Глава § 1....

Глава 33

ПОЛЯРИЗАЦИЯ

§ 1. Вектор электрического поля световой волны

§ 2. Поляризация рассеянного света

§ 3. Двойное лучепрелом­ление

§ 4. Поляриза­торы

§ 5. Оптическая активность

§ 6, Интенсив­ность отраженного света

§ 7. Аномальное преломление

§ 1. Вектор электрического поля световой волны

В этой главе мы рассмотрим круг явлений, связанных с векторным характером электриче­ского поля световой волны. В предыдущих главах направление колебаний электрическо­го поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направ­лению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в ко­торых главную роль играет определенное на­правление колебаний электрического вектора.

В идеально монохроматической световой волне электрическое поле колеблется с опре­деленной частотой, а так как x- и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возни­кает при сложении колебаний x- и y-компонент поля с одинаковой частотой? Складывая коле­бание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.

На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представлен­ные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х- и y-колебания происходят с разными фазами.

В этом последнем случае вектор электриче­ского поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.

Мы привели здесь эти три перехода для того, чтобы подчеркнуть интересную связь между ними. Из трех формул (38.14), (38.15), (38.16) легко получить

(38.17)

Вообще, обнаружив две линии в спектре, можно ожидать, что найдется и линия с частотой, равной сумме (или разности) частот. Все линии можно объяснить, отыскав серию уровней, таких, что каждая линия соответствует разности энергий меж­ду какими-то двумя уровнями. Это замечательное совпадение между частотами линий в спектре было замечено еще до откры­тия квантовой механики. Его называют комбинационным прин­ципом Ритца. С точки зрения классической механики он опять выглядит таинственно. Впрочем, не будем больше напоминать о том, что классическая механика обанкротилась в мире ато­мов; мне кажется, мы это уже хорошо показали.

Мы говорили уже о том, что в квантовой механике все собы­тия представляются в виде амплитуд, которые ведут себя как волны, имеют определенную частоту и волновое число. Посмот­рим теперь, как при помощи амплитуд объяснить, что у атома бывают только определенные энергетические состояния. Из всего, что было сказано до сих пор, это вывести и понять невоз­можно. Но зато мы все знаем, что волны в ограниченном объеме обладают определенными частотами. Скажем, если звуковая волна ограничена пределами органной трубы или как-либо иначе, то звуковые колебания могут быть разными, но их ча­стоты не могут быть любыми. И так всегда: у тела, внутри которого держатся волны, всегда бывают определенные резонанс­ные частоты. Волны, заключенные в ограниченный объем, всег­да обладают лишь определенным набором частот. (В дальней­шем мы еще будем изучать это явление и выпишем все нужные формулы.) Ну, а поскольку существует общее соотношение между частотой колебаний амплитуды и энергией, то нет ниче­го удивительного в том, что электроны, связанные в атомах, обладают только вполне определенными энергиями.

§ 6. Немного философии

Поговорим еще немного о философии квантовой механики. Как и всегда, здесь есть две стороны: философское содержание физики и его экстраполяция на другие области знаний. Когда философские идеи, связанные с наукой, переносятся на другие области, они обычно при этом искажаются до неузнаваемости. Поэтому мы ограничим свои замечания, насколько это возмож­но, только физикой.

Прежде всего начнем с самого интересного предмета — с идеи принципа неопределенности: наблюдение воздействует на явле­ние. Хоть и всегда было известно, что, наблюдая явление, мы воздействуем на него, но здесь суть-то в том, что этим воздейст­вием нельзя пренебречь, нельзя его свести до нуля, нельзя переделкой прибора произвольно уменьшить это влияние. Наблюдая явление, нельзя хотя бы слегка не нарушить его ход, и без учета этого нарушения теория не может стать после­довательной. И в доквантовой физике наблюдатель иногда был важен, но лишь в довольно тривиальном смысле. Рассматривал­ся, скажем, такой вопрос: дерево падает в лесу, в котором нет никого, кто мог бы услышать это; вызовет ли падение шум? И следовал ответ: настоящее дерево, падая в настоящем лесу, бесспорно, шум вызовет, даже если никого поблизости нет. Пусть никто падения слышать не мог, все равно останутся другие следы — кое-где осыплются листья, а на некоторых листочках останутся едва заметные царапинки от колючек, которые можно будет объяснить лишь тем, что листва дро­жала. Так что следует допустить, что в некотором смысле звук и впрямь существовал. «Но было ли ощущение зву­ка?» — можем мы спросить. Нет, для ощущения, видимо, нуж­но и сознание. А есть ли сознание у муравьев, да и водятся ли они в этом лесу и сознают ли что-либо деревья — вопрос темный. Поэтому бросим эту задачу.

