные квантовые флуктуации). Сравнение с данными спутников WMAP и «Planck» должно отсеять множество предположений, значительно улучшив наше понимание. На самом деле эти данные могут ещё больше сузить поле предложений. Хотя квантовые флуктуации, растянутые инфляционным расширением, дают убедительное объяснение наблюдаемым температурным вариациям, но у инфляционной модели есть достойный соперник. Циклическая космологическая модель Стейнхардта и Тьюрока, описанная в главе 13, предлагает альтернативное объяснение. По мере того как две 3-браны циклической модели медленно направляются друг к другу, квантовые флуктуации вынуждают различные части бран приближаться с разной скоростью. Когда браны наконец-то сталкиваются приблизительно триллион лет спустя, то различные области бран соприкасаются немного в разные моменты времени, примерно как при соединении двух кусков шершавой наждачной бумаги. Крохотные отклонения от совершенно однородного соприкосновения порождают небольшие отклонения от совершенно однородной эволюции на каждой бране. Поскольку по предположению одна из этих бран является нашим трёхмерным пространством, то эти отклонения от однородности мы и должны обнаружить. Стейнхардт, Тьюрок и их сторонники заявили, что эти неоднородности порождают температурные отклонения той же формы, что и в инфляционной модели, и, следовательно, при сопоставлении с имеющимися сейчас данными циклическая модель даёт столь же жизнеспособное объяснение данным наблюдений. Однако более точные данные, которые будут получены в следующее десятилетие, возможно, отсеют одну из соперничающих моделей. В инфляционной модели не только квантовые флуктуации растягиваются инфлатонным полем при экспоненциальном расширении, но в результате этого интенсивного растяжения генерируется также и мельчайшая квантовая рябь ткани пространства. Поскольку рябь пространства есть не что иное, как гравитационные волны (как в нашем недавнем обсуждении LIGO), то инфляционная модель предсказывает порождение гравитационных волн в самые ранние моменты Вселенной.{191} Эти волны часто называют реликтовыми гравитационными волнами, чтобы отличать их от волн, которые были относительно недавно сгенерированы в результате крупных астрофизических событий. В циклической же модели, наоборот, отклонение от совершенной однородности происходит медленно, в течение почти безмерного промежутка времени, поскольку у бран уходит триллион лет на медленное приближение друг к другу для следующего столкновения. Отсутствие резкого и сильного изменения геометрии бран и геометрии пространства означает, что пространственная рябь не генерируется, так что в циклической модели реликтовые гравитационные волны отсутствуют. Таким образом, если реликтовые гравитационные волны будут обнаружены, то это обернётся ещё одним триумфом инфляционной модели и окончательно перечеркнёт циклическую теорию. Вряд ли чувствительности LIGO хватит на то, чтобы обнаружить гравитационные волны, предсказанные инфляционной моделью, но, возможно, их существование будет косвенно подтверждено данными «Planck» или данными другого эксперимента, названного CMBPol (Cosmic Microwave Background Polarization — космический эксперимент для изучения поляризации реликтового излучения), — этот эксперимент сейчас планируется. «Planck» и, в особенности, CMBPol не будут сосредоточены исключительно на температурных вариациях реликтового излучения; они также будут измерять поляризацию — среднее направление спинов обнаруживаемых фотонов реликтового излучения. Путём сложных рассуждений, которые мы здесь пропускаем, можно показать, что гравитационные волны, порождённые Большим взрывом, должны оставить особый отпечаток на поляризации реликтового излучения, и, возможно, этот отпечаток достаточно силён, чтобы его можно было измерить. Так что в предстоящее десятилетие у нас появится возможность определить, был ли Большой взрыв на самом деле соударением и является ли наша Вселенная на самом деле 3-браной. В золотую эру космологии некоторые из этих самых сумасшедших идей могут быть действительно проверены. Тёмная материя, тёмная энергия и будущее Вселенной В главе 10 мы познакомились с вескими теоретическими и наблюдательными свидетельствами того, что только 5% массы Вселенной составляет известная нам материя — протоны и нейтроны (на долю электронов приходится менее 0,05% общей массы обычной материи), тогда как 25% массы даёт тёмная материя, а 70% — тёмная энергия. Но всё ещё остаётся значительная неопределённость в том, из чего же состоит тёмная материя. Естественно предположить, что тёмная материя тоже состоит из протонов и нейтронов, которые каким-то образом избежали совместного сцепления с последующим образованием звёзд, излучающих свет. Но другой теоретический взгляд оставляет этой гипотезе очень мало шансов. Благодаря детальным наблюдениям астрономы точно знают об относительной средней распространённости лёгких элементов (водорода, гелия, дейтерия и лития), рассеянных по всему космосу. С высокой степенью точности эта распространённость согласуется с теоретическими расчётами процессов, в ходе которых ядра этих элементов были предположительно синтезированы в первые минуты Вселенной. Эта согласованность является одним из величайших успехов современной теоретической космологии. Однако в этих расчётах предполагается, что основная часть тёмной материи состоит не из протонов и нейтронов; если главными составляющими на космологических масштабах были бы протоны и нейтроны, то результаты расчётов не согласовывались бы с наблюдаемыми данными. Но если не протоны и нейтроны, тогда что же составляет тёмную материю? Сегодня никто этого не знает, но в предположениях нет недостатка. Имена кандидатов пробегают весь ряд от аксионов до зино, и тот, кто найдёт ответ, несомненно, будет приглашён в Стокгольм. То обстоятельство, что ещё никто не обнаружил частицы тёмной материи, накладывает существенное ограничение на любое предположение. Дело в том, что тёмная материя находится не только в глубоком космосе; она распределена по всей Вселенной и поэтому присутствует и здесь, на Земле. Согласно многочисленным предположениям прямо сейчас миллиарды частиц тёмной материи ежесекундно пронизывают ваше тело, так как в ряду перспективных кандидатов остаются только те частицы, которые могут проходить через материю, не оставляя заметного следа. Одним из оставшихся кандидатов является нейтрино. По оценкам, плотность реликтовой распространённости нейтрино с момента Большого взрыва составляет 55 млн/м3, так что если масса одного из трёх видов нейтрино дотягивает до сотой от миллионной доли (10?8) массы протона, то нейтрино могут обеспечить надлежащую массу тёмной материи. Хотя в недавних экспериментах были получены веские свидетельства того, что нейтрино действительно имеют массу, но согласно современным данным нейтрино слишком легки, чтобы обеспечить должную массу тёмной материи — нейтрино примерно в сто раз легче, чем нужно. Другими перспективными кандидатами являются суперсимметричные частицы, особенно, фотино, зино и хиггсино (партнёры фотона, Z-частицы и частицы Хиггса соответственно). Они самые «нелюдимые» из всех суперсимметричных частиц — они могли бы невозмутимо проходить через всю Землю без малейшего влияния на своё движение — и поэтому могли бы легко избегать своего обнаружения.{192} Из расчётов количества этих частиц, порождённых Большим взрывом и доживших до настоящих дней, следует, что их масса должна от 100 до 1000 раз превышать массу протона, чтобы набрать должную массу тёмной материи. Это интригующий результат, поскольку в различных моделях суперсимметричных частиц, как и в теории суперструн, получена та же оценка массы без какой-либо оглядки на тёмную материю и космологические процессы. Это было бы загадочным и совершенно необъяснимым совпадением, если, конечно, тёмная материя действительно не состоит из суперсимметричных частиц. Таким образом, поиск суперсимметричных частиц в современных и строящихся ускорителях частиц может также считаться поиском наиболее подходящих кандидатов на роль тёмной материи. С некоторых пор уже ведутся и прямые поиски частиц тёмной материи, проносящихся через Землю, хотя такие эксперименты чрезвычайно трудны. Из примерно миллиона частиц тёмной материи, которые должны ежесекундно проходить через площадь размером примерно с 25-центовую монетку, в лучшем случае только одна может оставить какой-либо след в экспериментальной установке, специально построенной для их обнаружения. До сих пор не было подтверждённых обнаружений частиц тёмной материи.{193} Имея перед собой цель, всё ещё парящую вдалеке, исследователи настойчиво продвигаются вперёд. Вполне возможно, что в течение следующих нескольких лет будет установлено, из чего же состоит тёмная материя. Окончательное подтверждение существования тёмной материи и прямое определение её состава явилось бы крупным достижением. Впервые в истории мы узнали бы о чём-то основополагающем и одновременно удивительно ускользающем: о составе большей части материального содержимого Вселенной. Но всё же, как мы видели в главе 10, недавние результаты определённо указывают на то, что помимо тёмной материи остаётся ещё кое-что не менее важное, требующее экспериментальной проверки: наблюдения за сверхновыми свидетельствуют в пользу космологической постоянной, на долю которой приходится 70% полной энергии во Вселенной. Как самое волнующее и неожиданное открытие за последнее десятилетие, это свидетельство в пользу космологической постоянной — энергии, заполняющей пространство, — требует решительного и надёжного подтверждения. С этой целью тоже запланирован или уже осуществляется целый ряд проектов. Эксперименты, относящиеся к реликтовому излучению играют важную роль и здесь. Размер пятен на рис. 14.4 (где, напомним, каждое пятно соответствует области одинаковой температуры) отражает форму ткани пространства. Если бы пространство имело сферическую форму, как на рис. 8.6а, то выпуклость пространства сделала бы пятна более крупными, чем на рис. 14.4б; если бы пространство имело седлообразную форму, как на рис. 8.6в, пятна были бы несколько меньше; а если пространство плоское, как на рис. 8.6б, то размер пятен имеет промежуточное значение между двумя упомянутыми выше случаями. Точные измерения, выполненные COBE, а затем улучшенные WMAP, веско подтверждают предположение, что пространство плоское. Это не только соответствует теоретическим ожиданиям, исходящим из инфляционных моделей, но и полностью согласуется с результатами наблюдений сверхновых звёзд. Как мы видели, в плоской Вселенной требуется, чтобы общая плотность материи/энергии равнялась критической плотности. Все данные впечатляюще согласуются друг с другом при вкладе обычной и тёмной материи около 30%, и вкладе тёмной энергией около 70%. Более прямое подтверждение результатов по сверхновым является целью исследований, проводимых с помощью спутника SNAP (SuperNova/Acceleration Probe — спутник для изучения сверхновых и расширения Вселенной), предложенного учёными Лоуренсовской лаборатории в Беркли (Lawrence Berkeley Laboratory). SNAP будет представлять собой орбитальный спутниковый телескоп, способный измерять в 20 раз больше сверхновых, чем в земных обсерваториях. SNAP в состоянии не только подтвердить предыдущие результаты о том, что 70% приходится на долю тёмной энергии, но также он должен оказаться способным точнее определить природу тёмной энергии. Вы видите, хотя я описал тёмную энергию как одну из версий космологической постоянной Эйнштейна — постоянной, неизменной энергии, заставляющей пространство постоянно расширяться, — но есть и тесно связанная альтернативная возможность. Вспомним из обсуждения инфляционной космологии (и прыгающей лягушки), что поле, величина которого держится на уровне, превосходящем уровень самого низкого энергетического состояния, может действовать подобно космологической постоянной, вызывая ускоренное расширение пространства, но обычно оно способно на это только в течение короткого промежутка времени. Рано или поздно поле займёт своё место на дне энергетической чаши, и его расталкивающее действие исчезнет. В инфляционной космологии это происходит за крошечную долю секунды. Но за счёт введения нового поля и тщательного подбора формы его энергетической чаши физики нашли способ, как сделать ускоренное расширение гораздо более мягким и длящимся гораздо дольше — чтобы поле вызывало относительно медленное и равномерное расширение пространства, длящееся не доли секунды, а миллиарды лет, по мере того как поле очень медленно скатывается в состояние с наименьшей энергией. Это открывает возможность, что прямо сейчас мы можем переживать чрезвычайно мягкую версию инфляционного взрыва, который имел место в самые ранние моменты истории Вселенной. Это различие между настоящей космологической постоянной и последней возможностью, известной как квинтэссенция, имеет минимальное значение сегодня, но влечёт чрезвычайные последствия для далёкого будущего Вселенной. Космологическая постоянная постоянна — она обеспечивает нескончаемое расширение, так что Вселенная будет всё быстрее расширяться и будет становиться всё более разреженной и пустой. Но в концепции квинтэссенции ускоренное расширение рано или поздно закончится, так что будущее рисуется менее безрадостным и пустынным, чем при вечном ускоренном расширении. Фиксируя изменения в ускорении расширения пространства за отдалённые промежутки времени (посредством наблюдения сверхновых, удалённых от нас на различные расстояния и, следовательно, на различные временны?е эпохи), SNAP, может быть, поможет выделить верный вариант. Определив, представляет ли тёмная энергия действительно постоянную величину — космологическую постоянную, — SNAP позволит заглянуть в очень отдалённое будущее Вселенной. Пространство, время и предположения теории Наше путешествие к раскрытию природы пространства и времени было долгим и насыщенным множеством сюрпризов; несомненно, мы ещё только в начале пути. За несколько последних столетий мы были свидетелями цепочки прорывов, каждый из которых радикально менял наши представления о пространстве и времени. Теоретические и экспериментальные предложения, рассмотренные в данной книге, отражают идеи и взгляды нашего поколения; вероятно, большая их часть войдёт в наше научное наследие. В главе 16 мы обсудим некоторые из самых недавних теоретических достижений в попытке пролить свет на то, что может оказаться следующими шагами нашего путешествия. Но сначала, в главе 15, посмотрим в другом направлении. Хотя нет и не может быть никаких правил научных открытий, но история показывает, что глубокое понимание часто ведёт к новым технологическим достижениям. Изучение электромагнитного взаимодействия в XIX в. в конечном счёте привело к изобретению телеграфа, радио и телевидения. Объединив это знание с последующими прорывами в области квантовой механики, мы смогли создать компьютеры, лазеры и самые разнообразные электронные устройства, которым не счесть числа. Понимание ядерных сил привело к опасному овладению самым мощным оружием, которое когда-либо знал мир, а также к развитию технологий, которые в перспективе могли бы удовлетворить энергетические потребности всего мира с помощью всего лишь цистерн солёной воды. Станет ли наше всё углубляющееся понимание пространства и времени первым шагом аналогичной цепочки открытий и технологических достижений? Овладеем ли мы когда-нибудь пространством и временем и достигнем ли того, что пока является уделом лишь научной фантастики? Никто не знает этого. Но давайте сейчас оценим, как далеко мы зашли и что это может повлечь за собой. Глава 15. Телепортация и машины времени Путешествие сквозь пространство и время Возможно, мне просто не хватало воображения в далёких 1960-х гг., но самой невероятной вещью мне тогда казался компьютер на борту «Энтерпрайза» из сериала «Звёздный Путь». Я был учеником начальной школы и мог спокойно допустить, что когда-нибудь будут созданы двигатели, позволяющие почти мгновенно преодолевать громадные космические расстояния, и меня не удивляла Вселенная, населённая инопланетянами, бегло говорящими по-английски. Но чтобы машина могла по запросу выводить изображение какой угодно исторической личности, предоставлять технические спецификации для любого оборудования или текст какой угодно книги из когда-либо написанных? Именно в это я отказывался верить. В конце 1960-х гг. подросток в моём лице был уверен, что никогда не будет найден способ собирать, хранить и предоставлять быстрый доступ к такому богатству информации. И всё же, менее полувека спустя, я сижу на кухне с ноутбуком, снабжённым беспроводным доступом в Интернет и программой распознавания речи, и играю роль капитана Кирка, листая обширные хранилища знаний — от капитальных до несерьёзных — не пошевелив и пальцем. Конечно, наши компьютеры ещё проигрывают в скорости и эффективности вымышленным компьютерам XXIII в. из мира «Звёздного Пути», но легко представить, что через двести лет наши технологии превзойдут всяческие ожидания. Этот пример стал одним из избитых штампов для иллюстрации возможности научной фантастики предсказывать будущее. Но что может быть соблазнительней такой машины: вы входите в помещение, щёлкаете переключатель и мгновенно переноситесь в далёкое место или другое время? Возможно, однажды мы освободимся от ограничений на пространство и время, к которым мы были так долго привязаны, и познаем дальние пределы пространств и времён? Или же такая возможность навсегда останется уделом научной фантастики? Уличив меня в детской неспособности предвидеть информационную революцию, вы можете усомниться в моей способности предсказывать будущие технологические прорывы. Поэтому вместо размышлений о вероятности того, что может быть, в этой главе я расскажу, как далеко мы уже продвинулись, как в теории, так и на практике, в направлении реализации телепортации и машины времени, и что понадобится для дальнейшего продвижения и овладения контролем над пространством и временем. Телепортация в квантовом мире В общепринятых описаниях научной фантастики телепортер (или транспортёр — на сленге «Звёздного Пути») сканирует объект и определяет его строение, а затем посылает эту информацию в удалённое место, где и воссоздаётся этот объект. В одних научно-фантастических произведениях сам объект «дематериализуется» и его атомы и молекулы посылаются вместе с информацией для последующей сборки, в других же произведениях создаётся точная копия объекта из атомов и молекул, находящихся в «приёмнике» телепортера. Научный подход к телепортации, развитый за последнее десятилетие, ближе по духу ко второму варианту, что сразу же влечёт два существенных вопроса. Первый вопрос представляет собой стандартную, но трудную философскую головоломку: когда, если вообще когда-либо, точная копия должна идентифицироваться с оригиналом и рассматриваться как оригинал? Второй вопрос заключается в том, возможно ли, даже в принципе, полностью определить строение и состав объекта так, чтобы затем можно было создать «шаблон», по которому можно было бы точно восстановить объект? Во Вселенной, подчиняющейся законам классической физики, ответ на второй вопрос был бы положительным. Параметры каждой частицы, составляющей объект (её тип, положение, скорость и т. д.), в принципе можно абсолютно точно измерить, а затем передать эту информацию в удалённое место, чтобы воссоздать по ней сам объект. Сделать подобное для объекта, состоящего больше чем из горстки элементарных частиц, видится неимоверно сложной задачей, но в классической Вселенной эта задача в принципе разрешима — всё упирается только в сложность. Во Вселенной, подчиняющейся законам квантовой физики, — нашей Вселенной — ситуация гораздо более тонкая. Мы знаем, что акт измерения вынуждает ряд параметров объекта выплыть из «квантового тумана» и принять определённые значения. Например, когда мы наблюдаем частицу, то измеренные нами параметры не отражают неопределённую квантовую смесь атрибутов, которую она имела до нашего наблюдения.