ДИЭЛЕКТРИКИ §1. Диэлектрическая проницае...

Глава 10

ДИЭЛЕКТРИКИ

§1. Диэлектрическая проницаемость

§2. Вектор поляризации Р

§З. Поляризационные заряды

§4. Уравнения электростатики для диэлектриков

§5. Поля и силы в присутствии диэлектриков

§ 1. Диэлектрическая проницаемость

Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение проводников, в которых заряды под влиянием электрического поля свободно текут в такие участки, что поле внутри проводника обращается в нуль. Теперь мы будем говорить об изоляторах, т. е. таких материалах, которые не проводят электриче­ство. Сначала можно было бы подумать, что в них вообще ничего не происходит. Но Фарадей с помощью простого электроскопа и конденса­тора, состоящего из двух параллельных плас­тин, обнаружил, что это не так. Его опыт по­казал, что если между пластинами поместить изолятор, то емкость такого конденсатора уве­личится. Когда изолятор целиком заполняет пространство между пластинами, емкость воз­растает в x раз, причем x зависит только от свойств изолирующего материала. Изолирую­щие материалы называют также диэлектриками; тогда множитель x характеризует свойства диэлектрика и называется диэлектрической про­ницаемостью. Диэлектрическая проницаемость вакуума, конечно, равна единице.

Наша задача теперь состоит в том, чтобы объяснить, почему вообще возникает электри­ческий эффект, раз изоляторы фактически яв­ляются изоляторами и не проводят электриче­ства. Начнем с экспериментального факта, что емкость увеличивается, и попытаемся разоб­раться, что же там может происходить. Рас­смотрим плоский конденсатор, на проводящих пластинах которого имеются заряды, скажем, на верхней пластине отрицательные, а на нижней — положительные.

Если токи текут только по тонким проводам, мы можем, как в предыдущем параграфе, немедленно взять интеграл по­перек провода, заменив jdV на Ids, где ds элемент длины провода. Тогда, пользуясь обозначениями фиг. 14.10, имеем

(14.43)

(Знак минус появляется потому, что мы изменили порядок векторного произведения.) Это уравнение для В называется законом Био — Савара в честь открывших его ученых. Он дает формулу для прямого вычисления магнитного поля, создава­емого проводами с током.

Вероятно, вы удивились: «Какой же прок от векторного по­тенциала, если мы можем сразу найти В в виде векторного ин­теграла? В конце концов А тоже определяется тремя интегра­лами!» Из-за векторного произведения интегралы для В обычно сложнее устроены, как это видно из уравнения (14.41). Кроме того, поскольку интегралы для А похожи на электростатиче­ские, то нам не надо их вычислять заново. Наконец, мы уви­дим, что в более трудных теоретических вопросах, таких, как теория относительности, в современном изложении законов механики, вроде принципа наименьшего действия, о котором будет рассказано позже, в квантовой механике, векторный потенциал играет важную роль.

*Наше определение все еще не полностью задает А. Чтобы задание было единственным, мы должны были бы лто-нибудь сказать о поведении поля А на какой-либо границе или на больших расстояниях. Иногда бывает удобно выбрать, например, поле, спадающее к нулю на больших расстоя­ниях.