1. Введение

Наш мозг сложен — говорит интуиция. Мы осуществляем огромное множество сложных актов. Мы дышим, кашляем, чихаем, совокупляемся, глотаем, извергаем содержимое желудка обратно, мочимся; мы складываем и вычитаем, разговариваем и даже рассуждаем, пишем, поем и сочиняем квартеты, стихи, романы и пьесы; мы играем в бейсбол и на музыкальных инструментах. Мы воспринимаем и думаем. Может ли орган, управляющий всеми этими действиями, не быть сложным?

Следует ожидать, что орган со столь богатыми возможностями должен иметь очень сложное строение. Можно думать, что он по крайней мере состоит из большого числа элементов. Одно это, однако, еще не гарантирует его сложности. Головной мозг содержит 1012 (миллион миллионов) клеток — по любым понятиям число астрономическое; хотя я не знаю, подсчитывал ли кто-нибудь число клеток в печени человека, было бы удивительно, если бы в ней было меньше клеток, чем в нашем мозгу. И все же никто никогда не скажет, что печень так же сложна, как мозг.

Более веский аргумент в пользу сложности мозга можно усмотреть в соединениях между его клетками. Обычная нервная клетка (нейрон) получает здесь информацию от сотен или тысяч других клеток и в свою очередь передает информацию сотням или тысячам нейронов. Общее число соединений в мозгу, таким образом, должно составлять приблизительно 1014–1015. Но как это число ни огромно, все же само по себе оно еще не служит надежным показателем сложности. Анатомическая сложность определяется не только числом элементов, но и характером организации, который трудно оценить числами. Можно проводить аналогии между мозгом человека и гигантским органом, печатной машиной, телефонной станцией или большим компьютером, но польза от подобных аналогий заключается главным образом в наглядном представлении о множестве малых частей, смонтированных в определенном точном порядке, функции которых по отдельности или вместе неспециалист уловить не может. В сущности, такие аналогии полезнее для тех, кто совсем не имеет понятия, как работают печатные машины и телефонные станции. В конце концов, для того чтобы получить представление о том, что такое мозг, как он устроен и как обрабатывает информацию, нет другого пути, кроме детального ознакомления с самим мозгом или его частями. В этой книге я надеюсь разъяснить читателю некоторые особенности структуры и функции мозга, подробно рассмотрев ту его часть, с которой связано зрение.

Вопросы, которых я буду касаться, можно сформулировать достаточно просто. Когда мы смотрим на окружающий мир, первичное событие состоит в фокусировке света на сетчатке каждого глаза. Сетчатка содержит 125 миллионов рецепторов, называемых палочками и колбочками; это нервные клетки, специализированные таким образом, чтобы генерировать электрические сигналы при попадании на них света. Задача остальной части сетчатки и самого мозга — использовать эти сигналы, чтобы извлечь биологически полезную информацию. Результатом будет зрительная сцена в том виде, как мы ее воспринимаем, со всей сложностью форм, глубины, движения, цвета и текстуры. Мы хотим узнать, каким образом мозг решает эту сложнейшую задачу.


Рис. 1. Сантьяго Рамон-и-Кахал играет в шахматы в 1898 году в возрасте 46 лет во время отпуска в Мирафлорес де ла Сьерра. Снимок сделан одним из его детей. По мнению большинства нейроанатомов, Рамон-и-Кахал намного превзошел любого специалиста в этой области, а может быть, и во всей нейробиологии центральной нервной системы. Его двумя главными достижениями явились: 1) весьма убедительная демонстрация того, что нервные клетки действуют как независимые единицы, и 2) использование метода Гольджи для картирования обширных участков головного и спинного мозга, показавшее как чрезвычайную сложность, так и высокую упорядоченность нервной системы. В 1906 году ему вместе с Гольджи была присуждена Нобелевская премия.