{194} Таким образом, если мы хотим скопировать объект, мы попадаем в порочный квантовый круг. Чтобы скопировать, мы должны наблюдать, чтобы знать, что копировать. Но сам акт наблюдения вносит изменения, так что если мы копируем то, что видим, то мы скопируем не то, что было до нашего наблюдения. Отсюда можно прийти к заключению, что телепортация в квантовом мире невозможна, но не просто из-за практических ограничений, вытекающих из сложности одновременного измерения всех параметров гигантского количества объектов, а в силу фундаментальных ограничений, отражающихся в квантовой физике. Тем не менее, как мы увидим в следующем разделе, в начале 1990-х гг. международная группа физиков нашла искусный способ обойти это препятствие. Что касается первого вопроса по поводу взаимосвязи между копией и оригиналом, квантовая физика даёт точный и ободряющий ответ. Согласно квантовой механике все электроны во Вселенной идентичны друг другу в том смысле, что все они обладают одной и той же массой, одним и тем же электрическим зарядом, одними и теми же характеристиками слабого и сильного взаимодействия и одним и тем же полным спином. Более того, согласно основательно проверенному утверждению квантовой механики только что приведённый перечень исчерпывает все характеристики электрона; электроны идентичны по отношению к этим характеристикам, а других существенных характеристик просто нет. В том же смысле идентичны все u-кварки, идентичны все d-кварки, идентичны все фотоны и т. д. — данное утверждение справедливо для всех типов частиц. Как было установлено ещё много десятилетий тому назад, частицы также можно рассматривать как наименьшие «пакеты» поля (например, фотоны — наименьшие пакеты электромагнитного поля), и квантовая физика показывает, что такие мельчайшие составляющие одного и того же поля всегда идентичны. (Или, согласно представлению теории струн, частицы одного типа имеют идентичные характеристики из-за того, что являются идентичными вибрациями струны всего одного типа.) Частицы одного типа могут отличаться лишь вероятностями их обнаружения в том или ином месте, вероятностями ориентации спина в том или ином направлении и вероятностями обладания конкретными скоростями и энергиями. Или, как лаконично говорят физики, частицы могут находиться в различных квантовых состояниях. Но если две частицы одного типа находятся в одном и том же квантовом состоянии (за исключением, возможно, того, что у одной частицы выше вероятность быть здесь, а у другой — там), то законы квантовой механики гарантируют, что частицы неразличимы, причём не только практически, но и в принципе. Они — совершенные близнецы. Если бы кто-то поменял частицы местами (точнее, поменял их вероятности быть в том или ином месте), то никто бы не смог определить, что частицы переставлены. Таким образом, если кто-то вводит частицу, находящуюся в отдалённом месте,[93] точно в то же квантовое состояние, какое имеет частица того же типа, находящаяся здесь, то отдалённая частица будет неотличима от своего оригинала, и этот процесс можно по праву назвать квантовой телепортацией. Конечно, если бы этот процесс никак не затронул оригинальную частицу, то вы могли бы назвать его квантовым клонированием или, возможно, квантовым копированием на расстоянии. Но, как мы увидим, при научной реализации этих идей затрагивается оригинальная частица — её квантовое состояние неизбежно меняется в ходе процесса телепортации, — так что мы не столкнёмся с таксономической дилеммой. Более насущен вопрос (внимательно рассматривавшийся философами в той или иной форме), верно ли для агломерата частиц то, что верно для одной частицы? Если бы вы сподобились телепортировать из одного места в другое каждую частицу, составляющую ваш «ДеЛориан»[94], гарантируя, что квантовое состояние каждой частицы, включая её взаимосвязи со всеми другими частицами, воспроизведено со 100%-й точностью, то означало бы это, что вам удалось телепортировать свой автомобиль? Хотя у нас нет никаких эмпирических данных, но теоретические соображения определённо говорят в пользу возможности телепортации автомобиля. Атомное и молекулярное строение определяет всё восприятие автомобиля: как он выглядит, как звучит, как пахнет и даже какой он на вкус, так что скопированный автомобиль должен быть полностью идентичен оригинальному «ДеЛориану» — со всеми своими неровностями, царапинами, скрипучей левой дверью, запахом, оставленным вашей собакой, и прочим. Он должен брать резкий поворот и реагировать на нажатие педали газа точно так же, как оригинал. Нас не заботит, действительно ли перед нами оригинал или его идеальная копия. Если бы вы попросили Объединённые квантовые транспортные линии[95] доставить по морю ваш автомобиль из Нью-Йорка в Лондон, а компания, без вашего ведома, телепортировала бы ваш автомобиль указанным выше образом, то вы никогда не нашли бы разницы — даже в принципе. Но что если транспортная компания проделала бы то же самое с вашим котом? Или, питая отвращение к пище, предлагаемой на борту самолёта, вы решились бы на собственную телепортацию? Будет ли кот или человек, вышедший с другого конца телепортера, тем же самым, кто вошёл в телепортер? Лично я так и думаю. Опять же, поскольку у нас нет соответствующих данных, в лучшем случае мы можем лишь рассуждать. По моему мнению, живое существо, атомы и молекулы которого находятся точно в том же квантовом состоянии, что и мои, есть я. Даже если бы «оригинал» меня остался бы после «копирования», я (мы) без колебания бы сказал, что и «копия», и «оригинал» — это я сам. Ни один из «нас» не будет иметь приоритета над другим. Мысли, память, эмоции и суждения имеют физическое основание в атомных и молекулярных характеристиках человеческого тела; идентичное квантовое состояние элементарных составляющих должно влечь за собой идентичное сознательное существо. С течением времени мы стали бы различаться из-за различного опыта, но я действительно верю, что с момента «копирования» будет «два меня», а не то, что «оригинал» — каким-либо образом «настоящий я», а «копия» в чём-то поддельна. В действительности я хочу даже несколько ослабить требования. Наше физическое строение всё время постоянно меняется — иногда чуть-чуть, иногда значительно, — но каждый из нас остаётся одной и той же личностью. От мороженого Haagen-Dazs[96], наводняющего кровоток жиром и сахаром, до магнитно-резонансного томографа, поворачивающего спиновые оси ядер различных атомов мозга, до сердечных трансплантантов и липосакции, до триллионов атомов, заменяющихся каждую миллионную долю секунды в человеческом теле, мы подвержены постоянным изменениям, и всё же наша личная идентичность остаётся неизменной. Так что даже если телепортировавшееся существо не абсолютно точно будет воспроизводить моё физическое состояние, оно ещё может оставаться полностью неотличимым от меня. В меру моего понимания, оно могло бы быть мной. Конечно, если вы верите в то, что жизнь, и в особенности сознательная жизнь, включает в себя ещё какую-то сущность помимо физической организации, то ваши критерии успешной телепортации будут строже моих. Эта мудрёная проблема — до какой степени наша идентификация как личности привязана к нашему физическому существу? — обсуждалась годами, но так и не было найдено ответа, который удовлетворил бы всех и каждого. Хотя лично я верю, что вся идентификация зависит только от физического, но другие не согласятся со мной, и никто не сможет привести убедительных доказательств правоты своей точки зрения. Но безотносительно к вашей точке зрения на гипотетическую проблему телепортации живого существа учёные уже установили, что благодаря чудесам квантовой механики отдельные частицы могут быть телепортированы — и были телепортированы. Давайте посмотрим, как. Квантовое запутывание и квантовая телепортация В 1997 г. сразу две группы — группа физиков под руководством Антона Цайлингера, работавшего тогда в университете Инсбрука, и другая группа под руководством А. Франческо Де Мартини из университета Рима{195} — осуществили первую успешную телепортацию одного фотона. В обоих экспериментах начальный фотон в определённом квантовом состоянии был телепортирован на короткое расстояние в пределах лаборатории, но есть все основания полагать, что использованные методики сработают на любом расстоянии. Каждая группа использовала метод, основанный на теоретических соображениях, приведённых в 1993 г. группой физиков — Чарльзом Беннетом из Исследовательского центра IBM имени Томаса Ватсона; Жилем Брассаром, Клодом Крепо и Ричардом Джозой из университета Монреаля; израильским физиком Ашером Пересом и Вильямом Вуттерсом из Вильямсовского колледжа, — которые опирались на квантовое запутывание (глава 4). Вспомним, что две запутанные частицы, скажем, два фотона, имеют необычную тесную взаимосвязь. Хотя каждая из таких частиц лишь с некоторой вероятностью имеет тот или иной спин и хотя при измерении каждая из частиц случайным образом «выбирает» конкретное значение спина, но каким бы ни был «выбор» одной частицы, вторая тотчас же делает тот же «выбор», невзирая на расстояние между частицами. В главе 4 мы уяснили, что невозможно использовать запутанные частицы для посылки сообщения из одного места в другое со скоростью, превышающей скорость света. Если последовательность пар запутанных фотонов измерить в далеко отдалённых друг от друга местах, то данные, снятые с каждого детектора, будут случайным набором величин (в котором частота получения того или иного результата согласуется с волной вероятности частиц). Запутывание станет явным лишь при сравнении двух наборов данных, когда обнаружится, что эти наборы идентичны. Но для сравнения требуется какая-либо обычная связь со скоростью, меньшей скорости света. А поскольку до проведения сравнения никак невозможно обнаружить запутывание, то невозможно послать сигнал со скоростью, превышающей скорость света. Тем не менее, хотя запутывание невозможно использовать для сверхсветовых сообщений, но остаётся стойкое ощущение, что дальнодействующие корреляции между частицами столь странны, что их можно как-то использовать для чего-то экстраординарного. В 1993 г. Беннет со своими сотрудниками обнаружил одну такую возможность. Они показали, что квантовое запутывание можно использовать для квантовой телепортации. Вы не сможете послать сигнал со скоростью, превосходящей скорость света, но если вы собираетесь осуществить телепортацию частицы со скоростью, меньшей скорости света, то квантовое запутывание — то, что нужно. И осуществить это можно весьма оригинальным способом. Вот как это делается. Представим, что я хочу телепортировать конкретный фотон — назовём его фотоном A — из своего дома в Нью-Йорке своему другу Николасу в Лондон. Ради простоты проследим только за спином фотона — посмотрим, как можно точно телепортировать квантовое состояние спина фотона, т. е. как Николасу получить фотон с тем же распределением вероятности спина по осям, как и у моего фотона A. Я не могу просто измерить спин фотона A, а затем позвонить Николасу и сказать, что ему сделать со своим фотоном, чтобы его спин соответствовал моим наблюдениям; на результат, который я получил, оказало бы влияние проведённое мной измерение, и поэтому он не будет отражать истинное состояние фотона A до измерения. Так что же делать? Выход предлагает Беннетт со своими коллегами: прежде всего, нам с Николасом надо иметь по дополнительному фотону (назовём их фотонами B и C), которые составляют вместе пару запутанных фотонов. Не важно, как мы добудем такие фотоны. Просто допустим, что мы с Николасом уверены в том, что хотя нас разделяет Атлантический океан, но если я измерю спин своего фотона B относительно одной из осей, а Николас — спин своего фотона C относительно той же оси, то наши результаты совпадут. Затем, согласно Беннетту с сотрудниками, не следует напрямую измерять спин фотона A (того фотона, который я собираюсь телепортировать), поскольку это обернётся слишком сильным вмешательством. Вместо этого мне следует измерить некую совместную характеристику фотонов A и B. Например, квантовая теория позволяет мне определить, обладают ли фотоны A и B одинаковым спином относительно вертикальной оси, не измеряя спин каждого фотона по отдельности. Аналогично, квантовая теория позволяет определить, обладают ли фотоны A и B одинаковым спином относительно горизонтальной оси, не измеряя спин каждого фотона по отдельности. Выполнив такое совместное измерение, я не узнаю спин фотона A, но зато узнаю, как спин фотона A связан со спином фотона B. Это важная информация, и вот почему. Удалённый фотон C запутан с фотоном B, поэтому, зная о связи фотонов A и B, я могу вывести, как фотон A связан с фотоном C. Если я теперь передам по телефону эту информацию Николасу, он сможет определить, что нужно сделать с фотоном C, чтобы его квантовое состояние точно соответствовало фотону A. Проделав необходимые манипуляции, он получит у себя фотон C, квантовое состояние которого будет идентично моему фотону A, а именно это и требуется, чтобы заявить, что фотон A был успешно телепортирован из Нью-Йорка в Лондон. Например, в простейшем случае, когда спин фотона B оказывается идентичным спину фотона A, тогда и спин фотона C оказывается идентичным спину фотона A, и уже больше ничего не нужно делать для телепортации. Фотон C будет находиться в том же квантовом состоянии, что и фотон A, что и требовалось. Всё почти так. Такова идея в общих чертах, и ради простоты изложения я намеренно опустил кое-что необычайно важное. Сейчас я восполню этот пробел. Проводя совместное измерение фотонов A и B, я действительно узнаю о связи спинов этих фотонов. Но, как и любое наблюдение, такое измерение тоже воздействует на фотоны. Поэтому я не узнаю, как спины фотонов A и B были связаны до измерения. Вместо этого я узнаю, как они связаны после того, как сам акт измерения уже повлиял на них. Так что на первый взгляд кажется, что мы сталкиваемся с той же проблемой, как и при непосредственном измерении спина фотона A: в обоих случаях квантовое состояние фотона A меняется после измерения. И вот где к нам приходит на выручку фотон C. Поскольку фотоны B и C запутаны, то любое воздействие на фотон B в Нью-Йорке отразится на состоянии фотона C в Лондоне. Такова удивительная природа квантового запутывания, как мы обсуждали в главе 4. И действительно, Беннетт с сотрудниками математически показали, что благодаря запутыванию с фотоном B искажение, вносимое измерением, отпечатывается на удалённом фотоне C. И вот что чрезвычайно интересно. Посредством измерения мы можем узнать, как связаны спины фотонов A и B, но сам процесс измерения влияет на оба фотона. Однако благодаря квантовому запутыванию это измерение влияет и на фотон C (даже если фотон C находится в тысячах километров от A и B), и это позволяет нам изолировать эффект влияния и тем самым получить информацию, обычно теряющуюся в процессе измерения. Если я теперь сообщу Николасу результат своего измерения, то он узнает, как связаны спины фотонов A и B после измерения, и через фотон C он получит доступ к результату влияния самого измерения. Это позволит Николасу использовать фотон C для того, чтобы, грубо говоря, вычесть влияние измерения и таким путём обойти препятствие, мешавшее копированию состояния фотона A. В действительности, Беннетт с сотрудниками детально показали, как путём простой манипуляции со спином фотона C (на основе информации о связи спинов фотонов A и B) Николас может гарантированно сделать так, чтобы квантовое состояние фотона C в точности воспроизводило состояние фотона A до измерения. Пока речь шла только о спине, но и другие характеристики квантового состояния фотона A (такие как вероятность нахождения на том или ином энергетическом уровне) могут быть скопированы аналогичным образом. Таким образом можно телепортировать фотон A из Нью-Йорка в Лондон.{196} Как видно, квантовая телепортация включает в себя два этапа, на каждом из которых передаётся важная информация. Сначала мы выполняем совместное измерение фотона, предназначенного для телепортации, с фотоном из пары сцепленных фотонов. Изменение квантового состояния, связанное с актом измерения, благодаря квантовой нелокальности отпечатывается на удалённом партнёре из пары сцепленных фотонов. Таков первый этап — «квантовая часть» процесса телепортации. На втором этапе результат самого измерения сообщается по любому обычному каналу связи (телефон, факс, электронная почта...) — это «классическая часть» процесса телепортации. Комбинация этих двух этапов позволяет точно воспроизвести квантовое состояние фотона, предназначенного для телепортации, путём несложной операции (такой как вращение на некоторый угол вокруг определённой оси), применяемой к удалённому партнёру пары сцепленных фотонов. Отметим две характерные черты квантовой телепортации. Поскольку начальное состояние фотона A было нарушено в ходе измерения, то только фотон C теперь находится в том начальном состоянии. Нет двух копий исходного фотона A, так что этот процесс точнее назвать квантовой телепортацией, а не квантовым копированием.{197} Более того, хотя мы телепортировали фотон A из Нью-Йорка в Лондон (и фотон в Лондоне стал неотличим от того фотона, который был в Нью-Йорке), но мы так и не узнали квантовое состояние фотона A. Фотон A в Лондоне обрёл ту же самую вероятность обладания спином относительно того или иного направления, какую имел фотон A до моего вмешательства, но мы не знаем, какова эта вероятность. Таков трюк, лежащий в основании квантовой телепортации. Возмущение, вызываемое актом измерения, препятствует нам узнать квантовое состояние фотона A, но в описанном подходе нам и не нужно знать квантовое состояние фотона, чтобы телепортировать его. Нам требуется знать, лишь один аспект его квантового состояния — то, что мы узнаем из совместного измерения с фотоном B. Квантовое запутывание с удалённым фотоном C предоставляет недостающую информацию для успешной телепортации фотона. Осуществление этой стратегии квантовой телепортации явилось очень непростым делом. В начале 1990-х гг. пару запутанных фотонов можно было породить с помощью стандартной процедуры, но ещё никто никогда не осуществлял совместное измерение двух фотонов (описанное выше совместное измерение фотонов A и B, называемое измерением состояния Белла). Заслуга групп Цайлингера и Де Мартини состоит в том, что они разработали оригинальную экспериментальную методику совместного измерения и реализовали её в лабораторных условиях.{198} В 1997 г. они достигли своей цели, став первыми группами, осуществившими телепортацию одной частицы. Практическая телепортация Поскольку мы с вами, автомобиль «ДеЛориан» и всё остальное состоит из множества частиц, то следующим естественным шагом будет представить, как применить квантовую телепортацию к такой крупной совокупности частиц, что позволило бы перебрасывать макроскопические объекты из одного места в другое. Однако переход от телепортации одной частицы к телепортации макроскопической совокупности частиц сразу же ставит в тупик и находится далеко за пределами того, что многим исследователям представляется достижимым даже в отдалённом будущем. Но ради забавы представим себе, как могли бы осуществиться фантастические мечты Цайлингера. Вообразим, что я хочу телепортировать свой «ДеЛориан» из Нью-Йорка в Лондон. Вместо пары сцепленных фотонов (необходимых для телепортации одного фотона) нам с Николасом потребуется по целому вместительному контейнеру частиц, содержащему достаточно протонов, нейтронов, электронов и т. д. для воссоздания «ДеЛориана», причём частицы в наших контейнерах должны быть попарно запутаны друг с другом (см. рис. 15.1). Мне также потребуется устройство для совместного измерения всех частиц, составляющих «ДеЛориан», с частицами, снующими туда-сюда в моём контейнере (аналог прибора для совместного измерения фотонов A и B). Благодаря запутыванию частиц в двух камерах воздействие проведённого мною совместного измерения отпечатается в частицах, находящихся в камере Николаса в Лондоне (аналог того, как совместное измерение фотонов A и B отражается на фотоне C). Если я позвоню Николасу и сообщу ему результаты своего измерения (это будет дорогой звонок, так как мне потребуется передать 1030 результатов), то переданные мною данные скажут, какие манипуляции ему следует провести с частицами в своём контейнере (во многом подобно тому как я раньше передавал ему данные для манипуляции с фотоном C). Когда он закончит эти манипуляции, каждая частица в его контейнере окажется точно в том же квантовом состоянии, как каждая частица «ДеЛориана» (до того, как я провёл измерение), и так Николас получит «ДеЛориан».[97] Тем самым будет осуществлена телепортация из Нью-Йорка в Лондон.
