Рассмотрим силу, которая, подобно тяготению, меняется обратно квадрату расстояния, но только в миллион биллионов биллионов биллионов раз более сильную. И которая отличается еще в одном. Пусть существуют два сорта «вещества», которые можно назвать положительным и отрицательным. Пусть одинаковые сорта отталкиваются, а разные — притягиваются в отличие от тяготения, при котором происходит только притяжение. Что же тогда случится?
Все положительное оттолкнется со страшной силой и разлетится в разные стороны. Все отрицательное — тоже. Но совсем другое произойдет, если положительное и отрицательное перемешать поровну. Тогда они с огромной силой притянутся друг к другу, и в итоге эти невероятные силы почти нацело сбалансируются, образуя плотные «мелкозернистые» смеси положительного и отрицательного; между двумя грудами таких смесей практически не будет ощущаться ни притяжения, ни отталкивания.
Такая сила существует: это электрическая сила. И все вещество является смесью положительных протонов и отрицательных электронов, притягивающихся и отталкивающихся с неимоверной силой. Однако баланс между ними столь совершенен, что, когда вы стоите возле кого-нибудь, вы не ощущаете никакого действия этой силы. А если бы баланс нарушился хоть немножко, вы бы это сразу почувствовали. Если бы в вашем теле или в теле вашего соседа (стоящего от вас на расстоянии вытянутой руки) электронов оказалось бы всего на 1% больше, чем протонов, то сила вашего отталкивания была бы невообразимо большой. Насколько большой? Достаточной, чтобы поднять небоскреб? Больше! Достаточной, чтобы поднять гору Эверест? Больше! Силы отталкивания хватило бы, чтобы поднять «вес», равный весу нашей Земли!
Раз такие огромные силы в этих тонких смесях столь совершенно сбалансированы, то нетрудно понять, что вещество, стремясь удержать свои положительные и отрицательные заряды в тончайшем равновесии, должно обладать большой жесткостью и прочностью. Верхушка небоскреба, скажем, отклоняется при порывах ветра лишь на пару метров, потому что электрические силы удерживают каждый электрон и каждый протон более или менее на своих местах. А с другой стороны, если рассмотреть достаточно малое количество вещества так, чтобы в нем насчитывалось лишь немного атомов, то там необязательно будет равное число положительных и отрицательных зарядов, и могут проявиться большие остаточные электрические силы. Даже если числа тех и других зарядов одинаковы, все равно между соседними областями может действовать значительная электрическая сила. Потому что силы, действующие между отдельными зарядами, изменяются обратно пропорционально квадратам расстояний между ними и может оказаться, что отрицательные заряды одной части вещества ближе к положительным зарядам (другой части), чем к отрицательным. Силы притяжения тогда превзойдут силы отталкивания, и в итоге возникнет притяжение между двумя частями вещества, в которых нет избыточного заряда. Сила, удерживающая атомы, и химические силы, скрепляющие между собой молекулы,— все это силы электрические, действующие там, где число зарядов неодинаково или где промежутки между ними малы.
Вы знаете, конечно, что в атоме имеются положительные протоны в ядре и электроны вне ядра. Вы можете спросить: «Если эти электрические силы так велики, то почему же протоны и электроны не налезают друг на друга? Если они стремятся образовать тесную компанию, почему бы ей не стать еще теснее?» Ответ связан с квантовыми эффектами. Если попытаться заключить наши электроны в малый объем, окружающий протон, то, согласно принципу неопределенности, у них должен возникнуть средний квадратичный импульс, тем больший, чем сильнее мы их ограничим. Именно это движение (требуемое законами квантовой механики) мешает электрическому притяжению еще больше сблизить заряды.
Тут возникает другой вопрос: «Что скрепляет ядро?» В ядре имеется несколько протонов, и все они положительно заряжены. Почему же они не разлетаются? Оказывается, что в ядре, помимо электрических сил, еще действуют и неэлектрические силы, называемые ядерными. Эти силы более мощные, чем электрические, и они способны, несмотря на электрическое отталкивание,
удержать протоны вместе. Действие ядерных сил, однако, простирается недалеко; оно падает гораздо быстрее, чем 1/r2. И это приводит к важному результату. Если в ядре имеется слишком много протонов, то ядро становится чересчур большим и оно уже не может удержаться. Примером может служить уран с его 92 протонами. Ядерные силы действуют в основном между протоном (или нейтроном) и его ближайшим соседом, а электрические силы действуют на большие расстояния и вызывают отталкивание каждого протона в ядре от всех остальных. Чем больше в ядре протонов, тем сильнее электрическое отталкивание, пока (как у урана) равновесие не станет столь шатким, что ядру почти ничего не стоит разлететься от действия электрического отталкивания. Стоит его чуть-чуть «толкнуть» (например, послав внутрь медленный нейтрон) — и оно разваливается надвое, на две положительно заряженные части, разлетающиеся врозь в результате электрического отталкивания. Энергия, которая при этом высвобождается,— это энергия атомной бомбы. Ее обычно именуют «ядерной» энергией, хотя на самом деле это «электрическая» энергия, высвобождаемая, как только электрические силы превзойдут ядерные силы притяжения.