Чтобы ваши надежды и ожидания не были чрезмерными, я должен буду вас предупредить, что мы знаем лишь небольшую часть ответа. Однако нам уже многое известно о механизмах зрительной системы, и мы имеем довольно ясное представление о том, как мозг приступает к решению этой задачи. Наши познания достаточно убеждают в том, что мозг, хотя и сложным образом, работает в соответствии с принципами, которые когда-то, вероятно, будут поняты, и что ответы будут не столь сложны, чтобы их можно было понять лишь обладателям ученых степеней в области компьютерной науки или физики элементарных частиц.

Нейробиология — увлекательный, но необычный предмет. Она имеет дело со структурой нервной системы (нейроанатомией) и с ее функцией (нейрофизиологией). Биология большинства систем органов рассматривает форму, относительное расположение и работу таких объектов, как кости, пищеварительный тракт, почки или печень, функции которых сравнительно хорошо известны. Я не утверждаю, что о каждом из них известно абсолютно все, но у нас есть хотя бы приблизительные представления: пищеварительный тракт перерабатывает пищу, сердце перекачивает кровь, кости обеспечивают опору, а в некоторых костях происходит образование крови. (Сейчас трудно представить себе эпоху, будь то даже темное двенадцатое столетие, когда люди не понимали бы, что благодаря костям человек отличается по консистенции от дождевого червя; мы, однако, легко забываем, что для открытия роли сердца понадобился уже гений Уильяма Гарвея.) Для чего служит нечто? — это вопрос, применимый только к объектам живой природы (и ее производным). Можно спросить, и этот вопрос осмыслен, для чего нужны ребра: они образуют грудную клетку и препятствуют сдавлению находящихся в ней органов. Можно также спросить, для чего служит мост: люди, будучи частью живой природы, изобрели его, чтобы переправляться через реку. Вне биологии цель смысла не имеет, именно поэтому я улыбаюсь, услышав вопрос сына: «Папа, зачем идет снег?». Возникновение цели в живой природе связано с эволюцией, борьбой за существование, социобиологией, генами самосохранения — множеством высоких материй, постоянно занимающих умы многих людей. Спустимся, однако, на землю. Большинству анатомических объектов, даже таким некогда загадочным образованиям, как зобная железа и селезенка, ныне можно приписать вполне осмысленные функции. Когда я был еще студентом-медиком, слова о зобной железе и селезенке сопровождали вопросительными знаками.

Иначе обстоит дело с мозгом, ибо даже сейчас обширные его участки помечают вопросительными знаками, размышляя не только о том, как они работают, но и об их биологическом значении. Огромная, детально разработанная область нейроанатомии — это в значительной части нечто вроде географии структур, функции которых все еще остаются загадкой или не вполне ясны. Степень нашего невежества, конечно, не одинакова. Например, мы знаем довольно много о зоне, называемой двигательной корой, и имеем общее представление об ее функции: она обслуживает произвольные движения; стоит только разрушить ее на одной стороне, как рука и нога на противоположной стороне станут неуклюжими и слабыми и мимика половины лица будет нарушена. Уровень наших знаний о двигательной коре находится где-то посередине всей шкалы от абсолютного незнания функций некоторых структур мозга до ясного понимания немногих других его структур (подобно тому как большинство из нас не имеет понятия о работе компьютера, лучше понимает работу печатного станка, еще лучше — двигателя внутреннего сгорания и совсем хорошо — устройства, которое мы сами изобрели).

Зрительный путь, включая первичную зрительную кору (стриарную кору), относительно хорошо исследован. Зрительная кора — быть может, лучше всего изученная ныне часть мозга и уж наверняка наиболее известная часть коры его больших полушарий. Мы довольно хорошо знаем, «для чего» она нужна, т.е. чем обычно заняты ее нервные клетки, и приблизительно представляем себе ее вклад в анализ зрительной информации. Такого знания мы достигли сравнительно недавно, и я хорошо помню, как в 1950-е годы я рассматривал под микроскопом срез зрительной коры с бесчисленными клетками, упакованными как яйца в коробке, и размышлял о том, что? бы они все вместе могли делать и сможем ли мы когда-нибудь это узнать.