Однако заметим, что каждый шаг этой макроскопической версии квантовой телепортации фантастичен. Объекты типа «ДеЛориана» имеют свыше миллиарда миллиардов миллиардов частиц. Хотя в экспериментах удаётся манипулировать с более чем одной парой сцепленных частиц, но эти эксперименты чрезвычайно далеки от того, чтобы набрать число частиц, характерное для макроскопических объектов.{199} Создание двух контейнеров сцепленных частиц находится далеко за переделами современных возможностей. Более того, совместное измерение даже двух фотонов явилось впечатляющим достижением. Сегодня даже невозможно вообразить совместное измерение миллиардов и миллиардов частиц. По современной беспристрастной оценке, можно заявить, что пройдут целые эпохи (если не вечность), прежде чем станет возможной телепортация макроскопического объекта — по крайней мере способом, описанным выше применительно к одной частице. Но поскольку наука и техника постоянно отодвигает границы невозможного, я просто отмечу очевидное: телепортация макроскопических тел выглядит маловероятной. Но, как знать? Сорок лет назад компьютер «Энтерпрайза» тоже казался маловероятным.{200} Загадки путешествия во времени Несомненно, наша жизнь была бы другой, если телепортация была бы столь же простым делом, как почтовая пересылка или поездка на метро. Стали бы возможными невероятные путешествия, и само понятие путешествия в пространстве изменилось бы до такой степени, что скачок в удобстве и практичности привёл к фундаментальному изменению во взгляде на мир. Но всё же воздействие телепортации на наше ощущение Вселенной было бы лишь бледной тенью по сравнению с тем переворотом, который вызвала бы возможность путешествия во времени. Всем известно, что при достаточном усилии и стремлении можно добраться, по крайней мере в принципе, в желаемую точку пространства. Хотя и существуют технологические ограничения на наши путешествия в пространстве, мы всё же путешествуем, хотя и в рамках этих ограничений, руководствуясь своим выбором и своими желаниями. Но как добраться из «сейчас» в «тогда»? Наш опыт определённо свидетельствует, что для этого существует только один маршрут: мы должны ждать — секунда за секундой, пока не наступит это «тогда». И это предполагает, что «тогда» следует за «сейчас». Если «тогда» предшествует «сейчас», то опыт говорит, что такого маршрута вообще не существует; путешествие в прошлое представляется невозможным. В отличие от путешествия в пространстве, путешествие во времени кажется чем угодно, но только не делом выбора и желания. Когда речь заходит о времени, нас тащит в одном направлении, хотим мы этого или нет. Если бы мы могли путешествовать во времени столь же легко, как мы путешествуем в пространстве, наш взгляд на мир не просто бы изменился, а претерпел бы самый резкий сдвиг за всю историю нашего вида. Ввиду такого несомненного потрясения я часто поражаюсь тому, сколь мало людей осознают, что теоретические основы одного из видов путешествий во времени — путешествия в будущее — были заложены ещё в начале прошлого века. Открыв природу пространства-времени в своей специальной теории относительности, Эйнштейн обрисовал схему перемещения в будущее. Если вы хотите увидеть, как будет выглядеть Земля через 1000, 10 000 или 10 млн лет, обратитесь к законам эйнштейновской физики, говорящим, как это сделать. Надо построить космический корабль, способный достигнуть скорости, скажем, 99,9999999996% от скорости света. Разогнавшись до этой скорости, вы несётесь в открытом космосе день, десять дней или чуть больше двадцати семи лет согласно вашим корабельным часам, а затем внезапно поворачиваете и летите к Земле, опять же, на предельной скорости. Когда вы вернётесь, на Земле пройдёт 1000, 10 000 или 10 млн лет. Таково бесспорное и экспериментально проверенное предсказание замедления времени с ростом скорости, о чём мы говорили в главе 3.{201} Конечно, поскольку мы очень далеки от того, чтобы строить космические корабли, развивающие такую скорость, то никто буквально не проверял эти предсказания. Но, как мы рассказывали ранее, замедление времени было проверено на коммерческих авиарейсах, скорость которых составляет лишь мельчайшие доли скорости света, а также на элементарных частицах, подобных мюонам, разгоняемым на ускорителях до скоростей, близких к скорости света (покоящиеся мюоны распадаются на другие частицы за две миллионные доли секунды, но чем быстрее они движутся, тем медленнее идёт их внутреннее время и тем дольше они живут с нашей точки зрения). Есть все основания полагать (и нет ни одной причины не верить в это), что специальная теория относительности верна, и даваемая ей стратегия путешествия в будущее будет работать так, как и предсказывается. Технология, а не физика, держит нас привязанными к своей эпохе.[98] Гораздо более трудные вопросы возникают, когда мы начинаем думать о другого рода путешествиях во времени — путешествиях в прошлое. Несомненно, вы знакомы с некоторыми из них. Например, есть стандартный сценарий, в котором вы путешествуете в прошлое и предотвращаете собственное рождение. Можно обойтись и без насилия — достаточно устроить так, чтобы ваши родители не встретились. Парадокс ясен: если вы никогда не рождались, то как же вы появились на свет и, в частности, перенеслись в прошлое и воспрепятствовали встрече своих родителей? Чтобы перенестись в прошлое и воспрепятствовать встрече своих родителей, вы должны были родиться; но если бы вы родились, перенеслись в прошлое и воспрепятствовали встрече своих родителей, то вы бы не родились. Мы упёрлись в логический тупик. Сходный парадокс, предложенный философом из Оксфорда Майклом Дамметтом и подчёркнутый его коллегой Дэвидом Дойчем, дразнит ум немного другим образом, но, возможно, ещё больше сбивает с толку. Расскажу об этом парадоксе на обыденном примере. Представьте, что я создал машину времени и перенёсся на десять лет в будущее. После короткого ланча в японском ресторанчике «Тофу-для-Вас» (сеть ресторанов быстрого обслуживания, вытеснившая «Макдоналдс» после глобальной эпидемии коровьего бешенства, навсегда отбившей охоту к чизбургерам) я иду в ближайшее интернет-кафе и читаю о достижениях в теории струн за последние десять лет. И здесь меня поджидает сюрприз. Я обнаруживаю, что были решены все проблемы теории струн. Теория теперь полностью разработана и успешно используется для объяснения свойств всех известных частиц. Получено неопровержимое доказательство существования дополнительных измерений и теоретические предсказания, касающиеся суперсимметричных партнёров частиц — их массы, электрические заряды и т. д. — только что были подтверждены с помощью Большого адронного коллайдера. Больше нет никаких сомнений: теория струн является единой теорией Вселенной. Но меня поджидает ещё больший сюрприз, когда я начинаю читать, благодаря кому достигнут столь великий прогресс. Революционная статья была написана годом ранее не кем иным, как Ритой Грин — моей матерью. Я шокирован. Не подумайте о непочтительности: моя мать — чудесная женщина, но она не учёный и не может понять, как это кто-то может быть учёным, и, к примеру, прочла лишь первые несколько страниц «Элегантной Вселенной», после чего отложила её в сторону и сказала, что из-за этой книги у неё разболелась голова. Так как же она смогла написать главную статью в теории струн? Читая её статью, я поражаюсь её простому и всё же глубочайшему прозрению и вижу в конце, что она благодарит меня за годы интенсивных занятий по физике и математике после её посещения семинара Тони Роббинса[99], позволившего преодолеть ей свои внутренние страхи и пробудить в себе физика. Ну и ну, — думаю я. Она пошла на этот семинар после того, как я отправился в будущее. Лучше бы мне побыстрее вернуться в своё время, чтобы начать с ней занятия. Ладно, я возвращаюсь в своё время и начинаю знакомить свою мать с теорией струн. Но дело идёт туго. Проходит год, проходит второй. И хотя она старается изо всех сил, прогресса почти нет. Я начинаю беспокоиться. Мы продолжаем занятия ещё пару лет, но прогресс минимален. Теперь я по-настоящему обеспокоен. Осталось не так уж много времени до того, как должна выйти та самая революционная статья. Как же она напишет её? Наконец, я принимаю важное решение. Когда в будущем я читал эту статью, она произвела на меня такое впечатление, что прочно отпечаталась в моей памяти. Так что вместо того чтобы предоставить моей матери самой делать своё открытие — что кажется всё менее и менее вероятным — я говорю ей, что написать, а затем проверяю и убеждаюсь, что она изложила всё, что я помню. Она публикует статью, и вскоре та переворачивает весь мир физики. Появляется всё, что я запомнил из своего путешествия в будущее. А теперь загадка. Кого благодарить за революционную статью моей матери? Конечно, не меня. Я узнал о результатах, прочтя о них в статье. Но как благодарить мою мать, если она лишь записала то, что я ей сказал? Конечно, настоящий вопрос не в том, кого благодарить — вопрос в том, оттуда появилось новое знание, новое прозрение и новое понимание, представленное в статье моей матери. На кого или что можно указать и заявить: «Благодаря этому человеку или этому компьютеру появились новые результаты?» У меня, как и у моей матери, не было никаких прозрений, а никто другой не причастен к этому делу, и мы не использовали компьютер. Тем неё менее, каким-то непостижимым образом эти великолепные результаты появились в статье моей матери. Видимо, в мире, позволяющем путешествовать как в прошлое, так и в будущее, знание может материализоваться из воздуха. Это, несомненно, очень странно, хотя, возможно, и не так парадоксально, как в ситуации воспрепятствования собственному рождению. Что же нам делать с таким парадоксом и такой странностью? Следует ли нам заключить, что хотя законы физики позволяют нам путешествовать в будущее, но любая попытка перенестись в прошлое обречена на неудачу? Некоторые думают, что это несомненно так. Но, как мы сейчас увидим, существуют пути, позволяющие обходить эти коварные вопросы. Это не означает, что путешествие в прошлое возможно — это отдельная проблема, которую мы затем вкратце рассмотрим — но это показывает, что путешествие в прошлое не может исключаться теми парадоксами, которые мы только что обсуждали. Пересмотр загадок Вспомним, как в главе 5 мы обсуждали течение времени с точки зрения классической физики и пришли к образу, существенно отличающемуся от нашего интуитивного представления. Аккуратные рассуждения привели нас к представлению о пространстве-времени как о глыбе льда с навечно замороженными моментами времени, в отличие от известного образа времени как реки, уносящей нас от одного момента к другому. Эти замороженные моменты группируются в представление о «сейчас» — события, произошедшие одновременно, — разными наблюдателями, движущимися друг относительно друга. Мы также использовали равнозначную метафору, в которой пространство-время рассматривается как буханка хлеба, которую можно нарезать на отдельные ломтики под различными углами. Но, безотносительно к метафорам, урок главы 5 состоит в том, что моменты — события, составляющие блок пространства-времени, — просто существуют. Они безвременные. Каждый момент — каждое событие — существует точно так же, как существует каждая точка пространства. Моменты не приходят внезапно в жизнь при освещении их «прожектором» настоящего времени наблюдателя; такой образ согласуется с нашей интуицией, но не выдерживает логического анализа. Моменты не меняются. Моменты существуют. Освещённость этим «прожектором» — просто одно из множества свойств, составляющих момент. Это прекрасно иллюстрирует рис. 5.1, дающий хотя и не реальную, но наглядную перспективу, на которой в едином взгляде охватываются все события, составляющие историю Вселенной; они все там — неподвижные и неизменные. Различные наблюдатели не согласятся в том, какие события происходят одновременно — они нарезают блок пространства-времени под разными углами, — но весь блок в целом с составляющими его событиями буквально универсален. Квантовая механика вносит свои поправки в этот классический взгляд на время. Например, в главе 12 мы видели, что на чрезвычайно малых масштабах пространство и пространство-время неизбежно становятся волнистыми и колеблющимися. Однако (см. главу 7) концепция времени в квантовой механике зависит от решения проблемы квантового измерения. Один из подходов к этой проблеме — многомировая интерпретация — особенно уместен для решения парадоксов, возникающих в связи с путешествиями во времени, и мы рассмотрим этот подход в следующем разделе. А пока мы останемся в рамках классической интерпретации квантовой механики и посмотрим, как с помощью представления о блоке пространства-времени можно обходить загадки, связанные с путешествием во времени. В качестве примера рассмотрим парадокс, возникающий в том случае, если вы решите отправиться в прошлое и воспрепятствовать встрече своих родителей. Интуитивно мы представляем, как это могло бы произойти. Перед вашим путешествием в прошлое ваши родители встретились, скажем, ровно в полночь 31 декабря 1965 г. на новогодней вечеринке, а затем ваша мать родила вас. Затем, много лет спустя, вы решили переместиться в прошлое — в 31 декабря 1965 г. — и, оказавшись там, изменить события; в частности, вы намереваетесь помешать встрече ваших родителей и тем самым воспрепятствовать своему зачатию и рождению. Но давайте теперь посмотрим на это интуитивное представление с точки зрения более корректного описания времени на образе блока пространства-времени. Сразу же видно, что по своей сути это интуитивное представление бессмысленно, поскольку в нём предполагается, что моменты могут меняться. В интуитивном представлении рисуется, что полночь 31 декабря 1965 г. «изначально» была моментом встречи ваших родителей, но ваше вмешательство «впоследствии» меняет события, так что в полночь 31 декабря 1965 г. ваших родителей разделяют целые километры, если не континенты. Проблема такой смены событий состоит в том, что моменты на самом деле не меняются; как мы видели, они просто существуют, и всё. Существует единый блок пространства-времени, постоянный и неизменный. Бессмысленно представление, что «сначала» момент был таким, а «затем» стал другим. В вашем путешествии в 31 декабря 1965 г., когда вы якобы «оказались» там, вы всегда там и были, вы всегда там и будете, вы никогда не были не там. 31 декабря 1965 г. не наступает дважды — один раз, когда вас там нет, а второй раз — когда вы прибываете туда на машине времени. С точки зрения безвременной перспективы рис. 5.1 вы существуете — статично и неизменно — в различных точках блока пространства-времени. Если сегодня вы настраиваете свою машину времени так, чтобы она переместила вас в момент 23:50 31 декабря 1965 г., то этот момент должен быть среди всех точек пространства-времени, в которых вас можно найти. Но это значит, что ваше присутствие в канун наступающего 1966 г. является вечной и неизменной характеристикой блока пространства-времени. Это ведёт к ещё более странным выводам, но снимает сам парадокс. Например, это значит, что вы появляетесь в блоке пространства-времени ровно в 23:50 31 декабря 1965 г., но до этого момента не будет и следа вашего существования. Это странно, но не парадоксально. Если ошарашенный парень видит, как вы внезапно появляетесь «из ниоткуда» в 23:50 и с расширенными от страха глазами спрашивает, откуда вы взялись, вы можете спокойно ответить: «из будущего». В этом сценарии, по крайней мере до сих пор, нет логических противоречий. Интереснее станет тогда, когда вы попытаетесь выполнить свою миссию и удержать своих родителей от их встречи. Что же произойдёт? Что ж, повертев блок пространства-времени, мы неминуемо придём к выводу, что вы не сможете осуществить задуманное. Применение концепции изменения к моменту времени имеет не больше смысла, чем если бы вы решили подвергнуть скалу психоанализу. Ваши родители встречаются в полночь 31 декабря 1965 г., и ничто не может изменить это, поскольку их встреча является неизменным событием, вечно занимающим своё место в блоке пространства-времени. Теперь, поразмыслив над этим, вы, вероятно, вспомните, что когда-то в детстве, когда вы спросили своего отца, как он сделал предложение вашей матери, он ответил, что вовсе и не собирался это делать. Он и был-то едва знаком с вашей матерью, прежде чем задал ей сокровенный вопрос. Но за десять минут до наступления Нового Года, будучи на вечеринке, он был так ошарашен внезапным появлением какого-то человека «из ниоткуда» — человека, заявившего, что пришёл из будущего, — что, повстречав вашу мать, он тут же сделал ей предложение. Дело в том, что полный и неизменный набор событий в пространстве-времени обязательно увязывается в самосогласованное целое. Вселенная имеет смысл. Если вы отправляетесь в 31 декабря 1965 г., значит, такова ваша судьба. В блоке пространства-времени некто присутствует в 23:50 31 декабря 1965 г., но его нет там ранее. На воображаемой, внешней перспективе рис. 5.1 мы можем непосредственно увидеть это; мы также видим, что этот «некто», несомненно, — вы сами. Чтобы все эти события имели смысл, вы должны отправиться в 1965 г. Более того, с внешней перспективы рис. 5.1 нам видно, что ваш отец задаёт вам вопрос сразу после 23:50 31 декабря 1965 г., пугается, бежит от вас прочь и ровно в полночь встречается с вашей матерью; чуть дальше в блоке пространства-времени мы видим венчание ваших родителей, ваше рождение, затем ваше детство и, позднее, ваш вход в машину времени. Если путешествие в прошлое было бы возможным, мы не могли бы объяснять события некоторого времени только более ранними событиями; однако совокупность всех событий обязательно бы составляла непротиворечивую связную историю. Как уже подчёркивалось ранее, это никоим образом не означает, что путешествие в прошлое возможно. Это лишь означает, что обозначенные парадоксы, такие как воспрепятствование собственному рождению, сами полны логических изъянов. Путешествуя в прошлое, вы сможете изменить его ничуть не больше, чем значение числа ?. Если вы отправляетесь в прошлое, значит, вы уже были там, вы будете там, и всегда будете составлять часть прошлого, того самого прошлого, которое привело к тому, что вы отправились в него. С внешней перспективы рис. 5.1 это объяснение и строгое, и связное. Обозревая совокупность событий в блоке пространства-времени, мы видим, что они сцеплены в своеобразный космический «кроссворд». Всё же, с вашей точки зрения 31 декабря 1965 г., ход событий ещё более загадочен. Выше я заявил, что даже если вы твёрдо намерены воспрепятствовать встрече своих родителей, вам никак не удастся это сделать. Вы можете наблюдать за их встречей. Вы можете даже способствовать их встрече, возможно, неумышленно, как я описал ранее. Вы можете даже несколько раз возвращаться в прошлое, каждый раз намереваясь воспрепятствовать союзу ваших родителей. Но осуществление вашего замысла означало бы изменение чего-то, по отношению к чему концепция изменения не имеет смысла. Но даже понимая всё этого, мы не можем удержаться от вопроса: что же не даёт вам осуществить свой замысел? Если вы находитесь на новогодней вечеринке в 23:50 и видите свою мать, что мешает вам увести её? Или же, если вы видите своего молодого отца, что мешает вам — в конце концов, скажем прямо — выстрелить в него? Разве у вас нет свободы воли? Вот где, как полагают некоторые, квантовая механика может сказать своё веское слово. Свободная воля, множество миров и путешествие во времени Проблема свободной воли мудрёна и без усложняющего фактора путешествия во времени. Законы классической физики детерминистические. Как мы уже раньше видели, если бы вы точно знали, как всё обстоит сейчас (знали бы точное положение и скорость всех частиц во Вселенной), то законы классической физики точно сказали бы, что было или будет в любой заданный момент времени. Уравнения безразличны к предполагаемой свободе человеческой воли. На основании этого некоторые заявляли, что свободная воля иллюзорна. Вы состоите из набора частиц, так что если бы законы классической физики могли бы сказать всё о ваших частицах в любой момент времени — где им суждено быть, как они будут двигаться и т. д., — то ваша сознательная способность определять собственные действия была бы полностью скомпрометирована. Это рассуждение убеждает меня, но с ним могут не согласиться те, кто считает, что мы представляем из себя нечто большее, чем просто набор частиц. Как бы то ни было, это рассуждение имеет весьма ограниченное отношение к делу, поскольку наша Вселенная подчиняется квантовым, а не классическим законам. Перспектива, рисуемая квантовой физикой, физикой реального мира, имеет кое-что общее с классической перспективой, но в ней намечаются и кардинальные отличия. Из главы 7 мы почерпнули, что если нам известна квантовая волновая функция в данный момент времени для всех частиц во Вселенной, то уравнение Шрёдингера скажет, какой волновая функция была или будет в любой другой момент времени. В этом квантовая физика полностью детерминистична, как и классическая физика. Однако акт наблюдения усложняет ситуацию в квантовом мире и, как мы видели, всё ещё идут жаркие дебаты по проблеме квантового измерения. Если физики когда-либо придут к заключению, что вся квантовая механика сводится к уравнению Шрёдингера, то квантовая физика в своей целостности окажется столь же детерминистической, как и классическая. И, как и в случае с детерминизмом классической физики, одни скажут, что свободная воля — это иллюзия, а другие не согласятся с этим. Но если мы здесь упустили какую-то существенную деталь квантового мира — если переход от вероятностей к определённому результату требует нечто, находящееся за пределами стандартной квантовой концепции, — то по меньшей мере возможно, что представление о свободе воли получит конкретную реализацию в рамках физических законов. Возможно, как предполагают некоторые физики, когда-нибудь мы обнаружим, что акт сознательного наблюдения является элементом интегрального целого квантовой механики, играя роль катализатора, который выделяет один определённый результат из «квантового тумана».