Наконец, можно спросить, чем скрепляется отрицательно заряженный электрон (ведь в нем нет ядерных сил)? Если электрон весь состоит из вещества одного сорта, то каждая его часть должна отталкивать остальные. Тогда почему же они не разлетаются в разные стороны? А точно ли существуют у электрона «части»? Может быть, следует считать электрон просто точкой и говорить, что электрические силы действуют только между разными точечными зарядами, так что электрон не действует сам на себя? Возможно. Единственно, что можно сейчас сказать,— что вопрос о том, чем скреплен электрон, вызвал много трудностей при попытке создать полную теорию электромагнетизма. И ответа на этот вопрос так и не получили. Мы займемся обсуждением его немного позже.
Как мы видели, можно надеяться, что сочетание электрических сил и квантовомеханических эффектов определит структуру больших количеств вещества и, следовательно, их свойства. Одни материалы — твердые, другие — мягкие. Некоторые из них — электрические «проводники», потому что их электроны свободны и могут двигаться; другие — «изоляторы», их электроны привязаны каждый к своему атому. Позже мы выясним, откуда появляются такие свойства, но вопрос этот очень сложен, поэтому рассмотрим сначала электрические силы в самых простых ситуациях. Начнем с изучения одних только законов электричества, включив сюда и магнетизм, так как и то и другое в действительности суть явления одной и той же природы.
Мы сказали, что электрические силы, как и силы тяготения, уменьшаются обратно пропорционально квадрату расстояния между зарядами. Это соотношение называется законом Кулона. Однако этот закон перестает выполняться точно, если заряды движутся. Электрические силы зависят также сложным образом и от движения зарядов. Одну из частей силы, действующей между движущимися зарядами, мы называем магнитной силой. На самом же деле это только одно из проявлений электрического действия. Потому мы и говорим об «электромагнетизме».
Существует важный общий принцип, позволяющий относительно просто изучать электромагнитные силы. Мы обнаруживаем экспериментально, что сила, действующая, на отдельный заряд (независимо от того, сколько там еще есть зарядов или как они движутся), зависит только от положения этого отдельного заряда, от его скорости и величины. Силу F, действующую на заряд q,
Фиг. 4.13. Линии поля и эквипотенциальные поверхности для двухравных, но »разноименных точечных зарядов.
Мы можем гарантировать неизменность числа линий на всех расстояниях, если обеспечим непрерывность линий, т. е. если уж линия вышла из заряда, то она никогда не кончится. На языке линий поля закон Гаусса утверждает, что линии могут начинаться только в плюс-зарядах и кончаться только в минус-зарядах. А число линий, покидающих заряд q, должно быть равно q/e0.
Сходную геометрическую картину можно отыскать и для потенциала j. Проще всего изображать его, рисуя поверхности, на которых j постоянно. Их называют эквипотенциальными, т. е. поверхностями одинакового потенциала. Какова геометрическая связь эквипотенциальных поверхностей и линий поля? Электрическое поле является градиентом потенциала. Градиент направлен по самому быстрому изменению потенциала, поэтому он перпендикулярен к эквипотенциальной поверхности. Если бы Е небыло перпендикулярно к поверхности, у него существовала бы составляющая вдоль поверхности и потенциал изменялся бы вдоль поверхности и тогда нельзя было бы считать ее эквипотенциальной. Эквипотенциальные поверхности должны поэтому непременно всюду проходить поперек линий электрического поля.
У отдельно взятого точечного заряда эквипотенциальные поверхности — это сферы с зарядом в центре. На фиг. 4.12 показано пересечение этих сфер с плоскостью, проведенной через заряд.
В качестве второго примера рассмотрим поле близ двух одинаковых зарядов, одного положительного, а другого отрицательного. Это поле получить легко. Это суперпозиция (наложение) полей каждого из зарядов. Значит, мы можем взять две картинки, похожие на фиг. 4.12, и наложить их... нет, это невозможно! Тогда получились бы пересекающиеся линии поля, а этого быть не может, потому что Е не может иметь в одной точке двух направлений. Неудобство картины линий поля теперь становится очевидным. С помощью геометрических рассуждений невозможно в простой форме проанализировать, куда пойдут новые линии. Из двух независимых картин нельзя получить их сочетание. Принцип наложения, столь простой и глубокий принцип теории электрических полей, в картине полевых линий не имеет простого соответствия.
Картина полевых линий все же имеет свою область применимости, так что мы можем все же захотеть начертить эту картину для пары равных (и противоположных) зарядов. Если мы вычислим поля из уравнения (4.13), а потенциалы из (4.23), то сумеем начертить и линии поля и эквипотенциалы.
Фиг. 4.13 демонстрирует этот результат. Но сперва пришлось решить задачу аналитически!