С тех пор как родилась квантовая механика, стали подчер­кивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности го­ворила об этом же.) Пока не определено, как измерять величи­ну, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импуль­су нечего делать в теории.

Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необ­ходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую тео­рию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отве­чает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.

Когда была открыта новая, квантовая, механика, привер­женцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обя­зан отвечать на такие вопросы, ибо вы не можете их задать эк­спериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя прове­рить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания рас­ходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосред­ственно проверить.

Ну что ж! Хорошо, конечно, знать, какие из идей экспери­ментальной проверке не поддаются, но нет необходимости от­брасывать их все. Неверно же, что науку можно создавать толь­ко из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не под­дающиеся прямому измерению. Основа науки — в ее способ­ности предвидеть. Предвидеть — это значит сообщать, что слу­чится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от экспери­мента знаем, что произойдет, мы экстраполируем опыт, выво­дим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная про­цедура. А теперь мы, например, говорим, что закон относитель­ности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.

Мы уже делали ряд замечаний о недетерминированности квантовой механики, т. е. о том, что она не способна предсказы­вать, что произойдет в данных физических условиях, как бы аккуратно они ни были на опыте осуществлены. Если атом находится в возбужденном состоянии, собираясь излучить фо­тон, мы не можем сказать, когда это случится; существует ко­нечная амплитуда вероятности испустить фотон в любой момент, и только эту вероятность мы и можем предвидеть. Мы не можем точно предсказывать будущее. На этой основе и высказываются разного рода глупости о неопределенности всех явлений в мире, возникают вопросы о свободе воли частиц и т. д.

Следует, конечно, подчеркнуть, что и классическая физика была в каком-то смысле недетерминированной. Обычно думают, что недетерминированность, невозможность предсказать бу­дущее — это особенность квантовой механики, и именно с ней связывают возникновение представлений о свободе воли и т. д. Но если бы даже наш мир был классическим, т. е. если бы законы механики были классическими, все равно из этого не следует, что те же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположе­ние и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классичес­кий мир детерминирован. Но представьте теперь, что наша точ­ность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиар­дную. Тогда если он столкнется с другим атомом, неопреде­ленность в знании его координат после столкновения возрастет. А следующее столкновение еще сильней увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастет до огромнейшей неопределенности. Вот вам пример: вода, падая с плотины, брызжет во все стороны. Подойдите поближе, и на ваш нос тоже упадет нес­колько брызг. Это кажется совершеннейшей случайностью, хотя поведение воды может быть предсказано на основе чисто классических законов. Точное положение всех капель зависит от мельчайших колебаний потока воды перед плотиной. Но как оно зависит? Еле заметные нерегулярности в падении воды усиливаются и приводят к полной случайности движений. Ясно, что мы не можем по-настоящему предвидеть положение капель, если не знаем движения воды абсолютно точно.

Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой боль­шой промежуток времени, что для него становится невозмож­ным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик. Он не равен миллиону лет при точности в одну миллиардную! Время с уменьшением ошибки растет толь­ко логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется. Если точность равна даже одной миллиард-миллиард-миллиардной (ставьте сколько угодно миллиардов, но только когда-нибудь остановитесь!), все равно можно указать промежуток времени, меньший чем время, нужное для того, чтобы произвести измерения с такой огромной точностью, после которого уже невозможно будет предугадывать, что случится! Поэтому нечестно говорить, что уже в видимой свободе и недетерминированности человеческого мышления мы видим доказательства невозможности его изуче­ния в рамках классической «детерминистской» физики и приветствовать квантовую механику как избавительницу нашего духа от «абсолютно механистической» Вселенной. С практиче­ской точки зрения «детерминизм» отсутствовал и в классиче­ской механике.