{202} Лично мне это предположение кажется крайне маловероятным, но я не знаю, как его опровергнуть. Таким образом, статус свободной воли и её роли остаётся невыясненным в рамках фундаментальных физических законов. Так что давайте рассмотрим обе возможности: когда свободная воля иллюзорна и когда она реальна. Если свободная воля — иллюзия, и возможно путешествие в прошлое, то ваша неспособность воспрепятствовать встрече своих родителей не составляет никакой загадки. Хотя вам кажется, что все ваши действия подконтрольны вам, но законы физики тайно водят вас за нос. Они встают у вас на пути, когда вы собираетесь увести свою мать или застрелить своего отца. Например, машина времени доставляет вас не в ту часть города, и вы прибываете на вечеринку уже после встречи своих родителей; либо вы пытаетесь нажать на спусковой курок, но механизм заклинивает; либо вы всё же нажимаете на курок, но промахиваетесь и попадаете не в своего отца, а в его соперника, и тем самым только способствуете союзу своих родителей; либо, возможно, когда вы выйдете из машины времени, у вас просто пропадёт желание воспрепятствовать встрече своих родителей. Независимо от вашего намерения в тот момент, когда вы садитесь в машину времени, ваши действия по выходу из неё составляют часть связной истории в пространстве-времени. Законы физики пресекают любую попытку внести противоречие. Всё, что вы делаете, прекрасно вписывается в логическую историю. Логика всегда есть и всегда будет. Вы не можете изменить неизменяемое. Если же свободная воля не является иллюзией, и возможно путешествие в прошлое, то квантовая физика рисует альтернативную картину того, что может произойти, и она совершенно отличается от того, что говорит классическая физика. В одном из особенно ошеломляющих предположений, отстаиваемом Дойчем, используется многомировая интерпретация квантовой механики. Вспомним из главы 7, что в рамках многомировой концепции любой возможный исход, запечатлённый в квантовой волновой функции, — вероятность одной частицы иметь тот или иной спин, вероятность другой частицы быть в том или ином месте — реализуется в собственной отдельной параллельной Вселенной. Вселенная, которую мы осознаём в любой заданный момент времени, является лишь одной из бесконечного числа Вселенных, в которых отдельно реализуется каждый исход, дозволяемый законами квантовой физики. В таком представлении заманчиво предположить, что ваша свобода сделать тот или иной выбор отражает возможность вступить в последующий момент в ту или иную Вселенную. Конечно, поскольку по параллельным Вселенным разбросано бесконечно много копий вас и меня, то в этом расширенном контексте потребуется толкование понятий личной идентификации и свободной воли. Многомировая интерпретация предлагает новое разрешение потенциальных парадоксов, связанных с путешествием во времени. Прибыв на машине времени в 23:50 31 декабря 1965 г., вы вынимаете пистолет, целитесь в своего отца, нажимаете на курок и поражаете свою цель. Но поскольку не это произошло во Вселенной, из которой вы отправились в прошлое, то ваше путешествие должно происходить не только во времени, но и из одной параллельной Вселенной в другую. Параллельная Вселенная, в которой вы оказались, — это та, в которой ваши родители никогда не встретились, это одна из возможных Вселенных, допускаемых многомировой интерпретацией. И тогда мы не сталкиваемся ни с каким парадоксом, поскольку существуют различные версии любого данного момента, каждая из которых находится в своей параллельной Вселенной; в многомировой интерпретации существует как бы бесконечное множество «срезов» блока пространства-времени, а не только один. Во Вселенной, из которой вы отправились в путешествие во времени, ваши родители встретились 31 декабря 1965 г., затем вы родились, выросли, затаили злобу на своего отца, стали одержимы идеей путешествия во времени и, наконец, отправились в 31 декабря 1965 г. Во Вселенной, в которую вы попали, ваш отец был застрелен 31 декабря 1965 г. до встречи с вашей матерью человеком, заявившим, что он — его сын из будущего. В этой Вселенной вы никогда не рождались, но здесь нет противоречия, поскольку вы — человек, нажавший на курок, в действительности имеете родителей. Просто вы со своими родителями жили в другой Вселенной. Я не могу сказать, поверит ли кто-нибудь в этой Вселенной вашим рассказам или все сочтут вас сумасшедшим. Но ясно то, что в обоих Вселенных — в той, которую вы покинули, и в той, в которую вы попали, — нет противоречивых событий. Более того, даже в этом расширенном контексте ваше путешествие во времени не меняет прошлое. Во Вселенной, в которую вы попали, ваше присутствие в 23:50 31 декабря 1965 г. ничего не изменило: в этой Вселенной вы всегда были и всегда будете в этот момент времени. Опять же, в рамках многомировой интерпретации, каждая непротиворечивая цепочка событий развивается в одной из параллельных Вселенных. Вселенная, в которую вы попали, — это та, в которой реализуется ваш замысел убийства своего отца. Ваше присутствие 31 декабря 1965 г. и всё насилие, причинённое вами, составляют часть неизменной ткани реальности той Вселенной. Многомировая интерпретация предлагает аналогичное решение проблемы знания, возникающего словно из ниоткуда, как в случае с моей матерью, пишущей революционную статью в области теории струн. Согласно многомировой интерпретации, в одной из мириад параллельных Вселенных моя мать действительно быстро стала крупным специалистом в области теории струн, и в её статье я прочёл о её собственных открытиях. Отправившись в будущее, я попал в ту Вселенную. Результаты, о которых я узнал из статьи, были действительно открыты моей матерью, но матерью, живущей в той Вселенной. Затем, вернувшись в своё время, я оказался в другой Вселенной — той, в которой моя мать с большим трудом осваивает физику. После ряда лет, прошедших в попытках обучить её физике, я сдаюсь и в конце концов сообщаю ей, что написать в статье. Но при таком развитии событий нет загадки относительно того, кто же совершил революционный прорыв. Его совершила моя мать, живущая в той Вселенной, в которой она — ас в физике. В результате моих путешествий во времени произошло лишь то, что её открытия передались из одной Вселенной в другую. Если вы готовы скорее допустить существование параллельных Вселенных, чем открытий, не имеющих авторов, то вот вам менее загадочное объяснение связи знания с путешествием во времени. Ни одно из предположений, обсуждавшихся в этом и предыдущих разделах, не является обязательно разрешением загадок и парадоксов путешествия во времени. Эти предположения нацелены лишь на то, чтобы показать, что эти загадки и парадоксы не исключают возможности путешествия в прошлое, поскольку на нашем современном уровне понимания физика позволяет маневрировать вокруг этих проблем. Но если какой-то вариант не исключается, то это совсем не означает, что он действительно возможен. Так что давайте теперь поставим главный вопрос. Возможно ли путешествие в прошлое? Самые рассудительные физики ответили бы, что нет. Я тоже сказал бы «нет». Но это только отчасти «нет», в отличие от определённого «нет», которое вы получили бы, спросив, позволяет ли специальная теория относительности разгоняться массивным телам до скорости света, а затем превосходить её, или допускает ли теория Максвелла расщепление частицы с единичным электрическим зарядом на частицы с двумя единицами заряда. В действительности никто не показал, что законы физики совершенно исключают возможность путешествия в прошлое. Напротив, некоторые физики даже разработали гипотетические инструкции, как цивилизации с неограниченными технологическими возможностями построить машину времени, действуя полностью в рамках известных законов физики (говоря о машине времени, мы всегда будем иметь в виду аппарат, позволяющий путешествовать как в будущее, так и в прошлое). Их предложения ничуть не напоминают вращающиеся махины, описанные Гербертом Уэллсом, или автомобиль «ДеЛориан», модифицированный доктором Брауном в фильме «Назад в будущее». Но их конструктивные элементы находятся столь близко от пределов возможного, допускаемых известной физикой, что многие исследователи подозревают: с последующими уточнениями в понимании законов природы существующие и будущие проекты машин времени преодолеют границы физически возможного. Но на сегодняшний день это подозрение основывается на инстинктивном ощущении и косвенных уликах, а не на твёрдом доказательстве. Сам Эйнштейн во время десятилетних исследований, которые привели к созданию общей теории относительности, раздумывал над вопросом путешествия в прошлое.{203} Откровенно говоря, было бы странно, если бы он не задавался этим вопросом. По мере того как его радикальный пересмотр концепций пространства и времени сбрасывал привычные догмы, всё более насущным становился вопрос, как далеко зайдёт этот переворот. Какие свойства привычного нам интуитивно воспринимаемого времени сохранятся (если вообще какие-то сохранятся)? Эйнштейн никогда особенно не распространялся по вопросу путешествия во времени, поскольку, по его собственному мнению, он не достиг в нём большого прогресса. Но в последующие десятилетия после публикации общей теории относительности медленно, но верно, наметился прогресс в исследованиях других физиков. Одними из первых работ по общей теории относительности, имеющими отношение к машинам времени, явились статьи, написанные в 1937 г. шотландским физиком В. Дж. ван Стокумом{204} и в 1949 г. Куртом Гёделем, коллегой Эйнштейна по Институту перспективных исследований. Ван Стокум в рамках общей теории относительности изучал задачу о вращении очень плотного и бесконечно длинного цилиндра вокруг своей оси. Хотя бесконечный цилиндр физически нереален, анализ ван Стокума привёл к интересным выводам. Как мы видели в главе 14, массивные вращающиеся объекты увлекают за собой пространство в кружащийся водоворот. В случае бесконечного цилиндра это увлечение столь значительное, что математический анализ показывает: не только пространство, но и время захватывается этим водоворотом. Грубо говоря, вращение настолько скручивает течение времени, что круговое движение вокруг цилиндра доставляет вас в прошлое. Облетев на ракете вокруг цилиндра, вы можете вернуться в стартовую точку в момент времени, предшествующий вашему старту. Конечно, невозможно создать бесконечно длинный вращающийся цилиндр, но эта работа явилась первым намёком на то, что общая теория относительности может и не запрещать путешествие в прошлое. В работе Гёделя тоже рассматривалась ситуация, связанная с вращательным движением. Но вместо того чтобы рассматривать объект, вращающийся в пространстве, Гёдель задался вопросом: что происходит, если само пространство претерпевает вращательное движение? Мах сказал бы, что такая постановка вопроса не имеет смысла. Если вращается вся Вселенная в целом, то нет ничего, по отношению к чему она бы вращалась. Мах заключил бы, что вращающаяся Вселенная и стационарная Вселенная — это одно и то же. Но это разногласие с Махом — просто ещё один пример того, в чём общая теория относительности не полностью соответствует реляционной концепции пространства. Согласно общей теории относительности имеет смысл говорить о вращении всей Вселенной в целом, причём это вращение имеет наблюдаемые последствия. Например, общая теория относительности показывает, что во вращающейся Вселенной лазерный луч будет описывать спираль, а не прямую линию (напоминая траекторию движения медленно летящей пули, выпущенной из игрушечного пистолета, какой бы вы её увидели, если бы выстрелили, крутясь на карусели). Самым удивительным в исследовании Гёделя было то, что он показал: если во вращающейся Вселенной пустить ракету по специальной подходящей траектории, то ракета вернётся в точку своего старта в момент времени, предшествующий старту. Тем самым сама вращающаяся Вселенная оборачивается машиной времени. Эйнштейн поздравил Гёделя с его открытием, но предположил, что в дальнейших исследованиях может обнаружиться, что решения общей теории относительности, допускающие путешествие в прошлое, конфликтуют с другими существенными физическим требованиями, делая эти решения не более чем математическим курьёзом. Что касается этого решения Гёделя, то всё более точные наблюдения всё больше убеждают, что наша Вселенная не вращается, оставляя всё меньше шансов на причастность модели Гёделя к нашему миру. Но ван Стокум и Гёдель выпустили джинна из бутылки; за пару десятилетий было найдено ещё несколько решений уравнений Эйнштейна, допускающих путешествие в прошлое. В последние десятилетия интерес к гипотетическим конструкциям машины времени вновь ожил. В 1970-х гг. Фрэнк Типлер заново проанализировал и уточнил решение ван Стокума, а в 1991 г. Ричард Готт из Принстонского университета открыл другой метод построения машины времени с использованием так называемых космических струн (гипотетических бесконечно длинных нитеобразных остатков фазовых переходов в ранней Вселенной). Всё это важные достижения, но проще всего описать конструкцию, предложенную Кипом Торном и его студентами из Калифорнийского технологического института. Они использовали представление о так называемых «кротовых норах» во Вселенной. Проект машины времени на основе кротовой норы Я сначала изложу основы стратегии построения машины времени, предложенной Торном, а в следующем разделе мы обсудим проблемы, с которыми столкнётся любой строитель машины времени, руководствующийся этим планом. «Кротовая нора» — это гипотетический тоннель в пространстве. Более привычный нам тоннель, такой как тоннель в горе, позволяет сократить путь из одного места в другое. Кротовые норы служат нам аналогичным образом, но они отличаются от привычных нам тоннелей в одном важном отношении. В то время как обычные туннели дают новый путь в существующем пространстве (гора и занимаемое ей пространство существуют до строительства тоннеля), кротовая нора предоставляет тоннель из одного места пространства в другое по новой, ранее не существовавшей трубе пространства. Устрани вы тоннель через гору, занимаемое горой пространство всё равно останется. А вот если вы устраните кротовую нору, то исчезнет и занимаемое ей пространство. На рис. 15.2а иллюстрируется кротовая нора, соединяющая супермаркет «На скорую руку» с атомной электростанцией Спрингфилда, но эта схема может вводить в заблуждение, поскольку может показаться, что кротовая нора простирается по воздушному пространству Спрингфилда. Более точным является представление о кротовой норе как о новой области пространства, соединяющейся с обычным, известным нам пространством только на своих концах — «входах». Если, бродя по улицам Спрингфилда, вы осматриваете небо в поисках кротовой норы, вы ничего не увидите. Единственный способ увидеть её — это пойти в супермаркет «На скорую руку», где вы обнаружите отверстие в обычном пространстве — вход в кротовую нору. Глядя сквозь это отверстие, вы увидите атомную электростанцию в месте расположения другого входа, как на рис. 15.2б. Другой недостаток рис. 15.2а состоит в том, что кротовая нора не выглядит кратчайшим путём. Можно исправить это, изобразив кротовую нору как на рис. 15.3. Как видно, обычный маршрут от атомной электростанции до супермаркета действительно длиннее, чем новый путь через кротовую нору. Искривления на рис. 15.3 отражают трудности передачи на плоской странице геометрии общей теории относительности, но сам рисунок даёт интуитивное представление о новом соединении через кротовую нору.
Никто не знает, существуют ли в действительности кротовые норы, но несколько десятилетий тому назад физики установили, что их существование допускается уравнениями общей теории относительности, так что они вполне могут быть объектами теоретического исследования. В 1950-х гг. Джон Уиллер вместе со своими сотрудниками одними из первых исследовали кротовые норы и открыли множество их фундаментальных математических свойств. Позже Торн с сотрудниками вскрыли всё богатство кротовых нор, осознав, что они могут давать короткие пути не только в пространстве, но и во времени. Идея состоит вот в чём. Представим, что Барт и Лиза стоят на противоположных концах кротовой норы Спрингфилда — Барт на атомной электростанции, а Лиза в супермаркете «На скорую руку», — непринуждённо болтая друг с другом о том, что подарить Гомеру на его день рожденья, и затем Барт решает совершить короткое трансгалактическое путешествие (чтобы достать Гомеру его любимые рыбные палочки, изготавливаемые в галактике Андромеды). Лизе не очень-то нравится эта затея, но поскольку она всегда хотела посмотреть на галактику Андромеды, она уговаривает Барта погрузить на его корабль его вход кротовой норы, так чтобы затем она смогла взглянуть через кротовую нору на далёкую галактику. Возможно, вы думаете, что во время своего путешествия Барт растянет кротовую нору, но такая мысль предполагает, что кротовая нора соединяет супермаркет с космическим кораблём через обычное пространство. Но это не так. И, как проиллюстрировано на рис. 15.4, благодаря чудесам геометрии общей теории относительности протяжённость кротовой норы может оставаться неизменной в ходе всего путешествия. Это самое главное. Даже если Барт находится в галактике Андромеды, расстояние между ним и Лизой по кротовой норе не меняется. Таково свойство кротовой норы как короткого пути сквозь пространство.
Для определённости предположим, что Барт развивает скорость, составляющую 99,999999999999999999% от скорости света, и на путешествие до галактики Андромеды у него уходит четыре часа. Во время путешествия Барт продолжает болтать с Лизой как и раньше, через кротовую нору. Когда корабль достигает галактики Андромеды, Лиза просит Барта замолчать, чтобы спокойно насладиться разворачивающейся панорамой далёкой галактики. Но Барту не терпится поскорее взять рыбные палочки и вернуться домой. Лиза возмущена эгоизмом Барта, но соглашается поддерживать с ним связь до его возвращения. Четыре часа спустя корабль Барта благополучно садится на лужайке перед школой Спрингфилда. Выглянув в иллюминатор своего корабля, Барт несколько шокирован. Здание школы выглядит совсем по-другому, а табло над футбольным стадионом показывает дату 6 млн лет спустя после его отлёта. «Что за чёрт!?!» — говорит он самому себе, но мгновение спустя всё становится ясно. Из недавней задушевной беседы с Шестёркой Бобом[100] он вспоминает, что специальная теория относительности утверждает, что чем быстрее вы двигаетесь, тем медленнее идут ваши часы. Если вы на высокой скорости понесётесь в открытый космос, а затем вернётесь, то по вашим часам может пройти всего лишь несколько часов, тогда как по часам неподвижного наблюдателя пройдут тысячи или миллионы лет, если не больше. Быстро подсчитав, Барт убеждается, что за восемь часов его путешествия на корабле на Земле прошло 6 млн лет. Дата на табло верная; Барт понимает, что перенёсся далеко в будущее Земли. «...Барт, отзовись! Барт! — кричит Лиза через кротовую нору. — Ты слышишь меня? Иди сюда. Я хочу успеть вернуться домой к обеду». Барт смотрит в жерло кротовой норы и говорит Лизе, что уже приземлился на лужайке возле школы. Вглядываясь через кротовую нору, Лиза видит, что Барт говорит правду, но, бросая взгляд из супермаркета на школу, она не видит его корабля на лужайке. «Я не вижу твоего корабля», — говорит она. «На самом деле нет ничего странного, — с гордостью отвечает Барт. — Я приземлился возле школы, но в будущем, через 6 млн лет. Ты не можешь увидеть меня, выглянув в окно супермаркета, ведь хотя ты смотришь туда, куда надо, но не в то время. Ты смотришь на 6 млн лет раньше». «О, верно, это всё проделки специальной теории относительности, — соглашается Лиза. — Круто. Но, как бы там ни было, я хочу успеть домой к обеду, так что пролезай через кротовую нору, нам надо поторопиться». «Ладно», — уступает Барт, пролезая через кротовую нору. Затем он покупает в супермаркете «Твикс» и идёт домой вместе с Лизой. Заметьте, что хотя Барт прошёл через кротовую нору всего за мгновение, она перенесла его на 6 млн лет назад. Он приземлился на космическом корабле с входом в кротовую нору далеко в будущем. Если бы он вышел в город, поговорил бы с людьми, почитал бы газеты, то всё подтвердило бы этот факт. И всё же, пройдя через кротовую нору и встретившись с Лизой, он вернулся в своё настоящее время. То же самое верно по отношению к любому, кто мог бы последовать за Бартом сквозь кротовую нору: он перенёсся бы во времени на 6 млн лет назад. Аналогично, любой, кто пролез бы через кротовую нору со стороны супермаркета, очутился бы в будущем, 6 млн лет спустя. Важно то, что Барт не просто повозил по пространству вход в кротовую нору. Его путешествие перенесло этот вход и во времени. Путешествие Барта перенесло его и вход в кротовую нору в будущее Земли. Короче говоря, Барт превратил туннель в пространстве в туннель во времени; он превратил кротовую нору в машину времени. Грубый взгляд на произошедшее даёт рис. 15.5. На рис. 15.5а мы видим, как кротовая нора соединяет одну точку пространства с другой (кротовая нора схематически изображена так, чтобы подчеркнуть то обстоятельство, что она находится вне обычного пространства). На рис. 15.5б мы видим эволюцию этой кротовой норы во времени при условии, что оба её конца остаются неподвижными. («Срезы» по времени делает неподвижный наблюдатель.) Из рис. 15.5в мы видим, что происходит, когда один из концов грузится на космический корабль и отправляется в далёкое путешествие с последующим возвращением в исходную точку. Течение времени для движущегося конца замедляется, так что он переносится в будущее. (Если по движущимся часам прошёл всего лишь час, то по неподвижным часам могли пройти тысячи лет; по возвращении космического корабля часы оказываются снова рядом друг с другом, так что движущиеся часы перенеслись в будущее, отмеряемое по стационарным часам.) Таким образом, оказывается, что концы одной кротовой норы связывают уже два разных среза по времени, один из которых находится в будущем, как показано на рис. 15.5в. Разница во времени между концами норы так и остаётся (если, конечно, их больше не двигать). В любой момент, войдя в один конец кротовой норы и выйдя из другого, вы становитесь путешественником во времени.
Построение машины времени на кротовой норе Теперь ясен план построения машины времени. Шаг 1. Найти или создать кротовую нору, достаточно широкую для вас и всех, кого вы хотите посылать сквозь время. Шаг 2. Создать разницу во времени между её концами — например, двигая один конец относительно другого. Вот и всё. В принципе. А как на практике? Что же, как я заметил в самом начале, неизвестно, существуют ли в действительности кротовые норы. Некоторые физики предположили, что крохотные кротовые норы могут в избытке существовать на микроскопическом уровне ткани пространства, где они постоянно вызываются квантовыми флуктуациями гравитационного поля. Если это так, то задача будет состоять в том, чтобы увеличить одну из них до макроскопического размера. Выдвигались предложения, как этого можно было бы достичь, но все они вряд ли выходят за пределы чисто теоретических полётов фантазии. Другие физики представляют себе создание больших кротовых нор в качестве инженерного проекта прикладной общей теории относительности. Мы знаем, что пространство откликается на распределение материи и энергии таким образом, что, обладая достаточным контролем над материей и энергией, мы могли бы в некоторой области пространства породить кротовую нору. В этом подходе возникает дополнительное усложнение, ведь подобно тому как нам надо разорвать склон горы, чтобы проделать в ней туннель, точно также нам требуется разорвать ткань пространства, чтобы прикрепить к ней вход в кротовую нору.{205} Неизвестно, допускаются ли законами физики такие разрывы пространства. Работа, которую я вёл в рамках теории струн (см. главу 13), показала, что возможны определённые виды пространственных разрывов, но пока неизвестно, имеют ли эти разрывы какое-либо отношение к порождению кротовых нор. Вывод состоит в том, что умышленное порождение макроскопических кротовых нор является фантазией, которая, в лучшем случае, находится очень далеко от своей реализации. Более того, даже если бы нам удалось как-то заполучить кротовую нору, то проблемы на этом не кончились бы; мы столкнулись бы с парой существенных препятствий. Во-первых, ещё в 1960-х гг. Уиллер и Роберт Фуллер с помощью уравнений общей теории относительности показали, что кротовые норы нестабильны. Их стены стремятся схлопнуться внутрь за доли секунды, что делает их непригодными для какого-либо путешествия. Однако недавно физики (включая Торна и Морриса, а также Мэтта Виссера) нашли возможный выход из положения. Если кротовая нора не пуста и содержит вещество — так называемую экзотическую материю, — которое может давить на её стены изнутри, то, возможно, удастся не допустить схлопывания кротовой норы. По своему расталкивающему воздействию экзотическая материя аналогична космологической постоянной, но благодаря отрицательной энергии, а не отрицательному давлению, характеризующему эту постоянную.{206} Квантовая механика допускает существование отрицательной энергии при очень специфических условиях,{207} но немыслимо сгенерировать столько экзотической энергии, чтобы её хватило на поддержание кротовой норы в открытом состоянии. (Например, Виссер подсчитал, что для поддержки кротовой норы шириной в метр требуется по порядку величины приблизительно столько же отрицательной энергии, сколько (положительной) энергии вырабатывает Солнце за 10 млрд лет.){208} Во-вторых, даже если кто-то найдёт или создаст макроскопическую кротовую нору, и даже если мы как-нибудь умудримся удержать её стены от мгновенного коллапса, и даже если мы сможем внести разницу во времени между концами кротовой норы (скажем, отправив один конец в космос на высокой скорости, а затем вернув его на место), но останется ещё одна преграда к обретению машины времени. Ряд физиков, включая Стивена Хокинга, указали на возможность того, что вакуумные флуктуации — колебания, которым подвержены все поля, даже в пустом пространстве (они возникают из-за квантовой неопределённости, о чём мы говорили в главе 12), — могут разрушить кротовую нору, как только она будет готова стать машиной времени. Дело в том, что в этот момент может вступить в игру разрушительный механизм обратной связи (подобный тому, что приводит к пронзительному гудению, когда микрофон и громкоговоритель не настроены должным образом). Вакуумные флуктуации из будущего могут пройти в прошлое через кротовую нору, откуда они могут перейти в будущее через обычное пространство и время, затем снова войти в нору и снова оказаться в прошлом, порождая тем самым бесконечный цикл и наполняя кротовую нору всё большей энергией. Такая интенсивная накачка энергией, по-видимому, разрушит кротовую нору. Теоретические исследования говорят, что это реальная возможность, но проведение необходимых расчётов наталкивается на известные трудности, связанные с одновременным применением общей теории относительности и квантовой механики в искривлённом пространстве, так что этому нет убедительного доказательства. Неимоверные трудности, связанные с созданием кротовых нор, очевидны. Но окончательное слово не будет сказано до тех пор, пока не улучшится наше знание в области соприкосновения квантовой механики и гравитации, что, возможно, придёт с достижениями теории суперструн. Хотя на интуитивном уровне физики обычно соглашаются с тем, что путешествие в прошлое невозможно, но на сегодняшний день этот вопрос ещё не окончательно закрыт. Толпы зевак из будущего Раздумывая над путешествиями во времени, Хокинг поднял интересный вопрос. Если путешествие во времени возможно, то почему, — спрашивает он, — нас не наводняют гости из будущего? Что же, возможно и наводняют, — можно было бы ответить. И можно было бы пойти дальше и заявить, что мы уже упекли в психбольницу стольких из них, что они уже и не решаются о себе заявлять. Конечно, Хокинг наполовину шутит (и я тоже), но он ставит серьёзный вопрос. Если вы, как и я, думаете, что нас ещё не посещали гости из будущего, то не значит ли это, что путешествие во времени невозможно? Конечно, если людям в будущем удалось бы построить машину времени, то некоторые историки непременно получили бы грант на тщательное изучение событий, связанных с созданием первой атомной бомбы или с первым полётом на Луну. Так что если мы верим, что никто не посещал нас из будущего, то, возможно, мы подразумеваем, что машина времени никогда не будет построена. Однако это слишком поспешный вывод. Машины времени, предложенные до сих пор, не позволяют путешествовать в прошлое, предшествующее созданию самой первой машины времени. Для машины времени на кротовой норе это легко понять, взглянув на рис. 15.5. Хотя есть разница во времени между концами кротовой норы, и хотя эта разница позволяет путешествовать вперёд-назад во времени, но невозможно перенестись во время, предшествовавшее моменту создания разницы во времени. Сама кротовая нора не существует на дальнем левом конце «буханки» пространства-времени, так что невозможно использовать кротовую нору, чтобы добраться туда. Значит, если первая машина времени будет построена, скажем, через 10 000 лет, то, несомненно, именно тот момент привлечёт толпы зевак из будущего, но все предшествовавшие времена, включая наше, будут оставаться для них недоступными. Лично мне кажется любопытным и вызывающим то обстоятельство, что наше современное понимание законов природы не только говорит о том, как можно избегать кажущихся парадоксов, связанных с путешествием во времени, но и предлагает способы реализации путешествия во времени. Не поймите меня неправильно: я отношу себя к числу рассудительных физиков, интуитивно чувствующих, что когда-нибудь мы полностью исключим возможность путешествия в прошлое. Но пока нет окончательного доказательства, я считаю оправданным не исключать такую возможность. Исследователи, сосредоточенные на этой проблеме, по крайней мере существенно углубляют наше понимание пространства и времени в экстремальных ситуациях. А в лучшем случае они предпринимают первые шаги, которые приведут нас к приобщению к пространственно-временной супермагистрали. В конце концов, время до создания первой машины времени навечно останется за пределами нашей достижимости и достижимости наших потомков. Глава 16. Будущее одной иллюзии Перспективы пространства и времени Большую часть своей жизни физики проводят в состоянии смятения и непонимания. Это «профессиональные риски» их работы. Преуспеть в физике значит охватить неопределённость, шагая извилистой дорогой к ясности. Дразнящий аромат препятствий — вот что вдохновляет внешне обычных людей на необычные подвиги находчивости и творчества; ничто так не концентрирует разум, как диссонирующие элементы, ожидающие гармонического решения. Но на пути к объяснению — в поисках новых парадигм для ответов на глубочайшие вопросы — теоретики должны упорно пробираться через джунгли путаницы, будучи ведомыми, главным образом, предчувствиями, намёками, ощущениями и прикидками. И поскольку большинство исследователей склонны скрывать свои следы, то открытия зачастую мало говорят о трудностях пройденного пути. Так что всегда имейте в виду, что ничто не даётся легко. Природа не так-то просто раскрывает свои секреты. В данной книге мы взглянули на многочисленные главы в истории попыток понять пространство и время. И хотя мы познакомились с некоторыми глубокими и поразительными прозрениями, ещё не наступил момент «эврики», когда исчезает вся путаница и появляется полная ясность. Мы, совершенно точно, ещё блуждаем в джунглях. Так куда же идти? Какова очередная глава в истории пространства-времени? Конечно, никто не знает этого наверняка. Но в последние годы появился ряд идей, и хотя их ещё предстоит увязать в согласованную картину, многие физики верят, что они указывают на следующий большой переворот в нашем понимании космоса. Известные нам сейчас пространство и время могут обернуться всего лишь указанием на существование более тонких, более глубоких и более фундаментальных принципов, лежащих в основе физической реальности. В последней главе мы рассмотрим некоторые из этих намёков и попытаемся уловить проблески того, куда они могут нас вести в продолжающемся поиске понимания ткани космоса. Фундаментальны ли понятия пространства и времени? Немецкий философ Иммануил Кант считал, что при описании Вселенной будет не просто трудно, а решительно невозможно покончить с пространством и временем. И мне понятно, откуда исходит это утверждение. Всякий раз, когда я сижу, закрыв глаза, и пытаюсь размышлять о вещах, я оказываюсь не в состоянии представлять их не занимающими какую-либо область пространства или существующими вне времени. Совершенно не в состоянии. Пространство или время всегда умудряется просачиваться: первое — через контекст, второе — через изменение. По иронии, ближе всего я подхожу к освобождению своего мышления от прямой ассоциации с пространством-временем, когда я погружён в математические расчёты (часто имеющие отношение к пространству-времени!), поскольку мои мысли кажутся поглощёнными, хотя бы на мгновение, абстрактной субстанцией кажущейся лишённой пространства и времени. Но всё же само мышление и тело, в котором оно имеет место, остаются частью известного нам пространства-времени. Проще убежать от собственной тени, чем по-настоящему отделаться от пространства и времени. Тем не менее многие современные ведущие физики подозревают, что пространство и время, несмотря на свою вездесущность, не являются поистине фундаментальными понятиями. Подобно тому как твёрдость пушечного ядра вытекает из коллективных свойств составляющих его атомов, и подобно тому как аромат розы определяется коллективными свойствами её молекул, а стремительность ягуара обусловлена коллективными свойствами его мускулов, нервов и тканей, точно также и свойства пространства и времени могут вытекать из коллективного поведения неких иных, более фундаментальных составляющих, которые ещё предстоит установить. Суммируя такие рассуждения, физики иногда говорят, что пространство-время может быть иллюзией — провоцирующей картинкой, требующей дальнейших пояснений. В конце концов, если на вас летит пушечное ядро, или вы вдохнули чарующий аромат розы, или заметили стремительно мчащегося ягуара, то вы не будете отрицать их существование просто из-за того, что они состоят из более тонких и более фундаментальных элементов. Напротив, большинство людей согласятся, что эти материальные объекты действительно существуют и, более того, что много чего ещё можно узнать, изучив, как их хорошо известные характеристики следуют из атомных составляющих. Но поскольку эти объекты составные, то не стоит пытаться строить теорию Вселенной на базе пушечных ядер, роз или ягуаров. Аналогичным образом, если пространство и время окажутся составными сущностями, то это не будет означать, что иллюзорны их хорошо известные проявления, такие как ведро Ньютона или гравитация Эйнштейна; несомненно, по мере улучшения нашего понимания пространство и время не утратят своих глобальных позиций в эмпирической реальности. Составной характер пространства-времени будет лишь означать, что предстоит открыть ещё более глубокое описание Вселенной, не опирающееся на категории пространства и времени. Значит, иллюзией окажется наше собственное творение: ошибочная вера в то, что глубочайшее понимание космоса поместит в фокус пространство-время. Подобно тому как твёрдость пушечного ядра, аромат розы и стремительность ягуара исчезают при изучении материи на атомном и субатомном уровнях, точно так же и пространство и время могут исчезнуть в самой фундаментальной формулировке законов природы. Предположение о нефундаментальном характере пространства-времени может показаться вам чем-то надуманным. И вы вполне можете оказаться правы. Но молва о предстоящем исключении пространства-времени из числа глубочайших физических понятий рождена не безответственным теоретизированием. Напротив, это предположение хорошо подкрепляется рядом аргументированных соображений. Давайте взглянем на самые обещающие. Квантовое усреднение В главе 12 мы говорили, что ткань пространства, как и всё остальное в нашей квантовой Вселенной, подвержена квантовым флуктуациям. Именно эти флуктуации мешают построить осмысленную квантовую теорию гравитации на базе представлений о точечных частицах. Заменяя точечные частицы на петли и отрезки, теория струн усмиряет флуктуации, существенно снижая их амплитуду, и благодаря этому удаётся объединить квантовую механику и общую теорию относительности. Тем не менее флуктуации пространства-времени всё же существуют (что иллюстрирует рис. 12.2), и благодаря им мы можем найти важные путеводные нити, касающиеся участи пространства-времени. Прежде всего, известные пространство и время, наполняющие наши мысли и входящие в наши уравнения, появляются в результате некоего усреднения. Что вы увидите на телевизионном экране, приблизившись к нему на расстояние в несколько сантиметров? Увиденное будет сильно отличаться от того, что вы видите с более комфортного расстояния, когда ваши глаза уже не различают отдельные точки экрана и перед вашим взором предстаёт усреднённая гладкая картинка. Заметьте, что лишь благодаря усреднению отдельных точек возникает сплошное изображение. Аналогично, микроскопическая структура пространства-времени пронизана случайными флуктуациями, но мы непосредственно не осознаём это, поскольку не способны разрешить пространство-время на таких крохотных масштабах. Вместо этого наши глаза и даже самое мощное наше оборудование объединяет отдельные флуктуации в некое среднее подобно объединению отдельных точек в целостную картину на телевизионном экране. Поскольку флуктуации случайны, то в малой области отдельные флуктуации обычно усредняются и гасят другу друга, так что в среднем получается гладкое пространство-время. Как и в аналогии с телевизионным изображением, гладкая форма пространства-времени получается лишь за счёт усреднения. Благодаря квантовому усреднению мы получаем осязаемую интерпретацию утверждения, что известное нам пространство-время может быть иллюзией. Средние величины полезны для многих целей, но по своей природе они не могут дать точную детальную картину. По статистике средняя семья в США имеет 2,2 ребёнка, но на вас посмотрят как на сумасшедшего, если вы попросите показать такую семью. Согласно той же статистике литр молока в США стоит в среднем 0,735 доллара, но вы вряд ли найдёте магазин, торгующий молоком точно по этой цене. Точно так же известное нам пространство-время, получающееся в результате усреднения, в принципе не может описать детали того, что мы хотим назвать фундаментальными компонентами. Пространство и время могут быть всего лишь приближёнными, собирательными концепциями, чрезвычайно полезными при анализе Вселенной на всех масштабах, кроме ультрамикроскопических, но всё же иллюзорными, как и семья, имеющая 2,2 детей. Второе соображение состоит в том, что из-за неограниченного роста квантовых флуктуаций по мере уменьшения пространственно-временных масштабов представление о делимости пространства и времени перестаёт быть справедливым при достижении планковской длины (10?33 см) и планковского времени (10?43 с). Мы сталкивались с этим соображением в главе 12, подчеркнув при этом, что хотя оно и совсем не согласуется с нашими обычными представлениями о пространстве и времени, но нет ничего удивительного в том, что свойство, почерпнутое из обычного повседневного опыта, оказывается неверным в микромире. И поскольку сколь угодно малая делимость пространства и времени является одним из их свойств, самых характерных для повседневного опыта, то неприменимость этого представления на ультракоротких масштабах даёт другой намёк на нечто, скрывающееся в глубинах микромира, — нечто, что можно было бы назвать основополагающим субстратом пространства-времени. Мы полагаем, что этот самый базисный материал пространства-времени, не позволяющий делить его на сколь угодно малые кусочки, чтобы не допустить сколь угодно больших флуктуаций, совсем не похож на крупномасштабное пространство-время, которое мы непосредственно переживаем. Поэтому фундаментальные составляющие пространства-времени, какими бы они ни были, вероятно, значительно трансформируются в результате усреднения, дающего известное нам пространство-время. Таким образом, поиски известного нам пространства-времени в глубочайших законах природы могут быть подобны попыткам рассматривать Девятую симфонию Бетховена с помощью набора нот самих по себе, воспринимать полотна Моне как набор мазков. Подобно этим творениям человеческого гения целостное пространство-время может столь отличаться от своих частей, что на самом фундаментальном уровне не существует ничего похожего на известное нам пространство-время. Преобразование геометрии Другое соображение, называемое геометрической дуальностью, также указывает на то, что пространство-время может не быть фундаментальной реальностью, но указывает на это с совсем другой точки зрения. Для разъяснения этого соображения требуется больше технических деталей, чем для разъяснения квантового усреднения, так что не стесняйтесь лишь бегло пробежать по тем местам этого раздела, которые покажутся вам слишком трудными. Но поскольку многие исследователи считают данный материал одной из самых ярких черт теории струн, то стоит попытаться уловить его суть. В главе 13 мы видели, как пять вариантов теории струн, кажущиеся различными, на самом деле являются разными формулировками одной и той же теории. Среди прочего мы подчеркнули, что это является очень мощным достижением, поскольку на некоторые чрезвычайно трудные вопросы, заданные в одном варианте теории, порою гораздо проще ответить в другом варианте. И это относится и к пространству-времени: трудность описания геометрической формы пространства-времени может радикально меняться при переходе от одной формулировки струнной теории к другой. Вот что я имею в виду. Поскольку теория струн требует более чем три пространственных измерения и одно временное, которые знакомы нам по повседневному опыту, в главах 12 и 13 мы поднимали вопрос о том, где могут скрываться эти дополнительные измерения. Мы пришли к тому, что они могут быть свёрнуты до таких микроскопических размеров, что мы неспособны обнаружить их экспериментально. Мы также установили, что физика известных нам больших измерений зависит от точной формы и размера дополнительных измерений, поскольку их геометрические свойства воздействуют на моды колебаний струн. Хорошо. Теперь вернёмся к части I. Словарь, который переводит вопросы, поставленные в одном варианте теории струн, в вопросы, задаваемые в другом варианте теории струн, также переводит геометрию дополнительных измерений первой теории в другую геометрию дополнительных измерений второй теории. Если, к примеру, вы изучаете физические выводы, скажем, теории струн типа IIA с дополнительными измерениями, свёрнутыми до определённого размера и в определённую форму, то любой вывод этой теории может быть получен, по крайней мере в принципе, из переформулированных вопросов, скажем, теории струн типа IIB. Но при этом требуется, чтобы дополнительные измерения теории струн типа IIB были свёрнуты в точную геометрическую форму, зависящую от конкретной геометрической формы дополнительных измерений теории струн типа IIA, но, как правило, отличающуюся от неё. Короче говоря, один вариант теории струн с дополнительными измерениями, свёрнутыми в одну геометрическую форму, эквивалентен другому варианту теории струн с дополнительными измерениями, свёрнутыми в другую геометрическую форму. И разница геометрий пространства-времени может и не быть незначительной. Например, теория струн типа IIA с дополнительным измерением, свёрнутым в окружность, как на рис. 12.7, полностью эквивалентна теория струн типа IIB с дополнительным измерением, тоже свёрнутым в окружность, но с обратно пропорциональным радиусом. Если одна окружность — крохотная, тогда другая — гигантская, и наоборот, и всё же нет никакого способа различить эти геометрии. (Если в единицах планковской длины радиус одной окружности равен R, тогда радиус другой окружности равен 1/R). Вы можете подумать, что сможете легко и просто отличить большую окружность от маленькой, но в теории струн это не всегда так. Все результаты наблюдения, следующие из взаимодействия струн, и две эти теории струн — типа IIA с большим циклическим измерением и типа IIB с маленьким циклическим измерением — являются попросту различными способами выражения одной и той же физики. Каждое наблюдение, описываемое в рамках одной теории струн, имеет альтернативное и столь же верное описание в рамках другой теории струн, даже если могут различаться языки теорий и даваемые ими интерпретации. (Такое возможно из-за того, что существует две принципиально разные конфигурации для струн, движущихся по циклическому измерению: струна может быть намотана на циклическое измерение подобно резиновой ленте вокруг консервной банки, и струна может находиться в циклическом измерении, не будучи намотанной на него. Энергия намотанной струны пропорциональна радиусу циклического измерения [чем больше радиус, тем длиннее намотанная струна и тем больше её энергия], тогда как ненамотанная струна имеет энергию, обратно пропорциональную радиусу циклического измерения [чем меньше радиус, тем сильнее зажата струна в пределах циклического измерения и тем больше энергия её движения в силу квантовой неопределённости]. Заметим, что если поменять радиус циклического измерения на обратный и одновременно поменять «намотанные» и «ненамотанные» струны, то энергетический спектр струн и, вообще, физика описываемого ими мира не изменится. Это в точности то, что требует словарь, переводящий теорию IIA в теорию IIB, и именно поэтому могут быть физически эквивалентны две различные геометрии — с малым и с большим радиусом дополнительного измерения.) Сказанное остаётся верным и при замене простых циклических измерений на более сложные многообразия Калаби–Яу, введённые в главе 12. Одна теория струн с дополнительными измерениями, свёрнутыми в определённое многообразие Калаби–Яу, физически эквивалентна другой теории струн с дополнительными измерениями, свёрнутыми в другое многообразие Калаби–Яу (называемое зеркальным или дуальным многообразием). В этом случае могут отличаться не только размеры многообразий Калаби–Яу, но и их формы, включая количество и разновидности их отверстий. Но принцип физической эквивалентности теорий струн разного типа гарантирует, что несмотря на различие форм и размеров дополнительных измерений описываемые ими миры будут абсолютно идентичны физически. (В многообразиях Калаби–Яу существуют отверстия двух типов, но оказывается, что колебательные моды струн — а значит, и все физические следствия — чувствительны только к разности между количествами отверстий каждого типа. Так что если одно многообразие Калаби–Яу имеет, скажем, два отверстия первого типа и пять отверстий второго типа, а другое многообразие Калаби–Яу имеет пять отверстий первого типа и два — второго, то эти два многообразия приводят к одной и той же физике, несмотря на различие геометрических форм этих многообразий).[101] Это с другой стороны поддерживает подозрение, что пространство не является фундаментальной концепцией. Один наблюдатель, описывающий Вселенную с помощью одного из пяти вариантов теории струн, заявит, что пространство, включая дополнительные измерения, имеет конкретную форму и конкретные размеры, тогда как другой наблюдатель, использующий другой вариант теории струн, возразит ему, сказав, что пространство, включая дополнительные измерения, имеет другую форму и другие размеры. Поскольку оба наблюдателя используют всего лишь разные математические описания одной и той же физической Вселенной, то нельзя сказать, что один из них прав, а другой — нет. Они оба правы, даже если разнятся их выводы о форме и размерах пространства. Отметим также, что это не похоже на то, что они нарезают пространство-время на слои разными, но одинаково законными способами, как это было в специальной теории относительности. Эти наблюдатели не придут к согласию относительно целостной структуры самого пространства-времени. И в этом всё дело. Если бы пространство-время было действительно фундаментально, то большинство физиков ожидало бы, что тогда всё, независимо от точки зрения и языка теории, пришли бы к согласию относительно свойств пространства-времени. Но тот факт, что по крайней мере в рамках теории струн это не обязательно так, говорит о том, что пространство-время может быть лишь вторичным явлением. Следовательно, это ведёт нас к вопросу: если нити рассуждений, приведённые в двух последних разделах, ведут в верном направлении, так что известное нам пространство-время является лишь проявлением на крупных масштабах некой более фундаментальной сущности, то что это за сущность и каковы её свойства? На сегодня этого никто не знает. Но в поисках ответа исследователи нащупали новые путеводные нити, и самая главная нить возникла из размышлений о чёрных дырах. На что указывает энтропия чёрной дыры? Чёрные дыры являются самыми загадочными объектами Вселенной. Снаружи они кажутся очень простыми и различаются всего лишь тремя параметрами: массой (определяющей размер чёрной дыры, т. е. расстояние от её центра до горизонта событий — поверхности вокруг чёрной дыры, после пересечения которой нет пути назад), электрическим зарядом и скоростью вращения. И это всё. Больше нет никаких деталей, определяющих облик чёрной дыры. Физики подытожили это фразой: «У чёрных дыр нет волос», подразумевая, что чёрные дыры лишены индивидуальных особенностей. Увидев одну чёрную дыру с заданной массой, зарядом и моментом вращения (хотя вы узнали о её параметрах не непосредственно, а через её воздействие на окружающий газ и звёзды, поскольку чёрные дыры действительно чёрные), вы тем самым увидели все чёрные дыры с такой же массой, зарядом и спином. Тем не менее за внешней каменной «невозмутимостью» чёрной дыры скрывается величайший беспорядок, который только можно вообразить во Вселенной. Среди всех физических систем заданного размера чёрные дыры обладают самой большой энтропией. Вспомним из главы 6, что энтропия — это, грубо говоря, число всевозможных перестановок элементов данной физической системы, при которых её общий вид не меняется. Применяя это определение к чёрным дырам и даже не зная, из чего они состоят (поскольку мы не знаем, что происходит с материей, втянутой в чёрную дыру), мы можем с уверенностью сказать, что перестановка элементов чёрной дыры оказывает не большее влияние на её массу, заряд или спин, чем перестановка страниц книги «Война и мир» влияет на вес этой книги. А поскольку масса, заряд и момент вращения полностью определяют облик чёрной дыры для внешнего мира, то все такие манипуляции проходят незамеченными, что даёт нам основание говорить, что чёрная дыра имеет максимально возможную энтропию. Несмотря на это, вы могли бы предложить следующий простой способ превысить энтропию чёрной дыры. Вообразите пустую сферу того же размера, что и размер чёрной дыры, и начните наполнять её газом (водородом, гелием, углекислым газом, чем угодно), который может свободно распространяться внутри этой сферы. Чем больше газа вы закачиваете, тем выше энтропия, поскольку большее число составляющих элементов означает большее количество всевозможных перестановок. Тогда вы могли бы предположить, что по мере закачки газа энтропия будет всё время расти и расти, так что в определённый момент превысит энтропию чёрной дыры того же размера. Эта стратегия хитра, но общая теория относительности показывает, что она неверна. Дело в том, что по мере закачки газа растёт и масса сферы. И ещё до того как энтропия сферы достигнет энтропии чёрной дыры того же размера, масса сферы достигнет критического значения, при котором сфера со всем своим содержимым становится чёрной дырой. И нет способа обойти это. Чёрные дыры обладают монополией на максимально возможный беспорядок. А что если попытаться дальше увеличивать энтропию самой чёрной дыры, продолжая закачивать в неё газ? Энтропия действительно будет продолжать расти, но у вас уже изменились правила игры. По мере исчезновения материи за горизонтом событий чёрной дыры будет расти не только её энтропия, но и её размер. Размер чёрной дыры пропорционален её массе, так что чем больше материи вы закачиваете в чёрную дыру, тем тяжелее и объемнее она становится. Таким образом, любая попытка увеличить энтропию в заданной области пространства после того, как эту область заняла чёрная дыра, проваливается. Эта область не может поддерживать больше беспорядка. Энтропия достигла в ней своего насыщения. И что бы вы ни делали — закачивали бы газ в чёрную дыру или бросали бы в неё тяжёлые армейские грузовики — от этого чёрная дыра будет только расти и занимать всё большую область пространства. Таким образом, количество энтропии, заключённой в чёрной дыре, не только является фундаментальным свойством чёрной дыры, но и говорит нам о чём-то фундаментальном, касающемся самого пространства: максимальное количество энтропии, которую можно вместить в заданную область пространства — любую область, где угодно, в любое время, — равняется количеству энтропии, содержащейся в чёрной дыре того же размера. А сколько энтропии содержит чёрная дыра заданного размера? Вот где начинается самое интересное. Начнём свои рассуждения с чего-то наглядного, наподобие воздуха в тапперуэровском контейнере[102]. Если вы соедините два таких контейнера, удвоив их общий объём и количество содержащихся в них молекул воздуха, то можно подумать, что тем самым вы удвоите и энтропию. Точные расчёты подтверждают это предположение{209} и тем самым показывают, что при прочих равных условиях (неизменная температура, плотность и т. д.) энтропия известных нам физических систем пропорциональна их объёму. Следующим шагом можно предположить, что энтропия и менее знакомых нам систем, таких как чёрные дыры, тоже пропорциональна их объёму. Но в 1970-х гг. Якоб Бекенштейн и Стивен Хокинг обнаружили, что это не так. Их математический анализ показал, что энтропия чёрной дыры пропорциональна не её объёму, а площади её горизонта событий — грубо говоря, площади её поверхности. Это ответ очень отличается от того, что мы ожидали. Если удвоить радиус чёрной дыры, то её объём увеличится в 8 раз (23), тогда как площадь её поверхности возрастёт только в 4 раза (22); если в 100 раз увеличить радиус чёрной дыры, то её объём увеличится в миллион раз (1003), тогда как площадь её поверхности возрастёт только в десять тысяч раз (1002). У чёрных дыр гораздо больше объёма, чем поверхности.{210} Таким образом, хотя чёрные дыры содержат предельно возможное количество энтропии, но Бекенштейн и Хокинг показали, что это количество меньше, чем мы могли бы по наивности полагать. Пропорциональность энтропии площади поверхности является не просто любопытным различием между чёрными дырами и тапперуэровскими контейнерами, о которых мы ранее упомянули и быстро пошли дальше. Мы видели, что чёрные дыры устанавливают предел количеству энтропии, которое в принципе может быть вмещено в заданную область пространства: возьмите чёрную дыру точно такого же размера и найдите её энтропию — это и будет абсолютным пределом энтропии, которую может содержать заданная область пространства. И поскольку, согласно работам Бекенштейна и Хокинга, эта предельная энтропия пропорциональна площади поверхности чёрной дыры, которая занимала бы заданную область, значит, максимальное количество энтропии, которое может содержаться в заданной области пространства, пропорционально площади её поверхности.{211} Легко выявить причину расхождения этого вывода с тем, что мы нашли, рассуждая о воздухе в тапперуэровском контейнере (когда мы установили, что энтропия пропорциональна объёму контейнера, а не площади его поверхности): поскольку мы предположили, что воздух однородно распределяется внутри контейнера, то тем самым мы игнорировали гравитацию; ведь когда гравитация существенна, происходит сгущение. Игнорировать гравитацию можно в случае низкой плотности частиц, но при большой энтропии плотность высока, так что гравитация существенна, и перестаёт быть справедливым рассуждение, применённое к тапперуэровскому контейнеру. Экстремальные условия требуют учёта гравитации, что и приводит к тому, что максимально возможное количество энтропии, содержащейся в заданной области пространства, пропорционально площади её поверхности, а не её объёму. Хорошо, но почему это должно нас интересовать? На это есть две причины. Во-первых, существование предела энтропии даёт ещё одно указание на то, что ультрамикроскопическое пространство имеет атомизированную структуру. Согласно Бекенштейну и Хокингу, если вообразить, что на плоскости горизонта событий чёрной дыры расчерчена шахматная доска с клетками размера планковской длины (так что каждая «планковская клетка» имеет площадь 10?66 см2), то энтропия чёрной дыры равна количеству таких клеток, уместившихся на горизонте событий.{212} Отсюда неизбежен вывод: планковская клетка является минимальным, фундаментальным элементом пространства, и каждая такая клетка несёт минимальный, единичный элемент энтропии. Это значит, что ничего, даже в принципе, не может происходить внутри планковской клетки, поскольку любое перемещение является потенциальным источником беспорядка, для создания которого требуется более чем один элемент энтропии в пределах планковской клетки. Таким образом, с совсем другой точки зрения мы снова пришли к представлению о существовании сущностного пространственного элемента.{213} Во-вторых, верхний предел энтропии в заданной области пространства является для физика критической, почти священной величиной. Чтобы понять причину этого, вообразите, что вы помогаете психиатру, и ваша работа состоит в том, чтобы детально записывать всё, что происходит в группе гиперактивных детей. Каждое утро вы молитесь, чтобы дети как можно спокойнее себя вели, поскольку чем больший бедлам они устраивают, тем труднее ваша работа. Причина очень проста, но стоит явно сказать: чем более беспорядочно ведут себя дети, тем за большим количеством вещей вам требуется следить. Вселенная бросает физику во многом тот же вызов. Фундаментальная физическая теория должна описывать всё, что происходит — или могло было произойти, даже в принципе, — в заданной области пространства. И, как и в случае с детьми, чем больший беспорядок может содержать область пространства — даже в принципе — тем больше должна уметь отслеживать теория. Таким образом, максимальная энтропия в области пространства может служить своеобразной «лакмусовой бумажкой»: физики полагают, что по-настоящему фундаментальная теория — это та, которая полностью согласуется с максимальной энтропией в любой заданной области пространства. Теория должна соответствовать природе с такой точностью, чтобы быть в состоянии точно отследить максимально возможный беспорядок в любой области пространства, не больше и не меньше. Если бы рассуждения, касавшиеся тапперуэровского контейнера, были бы универсально справедливы, то фундаментальная теория должна была бы учитывать «объёмное» количество беспорядка в любой области. Но поскольку эти рассуждения оказываются неверными при учёте гравитации — а фундаментальная теория должна включать гравитацию, то фундаментальной теории требуется принимать во внимание лишь «поверхностный» беспорядок в любой области. И на паре примеров мы уже показали, что для больших областей «поверхностный» беспорядок гораздо меньше «объёмного». Таким образом, результат Бекенштейна и Хокинга говорит нам о том, что теория, включающая гравитацию, в некотором смысле проще теории, не включающей её. В ней меньше «степеней свободы» (меньше составляющих, которые могут меняться и тем самым вносить свой вклад в беспорядок), которые теория должна описывать. Этот вывод интересен сам по себе, но если сделать ещё один шаг вперёд, то он приведёт нас к кое-чему чрезвычайно необычному. Если максимум энтропии в любой заданной области пространства пропорционален площади поверхности этой области, а не её объёму, тогда, возможно, подлинные, фундаментальные степени свободы — атрибуты, способные вызывать беспорядок, — на самом деле пребывают на поверхности области, а не внутри неё. То есть возможно, что реальные физические процессы Вселенной происходят на тонкой удалённой поверхности, окружающей нас, а всё, что мы видим и переживаем, является попросту проекцией тех процессов. Иными словами, возможно, что Вселенная подобна голограмме. Это очень странная идея, но, как мы сейчас увидим, она недавно получила значительную поддержку. Является ли Вселенная голограммой? Голограмма — это двумерный кусок пластика со специальной гравировкой, который при освещении подходящим лазерным светом проецирует трёхмерное изображение.{214} В начале 1990-х гг. лауреат Нобелевской премии голландский физик Герард ’т Хофт и Леонард Сасскинд, один из основателей теории струн, предположили, что сама Вселенная может функционировать подобно голограмме. Они выдвинули потрясающую идею, что всё, что происходит в трёх измерениях повседневной жизни, может быть голографической проекцией физических процессов, происходящих на удалённой двумерной поверхности. С их новой, совершенно непривычной для нас точки зрения, мы и всё, что мы делаем или видим, сродни голографическим образам. Тогда как Платон считал обычные ощущения отображающими лишь тень реальности, голографический принцип говорит похожее, но переворачивает эту метафору с ног на голову. Тени — то, что плоское и, следовательно, пребывает на двумерной поверхности, — реальны, тогда как то, что кажется нам более богато структурированными объектами более высокой размерности (мы сами и мир вокруг нас) является эфемерной проекцией этих теней.[103] Несмотря на то что это чрезвычайно странная идея, и её роль в окончательном понимании пространства-времени далеко не ясна, так называемый голографический принцип ’т Хофта и Сасскинда имеет под собой веские основания. Ведь, как мы узнали в последнем разделе, максимальное количество энтропии, которое может вмещать определённая область пространства, пропорционально площади её поверхности, а не её объёму. Поэтому естественно предположить, что наиболее фундаментальные ингредиенты Вселенной, её самые базисные степени свободы — элементы, которые могут быть носителями энтропии Вселенной почти как страницы романа «Война и мир» несут свою энтропию, — пребывают на граничной поверхности, а не внутри Вселенной. То, что мы переживаем в «объёме» Вселенной, определяется тем, что происходит на граничной поверхности, аналогично тому, как трёхмерное голографическое изображение определяется информацией, закодированной в плоской голографической маске. Законы физики уподобляются вселенскому лазеру, освещающему реальные космические процессы, происходящие на тонкой удалённой поверхности, и генерирующему голографические иллюзии повседневной жизни. Мы ещё не понимаем, как этот голографический принцип может быть реализован в реальном мире. Одна из проблем состоит в том, что обычно Вселенная представляется либо простирающейся до бесконечности, либо замкнутой на себя подобно сфере или экрану компьютерной игры (как в главе 8) и, следовательно, не имеющей каких-либо краёв или границ. Так где же может находиться «граничная голографическая поверхность»? Более того, нам определённо видится, что физические процессы находятся под нашим контролем прямо здесь в «объёме» Вселенной. Нам не кажется, что нечто на неуловимой границе как-то распоряжается тем, что происходит здесь, внутри. Означает ли голографический принцип, что наше ощущение управления и автономии иллюзорно? Или же лучше думать о голографическом принципе как о выражающем некоторую дуальность, позволяющую в зависимости от вкуса (а не от реальной физики) выбирать привычное описание, в котором фундаментальные законы действуют здесь, в «объёме» (что согласуется с нашей интуицией и нашим восприятием), либо необычное описание, в котором фундаментальные физические процессы происходят на некой границе Вселенной, и при этом каждая точка зрения будет одинаково законной? Эти существенные вопросы до сих пор остаются дискуссионными. Но в 1997 г. аргентинский физик Хуан Малдасена, основываясь на ряде ранних догадок физиков, занимавшихся теорией струн, сделал крупный прорыв, который значительно продвинул понимание этих вопросов. Его открытие не связано прямо с вопросом о роли голографии в нашей реальной Вселенной, но он нашёл гипотетический контекст — гипотетическую Вселенную, для которой абстрактные рассуждения о голографии могут стать конкретными и математически точными. По техническим причинам Малдасена изучал гипотетическую Вселенную с четырьмя большими пространственными измерениями и одним временны?м измерением и с постоянной отрицательной кривизной (в трёхмерном пространстве постоянную отрицательную кривизну имеет седлообразная поверхность, знакомая широкой публике по форме картофельных чипсов «Принглс», рис. 8.6в). Стандартный математический анализ показывает, что это пятимерное пространство-время обладает границей,{215} имеющей, как и все границы, на одно измерение меньше, чем окружаемая ею область, т. е. у этой границы три пространственных и одно временно?е измерение. (Как всегда, трудно представить себе пространство высокой размерности, но если вы хотите иметь мысленную картинку, то подумайте о банке с томатной пастой — трёхмерная жидкая томатная паста будет играть роль пятимерного пространства-времени, а её двумерная поверхность — роль четырёхмерной пространственно-временно?й границы.) Включив дополнительные свёрнутые измерения, требуемые теорией струн, Малдасена убедительно показал, что все физические процессы, воспринимаемые наблюдателем, живущим внутри этой Вселенной (в «пасте»), можно полностью описать в терминах физических законов, действующих на границе этой Вселенной (на поверхности банки). Хотя мы и не знаем подобной Вселенной, но эта работа дала первый и математически строгий пример, в котором был явно реализован голографический принцип.{216} Она пролила свет на применимость голографического представления ко всей Вселенной. Например, в работе Малдасены «объёмное» и «граничное» описания имеют совершенно равные права. Ни одно из них не является первичным, а другое — вторичным. Подобно взаимосвязи между пятью вариантами теории струн, «объёмная» и «граничная» теории переходят друг в друга. Однако в этом переходе необычно то, что «объёмная» теория имеет больше измерений, чем эквивалентная ей теория, сформулированная на границе. Более того, расчёты показывают, что тогда как «объёмная» теория включает гравитацию (поскольку Малдасена сформулировал её с помощью теории струн), «граничная» теория её не включает. Тем не менее любой вопрос (или расчёт) одной теории может быть переформулирован в эквивалентный вопрос (или расчёт) другой теории. Не знакомый с этой дуальностью может подумать, что соответствующие вопросы и расчёты не имеют ничего общего друг с другом (например, поскольку «граничная» теория не включает гравитацию, то вопросы в «объёмной» теории, включающие гравитацию, переводятся в совсем по другому сформулированные вопросы «граничной» теории, не включающие гравитацию), тогда как знаток обеих теорий увидит их взаимосвязь и поймёт, что ответы на соответствующие вопросы и результаты соответствующих вычислений должны согласовываться друг с другом. И действительно, все проведённые к настоящему времени расчёты (а их множество) подтверждают это утверждение. Трудно полностью охватить детали всего этого, но пусть это не затмевает главное. Результат Малдасены изумителен. Он нашёл конкретную, пусть и гипотетическую реализацию голографического принципа в рамках теории струн. Он показал, что определённая квантовая теория, не включающая гравитацию, переходит в другую квантовую теорию, включающую гравитацию, но сформулированную для пространства, в котором на одно измерение больше. Запущены мощные исследовательские программы, стремящиеся применить эти идеи к более реалистичной Вселенной, нашей Вселенной, но прогресс медленен, так как эти исследования сталкиваются с техническими трудностями. (Малдасена выбрал свой гипотетический пример из тех соображений, что он относительно легко поддаётся математическому анализу; гораздо труднее иметь дело с более реалистичными примерами.) Тем не менее теперь мы знаем, что теория струн, по крайней мере в определённом контексте, может поддерживать голографическую концепцию. И, как и в случае с преобразованием геометрии, упомянутым ранее, это даёт другой намёк на то, что пространство-время не является фундаментальной концепцией. При переходе от одной теоретической формулировки к другой эквивалентной формулировке может меняться не только характерный размер и форма пространства-времени, но и количество пространственных измерений. Всё больше указаний на то, что форма пространства-времени является скорее чем-то внешним, меняющимся от одной формулировки физической теории к другой, а не фундаментальным элементом реальности. Подобно тому как разнится количество букв, слогов и гласных в английском слове «cat» и в его переводе на испанский язык «gato», так и форма, характерные размеры и даже количество измерений пространства-времени меняются при переводе с языка одной теории на язык другой. Для любого данного наблюдателя, использующего одну из теорий, пространство-время может казаться реальным и обязательным. Но как только наблюдатель сменит формулировку теории на эквивалентную, но отличающуюся от прежней, так сразу же обязательно изменится то, что раньше казалось ему реальным и непреложным. Таким образом, если эти идеи верны — а я должен подчеркнуть, что их ещё следует досконально проверить, хотя у теоретиков накопилось громадное количество подтверждений, — то они вызывают сильные сомнения в первичности пространства и времени. Из всех путеводных нитей, которые здесь обсуждались, я бы назвал голографический принцип самым перспективным для того, чтобы сыграть доминирующую роль в будущих исследованиях. Этот принцип возникает из базисной характеристики чёрных дыр — их энтропии, — понимание которой, с чем согласятся многие физики, покоится на прочном теоретическом основании. Даже если детали наших теорий изменятся, мы ожидаем, что любое здравое описание гравитации будет допускать существование чёрных дыр, и, следовательно, останется ограничение на максимально возможную энтропию в данной области пространства, так что голографический принцип будет применим. Тот факт, что теория струн естественным образом включает в себя голографический принцип (по крайней мере в примерах, поддающихся математическому анализу), является другим веским доводом в пользу справедливости этого принципа. Я полагаю, что независимо от того, куда может завести нас поиск оснований пространства и времени, независимо от модификаций теории струн / M-теории, которые могут ожидать нас на последнем этапе, принцип голографии будет продолжать оставаться ведущей концепцией. Составляющие пространства-времени На протяжении всей книги мы периодически ссылались на ультрамикроскопические составляющие пространства-времени, но хотя мы и привели косвенные аргументы в пользу их существования, мы ещё ничего не сказали о том, чем на самом деле могут быть эти составляющие. И на то есть веская причина. На самом деле у нас нет ни малейшего представления о том, каковы они. Или, может быть, лучше сказать, что когда дело доходит до идентификации элементарных составляющих пространства-времени, у нас ни в чём нет уверенности. Это главный пробел в нашем понимании, но стоит взглянуть на эту проблему в историческом контексте. Если бы вы спросили учёных в конце XIX-го в., каковы элементарные составляющие материи, то не получили бы единогласного ответа. Всего лишь столетие назад атомная гипотеза не была общепризнанной; были даже знаменитые учёные (Эрнст Мах — один из них), считавшие её неверной. Более того, даже после того как атомная гипотеза была широко принята в начале XX-го в., учёные постоянно обновляли рисуемую ею картину, находя всё более элементарные компоненты (например, сначала протоны и нейтроны, затем кварки). Теория струн — самый последний шаг на этом пути, но поскольку её ещё требуется подтвердить экспериментально (и даже после этого может появиться ещё более тонкая теория), то мы должны открыто признать, что поиск самых базисных компонентов материи всё ещё продолжается. Включение пространства и времени в современный научный контекст восходит к работам Ньютона XVII-го в., но серьёзные размышления об их микроскопическом строении потребовали открытия общей теории относительности и квантовой механики, произошедших только в XX-м в. Таким образом, на историческом масштабе мы только начали анализировать пространство-время, так что отсутствие определённых предположений о его «атомах» — самых элементарных составляющих пространства-времени — не является «чёрной меткой». Это далеко не так. То, что мы открыли многочисленные характеристики пространства и времени далеко за пределами обычного опыта, свидетельствует о прогрессе, немыслимом ещё столетие назад. Поиск самых фундаментальных компонентов материи или пространства-времени является грандиозной задачей, которая, вероятно, будет занимать нас ещё немалое время. Есть два многообещающих направления в поисках элементарных составляющих пространства-времени. Одно предположение исходит из теории струн, а второе — из теории, известной как петлевая квантовая гравитация. Предложение, исходящее из теории струн, либо интуитивно притягивает, либо совершенно сбивает с толку — в зависимости от того, насколько глубоко вы раздумываете над этим. Поскольку мы говорим о «ткани» пространства-времени, то предположение состоит в том, что, возможно, пространство-время соткано из струн наподобие того, как рубашка соткана из нитей. То есть подобно тому как соединение должным образом многочисленных нитей порождает ткань рубашки, возможно, соединение должным образом многочисленных струн порождает то, что мы обычно называем тканью пространства-времени. Тогда материя (как вы и я) состоит из дополнительных агломераций вибрирующих струн, движущихся внутри среды, сотканной струнами пространства-времени — подобно звонкой музыке на фоне приглушённого гула или тонкому узору на однородном материале. Это предположение кажется мне притягательным и неотразимым, но до сих пор никто не превратил эти слова в точное математическое утверждение. Насколько я могу судить, препятствия на этом пути далеко не пустяковые. Например, если ваша рубашка полностью распадётся на отдельные нити, то вы останетесь с грудой ниток — этот исход, в зависимости от обстоятельств, вы можете посчитать неловким или раздражающим, хотя, вероятно, и не глубоко загадочным. Но что действительно весьма напрягает разум (мой разум, по крайней мере), так это мысль об аналогичной ситуации со струнами пространства-времени. Что нам делать с «грудой» струн, выпавших из ткани пространства-времени или, что, возможно, ближе к делу, ещё не объединённых в ткань пространства-времени? Можно поддаться искушению думать о них как о нитях рубашки — как о сыром материале, который требуется соткать, — но сразу же видна несостоятельность такого подхода. Ведь мы представляем струны вибрирующими в пространстве и времени, но без ткани пространства-времени, образуемой самими этими струнами, нет пространства и времени. На этом пути концепция пространства и времени бессмысленна, пока не сплетаются неисчислимые струны, образующие само пространство и время. Таким образом, чтобы сделать осмысленным это предложение, для описания струн нам требуются рамки, которые с самого начала не предполагали бы, что струны вибрируют в предсуществующем пространстве-времени. Нам требуется полностью беспространственная и безвременна?я формулировка теории струн, в которой пространство-время возникало бы из коллективного поведения струн. И хотя на этом пути имеется прогресс, никто ещё не предложил такую беспространственную и безвременну?ю формулировку струнной теории — нечто, что физики называют формулировкой, независимой от фона (этот термин возник из популярного представления о пространстве-времени как о фоне, на котором происходят физические явления). Вместо этого, по сути, во всех подходах струны представляются движущимися и вибрирующими в пространстве-времени, введённом в теорию «вручную»; пространство-время не возникает из теории, как должно быть в «независимой от фона» концепции, а вводится в теорию самим теоретиком. Многие исследователи считают разработку «независимой от фона» формулировки единственной наиболее значительной нерешённой проблемой теории струн. Её решение не только привело бы к пониманию основ пространства-времени, но независимые от фона рамки, возможно, дали бы инструмент для решения основной «загвоздки», описанной в конце главы 12, — неспособности теории выбрать геометрическую форму дополнительных измерений. Как только базисный математический формализм теории будет отделён от любого частного пространства-времени, так теория струн могла бы оказаться в состоянии охватить все возможные геометрические формы дополнительных измерений и, возможно, выбрать одну из них. Другой трудностью, с которой сталкивается предположение о «струнной структуре» пространства-времени, является то, что теория струн имеет и другие компоненты помимо струн (мы видели это в главе 13). Какую роль играют эти другие компоненты в фундаментальном строении пространства-времени? Этот вопрос становится особенно острым в модели мира на бране. Если трёхмерное пространство нашего опыта является 3-браной, то является ли сама эта брана неделимой или же она состоит из других компонентов теории? Например, состоят ли браны из струн или же как струны, так и браны — элементарные сущности? Или же следует допустить ещё одну возможность — что браны и струны состоят из ещё более тонких ингредиентов? Эти вопросы находятся на переднем крае текущих исследований, но поскольку в данной главе мы говорим о намёках и путеводных нитях дальнейших исследований, то позвольте мне рассказать об одной важной идее, привлёкшей большое внимание. Ранее мы говорили о разнообразных бранах теории струн / M-теории: 1-бранах, 2-бранах, 3-бранах, 4-бранах и т. д. Хотя я и не подчёркивал это ранее, но в теории также существуют 0-браны — компоненты, не имеющие пространственных измерений подобно точечным частицам. Это может показаться противоречащим всему духу струнной теории / M-теории, отошедшей от представления о точечных частицах, дабы укротить необузданные флуктуации квантовой гравитации. Однако 0-браны, как и их собратья с бо?льшим количеством измерений на рис. 13.2, появляются буквально с прикреплёнными к ним струнами, и, следовательно, их взаимодействие управляется струнами. Поэтому неудивительно, что 0-браны ведут себя совсем не так, как обычные точечные частицы, и, что важнее всего, они полностью принимают участие в разглаживании и ослаблении ультрамикроскопических флуктуаций пространства-времени; 0-браны не вносят фатальных изъянов, проявляющихся при попытках объединить квантовую механику с общей теорией относительности в рамках представлений о точечных частицах. В действительности Том Бэнкс из университета Ратгерса, Вилли Фишлер из Техасского университета в Остине вместе с Леонардом Сасскиндом и Стивеном Шенкером (оба теперь в Стэнфорде), сформулировали версию теории струн / M-теории, в которой 0-браны являются фундаментальными ингредиентами, из которых могут состоять струны и прочие браны более высокой размерности. Их предположение, известное также как матричная теория (вот и ещё один вариант расшифровки буквы «M» в «M-теории»), вызвало лавину исследований, но математические трудности до сих пор препятствуют учёным разработать этот подход до конца. Тем не менее те вычисления, которые удалось провести в рамках этого подхода, подтверждают выдвинутое предположение. Если матричная теория верна, то это может означать, что всё (струны, браны и, возможно, даже само пространство и время) состоит из соответствующих агрегатов 0-бран. Это захватывающая перспектива, и исследователи проявляют осторожный оптимизм по поводу того, что в этом направлении в ближайшие несколько лет будет достигнут существенный прогресс. До сих пор мы говорили о пути, которым в поисках ингредиентов пространства-времени следуют приверженцы теории струн, но, как я упомянул, есть и второй путь, которого придерживаются последователи теории петлевой квантовой гравитации — основного конкурента теории струн. Теория петлевой квантовой гравитации, появившаяся в середине 1980-х гг., является другим многообещающим кандидатом на объединение квантовой механики с общей теорией относительности. Я не буду подробно говорить об этой теории (если она вас интересует, прочтите превосходную книгу Ли Смолина «Три дороги к квантовой гравитации»), а вместо этого укажу на несколько основных моментов, относящихся к нашему обсуждению. Теория струн и теория петлевой квантовой гравитации заявляют, что они могут достигнуть долгожданной цели создания квантовой теории гравитации, но сделают это совсем разными путями. Теория струн возникла из десятилетних поисков наиболее элементарных компонентов материи; в самом начале для сторонников теории струн гравитация была, в лучшем случае, вторичным вопросом. В противоположность этому, теория петлевой квантовой гравитации выросла на традициях общей теории относительности; для большинства приверженцев этого подхода гравитация всегда была в центре внимания. Если в одном предложении сформулировать различие подходов, то можно сказать, что теория струн идёт от малого (квантовая теория) к большому (гравитация), тогда как теория петлевой квантовой гравитации идёт от большого (гравитация) к малому (квантовая теория).{217} В самом деле, как об этом говорилось в главе 12, теория струн изначально разрабатывалась как квантовая теория сильного ядерного взаимодействия; и только позже, почти по счастливой случайности, было обнаружено, что эта теория в действительности включает гравитацию. Теория петлевой квантовой гравитации, напротив, исходит из общей теории относительности Эйнштейна и стремится включить квантовую механику. Этот старт с противоположного конца пространственных масштабов отражается в путях развития обеих теорий. Основные достижения одной теории оказываются, до некоторой степени, изъянами другой. Например, теория струн объединяет всю материю и все силы, включая гравитацию (такое полное объединение ускользает от теории петлевой квантовой гравитации), описывая всё на языке вибрирующих струн. Гравитационная частица — гравитон — представляет собой всего лишь одну из колебательных мод струны, и, стало быть, эта теория естественным образом описывает, как эти элементарные сгустки гравитации движутся и взаимодействуют на уровне квантовой механики. Однако, как только что было отмечено, основной изъян текущих формулировок теории струн состоит в том, что они предполагают наличие «фонового пространства-времени», в котором струны движутся и вибрируют. В противоположность этому, основное (и впечатляющее) достижение теории петлевой квантовой гравитации состоит в том, что она не предполагает наличие «фонового пространства-времени». Теория петлевой квантовой гравитации является конструкцией, «независимой от фона». Однако получение обычного пространства и времени, как и достижение известных результатов общей теории относительности на крупных масштабах (что относительно легко получается в рамках существующих формулировок теории струн), когда за стартовую точку берётся необычная беспространственная/безвременна?я концепция, является далеко нетривиальной проблемой, которую пытаются решить исследователи. Более того, по сравнению с теорией струн, теория петлевой квантовой гравитации достигла гораздо меньших успехов в понимании динамики гравитонов. Одной из возможностей для гармонизации является то, что последователи теории струн и приверженцы теории петлевой квантовой гравитации на самом деле строят одну и ту же теорию, но с совершенно разных стартовых позиций. На это указывает то обстоятельство, что обе теории включают петли, — в теории струн это петли, образуемые замкнутыми струнами; в теории петлевой квантовой гравитации петли труднее описать без использования математики, но, грубо говоря, эти петли суть элементарные петли пространства. Эта возможность подкрепляется и тем фактом, что теории полностью согласуются друг с другом в тех немногих задачах (таких как определение энтропии чёрной дыры), которые можно решить в рамках обоих подходов.{218} И, что касается вопросов составляющих пространства-времени, обе теории предполагают существование некой атомизированной структуры. Мы уже видели намёки на это в рамках теории струн; аналогичные намёки в рамках теории петлевой квантовой гравитации ещё более настоятельные и даже более явные. Исследователи показали, что многочисленные петли теории петлевой квантовой гравитации могут соединяться (в чём-то подобно тому, как петли шерсти сплетаются в свитер), образуя структуры, которые на крупных масштабах выглядят приблизительно как области знакомого нам пространства-времени. Более того, исследователи подсчитали допустимое значение площади поверхности таких областей пространства. И оказалось, что площадь поверхности может составлять лишь целое число клеток площадью в планковскую единицу длины в квадрате, т. е. одна планковская клетка, две планковских клетки, 202 планковских клетки, но недопустимо дробное число клеток — подобно тому как может быть 1 электрон, 2 электрона, 202 электрона, но не может быть 1,6 электрона или любое дробное число электронов. Опять же, это является сильным аргументом в пользу того, что пространство, как и электроны, дискретно и состоит из неделимых элементов.{219} Если бы я рискнул сделать предсказание, то в качестве наиболее вероятного пути развития предположил бы, что «независимые от фона» методы, развитые в теории петлевой квантовой гравитации, будут приспособлены к теории струн, что даст дорогу для создания «независимой от фона» формулировки теории струн. И я полагаю, что от этой искры возгорится пламя третьей революции теории суперструн, в ходе которой будут разгаданы (я оптимист) многие из оставшихся глубоких тайн. На этом пути, вероятно, могла бы завершиться долгая история дебатов о пространстве-времени. С первых глав мы следили за «маятником мнений», раскачивающимся между релятивистским и абсолютистским взглядами на пространство, время и пространство-время. Мы спрашивали: представляет ли пространство собой нечто? Является ли чем-то пространство-время? И, следя за ходом мысли на протяжении нескольких столетий, мы знакомились с различными точками зрения. Я думаю, что экспериментально подтверждённый, «независимый от фона» союз между общей теорией относительности и квантовой механикой приведёт к удовлетворительному решению этой проблемы. Благодаря «независимости от фона» ингредиенты теории могут оказаться в определённой связи друг с другом, но при отсутствии пространства-времени, изначально введённого в теорию, не будет никакой «фоновой арены», в которую они были бы встроены. Имели бы значения только относительные связи — это решение было бы во многом в духе Лейбница и Маха. Затем, по мере того как ингредиенты теории (будь то струны, браны, петли или что-либо ещё, что будет открыто в ходе будущих исследований) соединяются, образуя известное нам крупномасштабное пространство-время (либо наше реальное пространство-время, либо гипотетические примеры, полезные для мысленных экспериментов), они снова начинают быть «чем-то», во многом подобным тому, что было в нашем раннем обсуждении общей теории относительности: в совершенно пустом, плоском, бесконечном пространстве-времени (один из полезных гипотетических примеров) поверхность воды во вращающемся ведре Ньютона примет вогнутую форму. Самое существенное то, что при таком описании почти совсем исчезнет различие между пространством-временем и более ощутимыми материальными элементами, поскольку и то, и другое будет возникать как совокупность более элементарных ингредиентов в фундаментально реляционной, беспространственной и безвременно?й теории. Вот как Лейбниц, Ньютон, Мах и Эйнштейн могли бы провозгласить общую победу. Внутреннее и внешнее пространство Спекуляции о будущем науки являются увлекательным и конструктивным опытом. Они помещают наши текущие исследования в более широкий контекст и выделяют высшие цели, для достижения которых мы неторопливо и вдумчиво работаем. Но когда такие рассуждения касаются будущего самого пространства-времени, они обретают почти мистический характер, поскольку мы рассматриваем участь тех самых вещей, которые господствуют над нашим ощущением реальности. Опять же, нет сомнений в том, что независимо от наших будущих открытий пространство и время будут продолжать обрамлять наш индивидуальный опыт; пространство и время, как и всё происходящее в жизни, останутся на своём месте. А то, что будет продолжать изменяться и, вероятно, радикально изменится, так это наше понимание предоставляемого ими каркаса, т. е. арены экспериментальной реальности. После столетий размышлений мы можем охарактеризовать пространство и время только как самых знакомых незнакомцев. Они невозмутимо держат путь через наши жизни, но умело скрывают своё фундаментальное строение от тех самых ощущений, которые они так наполняют и на которые они влияют. За последнее столетие благодаря двум теориям относительности Эйнштейна и квантовой механике мы близко познакомились с некоторыми ранее скрытыми чертами пространства и времени. Замедление времени, относительность одновременности, альтернативное «нарезание на куски» пространства-времени, гравитация как искажение и искривление пространства и времени, вероятностная природа реальности и квантовое дальнодействие — даже самые лучше физики XIX го в. не ожидали, что всё это обнаружится буквально за углом. И всё же, это всё есть — подтверждённое как экспериментальными результатами, так и теорией. В наш век мы столкнулись со множеством неожиданных идей: • тёмная материя и тёмная энергия несомненно являются основными составляющими Вселенной; • гравитационные волны — рябь ткани пространства-времени, — которые были предсказаны общей теорией относительности Эйнштейна и которые когда-нибудь смогут позволить нам заглянуть ещё дальше в прошлое, чем когда-либо ранее; • океан Хиггса, который пронизывает всё пространство и который, возможно, поможет нам понять, как частицы обретают массу; • инфляционное расширение, которое может объяснить форму космоса и решить загадку его однородности на больших масштабах, а также установить направление стрелы времени; • теория струн, которая постулирует петли и отрезки энергии вместо точечных частиц и обещает реализовать мечту Эйнштейна об объединении всех частиц и сил в рамках единой теории; • дополнительные пространственные измерения, которые возникли из математики теории струн и которые могут быть обнаружены в экспериментах на новых ускорителях в следующем десятилетии; • мир бран, в котором наши три пространственных измерения могут соответствовать лишь одной Вселенной среди множества Вселенных, плавающих в пространстве-времени более высокой размерности; • и, возможно, даже новое понятие о пространстве-времени, когда сама ткань пространства и времени состоит из более фундаментальных беспространственных и безвременны?х элементов. В следующем десятилетии более мощные ускорители дадут так необходимые экспериментальные данные, и многие физики уверены, что результаты, полученные из наблюдений высокоэнергетических столкновений, подтвердят ряд кардинальных теоретических построений. Я разделяю этот энтузиазм и с нетерпением жду результатов. Пока наши теории не соприкоснутся с наблюдаемыми, проверяемыми явлениями, они будут подвешены в состоянии неопределённости, оставаясь обещающим набором идей, который может иметь или не иметь отношение к реальному миру. Новые ускорители значительно расширят поле перекрытия между теорией и экспериментом и, как надеются физики, переведут многие из этих идей в область признанной науки. Но есть и другой подход, наполняющий меня несравненным изумлением, хотя у этого подхода не так много шансов. В главе 11 мы говорили о том, как эффекты крошечных квантовых флуктуаций могут быть видны на ясном ночном небе, поскольку они были грандиозно растянуты в ходе космического расширения, что привело к образованию сгущений материи, давших начало звёздам и галактикам. (Вспомним аналогию с мелкими каракулями на оболочке воздушного шара, которые растягиваются, когда этот шар надувают.) Это яркий пример того, как можно получить доступ к квантовой физике через астрономические наблюдения. Возможно, это ещё не предел. Не исключено, что космическое расширение может растягивать отпечатки ещё более мелкомасштабных процессов или характеристик — физики струн, или вообще квантовой гравитации, или ультрамикроскопической атомизированной структуры пространства-времени — и распространять их влияние по небесам неким тонким, но наблюдаемым образом. Возможно, Вселенная уже растянула микроскопические нити ткани космоса и распустила их по небу, так что всё, что нам нужно, — это научиться их увидеть. Чтобы добраться до проверки самых последних идей, касающихся фундаментальных физических законов, вполне может потребоваться и чрезвычайная мощь ускорителей частиц, способных воссоздать экстремальные условия, невиданные с момента Большого взрыва. Но, по моему мнению, нет ничего более поэтичного, результата более изысканного, объединения более полного, чем получить подтверждение наших теорий об ультрамалом — теорий об ультрамикроскопическом строении пространства, времени и материи, — обратив к небу самые мощные телескопы и молчаливо всматриваясь в звёзды. Примечания:1 Тинейджер Барт Симпсон — персонаж мультипликационного сериала о семейке Симпсонов. В сериале высмеиваются стереотипы «среднестатистического американца». (Прим. перев.) 8 Мне нравятся примеры, связанные с человеком, поскольку они дают непосредственную связь между физикой и внутренними ощущениями, но изъян таких примеров связан с нашей способностью по своей воле двигать одной частью тела по отношению к другой — в сущности, использовать одну часть тела в качестве системы отсчёта для определения движения другой части (например, вращение рук по отношению к голове). И чтобы исключить не относящиеся к делу возможности, я сделал акцент на однородном вращательном движении, в котором все части тела вращаются вместе. Так что, когда я говорю о вращении тела, представляйте его себе как вращение двух камней, связанных верёвкой, или как вращение фигуриста на Олимпийских играх, когда каждая часть тела вращается с той же угловой скоростью, как и любая другая. 9 Дреды — традиционная причёска ямайских растафари (современные последователи растафари известны как растаманы). Волосы спутываются во множество прядей, которые не расчёсываются. (Прим. перев.) 10 Ньютон И. Математические начала натуральной философии. С. 30. (Прим. ред.) 86 В ноябре 2007 г. коллаборация «Gravity Probe B» объявила о подтверждении эффекта увлечения инерциальной системы отсчёта с точностью 30%. При обработке результатов измерений возникли трудности с учётом электрических зарядов в стенках прибора. К марту 2010 г. коллаборация надеется завершить обработку результатов. (Прим. ред.) 87 В составе проекта LIGO работают три установки. Третья, с длиной плеч 600 м, расположена близ Ганновера, Германия. С мая 2007 г. к анализу результатов LIGO стали присоединяться данные французско-итальянского инструмента VIRGO — гравитационной антенны аналогичной конструкции с длиной плеч 3 км. На начало 2008 г. гравитационные волны не обнаружены. (Прим. ред.) 88 Одной из таких модернизаций является запланированный проект LISA (Laser Interferometer Space Antenna — лазерный космический интерферометр), космическая версия LIGO, включающая в себя несколько космических кораблей, разделённых миллионами километров, играющих роль четырёхкилометровых труб LIGO. Установка LIGO будет также спарена с VIRGO, французско-итальянским детектором гравитационных волн, расположенным в окрестностях города Пиза. 89 Пуск LHC состоялся 10 сентября 2008 г., но выход на проектную мощность запланирован на лето 2009 г. (Прим. ред.) 90 К настоящему времени установки HiRes и детектор имени Пьера Оже зафиксировали частицу с энергией более 1020 эВ (100 млрд масс протона). (Прим. ред.) 91 Установка Пьера Оже в настоящее время (конец 2008 г.) работает уже около двух лет, но о следах чёрных дыр пока не сообщалось. (Прим. ред.) 92 Запуск обсерватории «Planck» намечен на весну 2009 г. (Прим. ред.) 93 Поскольку сутью телепортации является перемещение объекта из одного места в другое, в этом разделе я часто буду говорить так, как будто частицы занимают определённое положение. Строго говоря, мне всегда следовало бы вместо выражений типа «частица, находящаяся здесь» использовать более пространные фразы вида «частица, которая с высокой вероятностью находится здесь» или «частица, которая с вероятностью 99% находится здесь», но для краткости я буду говорить более вольно. 94 Спортивный автомобиль «DeLorean DMC-12», известный по фильму «Назад в будущее», где он сыграл роль машины времени. (Прим. перев.) 95 В оригинале United Quantum Van Lines — перекличка с существующей крупнейшей американской транспортной компанией United Van Lines. (Прим. перев.) 96 Знаменитая марка американского мороженного, популярного и за пределами США. (Прим. перев.) 97 Квантовое состояние совокупности частиц (в отличие от индивидуальных частиц) отражает также связи между всеми частицами этой совокупности. Таким образом, точно воспроизводя квантовое состояние частиц, составляющих «ДеЛориан», мы гарантируем, что все они находятся в той же связи друг с другом; единственная разница будет состоять в том, что их положение в целом будет смещено из Нью-Йорка в Лондон. 98 Хрупкость человеческого тела — другое практическое ограничение: ускорение, требующееся для достижения таких высоких скоростей за разумный промежуток времени, находится далеко за пределами того, что может выдержать тело. Также заметим, что замедление времени позволяет, в принципе, достигать невероятно отдалённых мест пространства. Если в галактику Андромеды запустить с Земли ракету, развивающую скорость в 99,999999999999999999% от скорости света, то нам потребовалось бы ждать её возвращения около 6 млн лет. Но при такой скорости время на ракете столь сильно замедляется по отношению к ходу времени на Земле, что сам космонавт по возвращении постареет только на восемь часов (если игнорировать тот факт, что космонавт не смог бы выдержать ускорение при разгоне, повороте и торможении). 99 Один из последователей нейролингвистического программирования (НЛП), нестандартного подхода к психологии и человеческой коммуникации. Очень популярен в США благодаря своим публичным семинарам, после которых его участники запросто проходят по раскалённым углям, не получая никаких ожогов. (Прим. перев.) 100 Еще один персонаж сериала о семейке Симпсонов, злейший враг Барта. (Прим. перев.) 101 Более подробно о геометрической дуальности циклических измерений и многообразий Калаби–Яу см. главу 10 книги «Элегантная Вселенная». 102 Тапперуэровский контейнер — пластиковый контейнер для хранения пищевых продуктов и других кухонных аксессуаров производства компании «Тапперуэр корпорейшн». Эти контейнеры примечательны тем, что распространяются не в магазинах, а на так называемых «тапперуэровских вечеринках», а теперь и через Интернет. (Прим. перев.) 103 Если вам не хочется переписывать Платона, то модель мира на бране дает голографическую версию мира, в которой тени вновь занимают надлежащее место. Представим, что мы живём на 3-бране, окружающей четырёхмерную область (подобно тому как двумерная кожица яблока окружает его трёхмерную внутренность). В такой модели мира голографический принцип скажет, что наши трёхмерные ощущения являются тенями четырёхмерной физики, происходящей в области, окружённой нашей браной. |
|
||