Рис. 2. Головной мозг человека — вид слева и несколько сзади; можно видеть кору больших полушарий и мозжечок. Непосредственно перед мозжечком виден небольшой участок ствола.


Каким образом нужно было бы приступать к выяснению этого? Первая пришедшая в голову мысль могла состоять в том, что подробное рассмотрение связей между глазом и мозгом и внутри мозга окажется уже достаточным, чтобы заключить о том, как они работают. К сожалению, это верно лишь отчасти. Давно было известно, что для зрения важны области коры, расположенные в задней части нашего мозга, — еще на рубеже нынешнего века было обнаружено, что глаза связаны с нею через промежуточную «узловую станцию». Но чтобы понять, основываясь только на структурных данных, что делают клетки зрительной коры, когда животное или человек смотрит на небо или на дерево, необходимо знать анатомические детали намного лучше, чем мы знаем их сейчас. Нелегко нам было бы даже в том случае, если бы мы имели полную схему всех связей, точно так же как трудно понять устройство компьютера или радиолокационной установки только по их схемам, особенно если мы не знаем, для чего предназначены эти устройства.

Прогресс в понимании работы зрительной коры явился результатом применения комбинированной стратегии. Еще в конце 50-х годов физиологический метод регистрации активности одиночных нейронов начал доставлять кое-какие сведения о том, как функционируют нейроны в повседневной жизни животного; между тем существенных успехов в построении детальной схемы связей в то время не было. Однако в последние несколько десятилетий обе области — физиология и анатомия — параллельно продвигались вперед, взаимно обогащая друг друга методиками и новой информацией.

Иногда говорят, что нервная система содержит огромное число случайных межнейронных соединений. Хотя упорядоченность связей и в самом деле не всегда очевидна, я подозреваю, что те, кто говорит о случайных нейронных сетях, не утруждали себя ознакомлением с нейроанатомией. Даже беглый просмотр такой книги, как труд Кахала «Histologie du Systeme Nerveux», достаточно убеждает кого угодно в том, что в чудовищной сложности нервной системы почти всегда можно усмотреть известную степень упорядоченности. Когда мы видим правильные ряды клеток в мозгу, впечатление создается такое же, как если бы мы рассматривали телефонную станцию, печатный станок или внутренность телевизора, — становится несомненным, что упорядоченность служит какой-то цели. Столкнувшись с тем или иным человеческим изобретением, мы едва ли усомнимся в том, что агрегат в целом, так же как и его отдельные части, обладает вполне постижимыми функциями. Чтобы понять их, нам нужно только прочесть ряд инструкций. В биологии появляется аналогичная вера в функциональную обоснованность и в конечном итоге даже в постижимость структур, которые не были изобретены кем-то, а совершенствовались на протяжении миллионов лет эволюции. Задача нейробиолога (разумеется, не единственная) состоит в том, чтобы выяснить связь порядка и сложности с функцией.

Для начала я хочу дать упрощенное представление о том, на что похожа нервная система — как она построена, как работает и как мы собираемся изучать ее. Я опишу типичные нервные клетки и структуры, которые из них создаются.

Основные «строительные блоки» в мозгу — нейроны, или нервные клетки. Это не единственные клетки в нервной системе: в перечень структурных элементов мозга следует также включить глиальные клетки, которые скрепляют нейроны и, вероятно, помогают питать их и удалять ненужные продукты обмена веществ; кровеносные сосуды и составляющие их клетки; различные покрывающие мозг оболочки; и даже, пожалуй, череп, который вмещает остальные структуры и обеспечивает их защиту. Здесь я буду рассматривать только нервные клетки.

Многие видят в нервах подобие нитевидных проводов, по которым распространяются электрические сигналы. Но нервное волокно — это только одна из многих частей нейрона. Тело нейрона имеет обычно более или менее шаровидную форму, свойственную многим клеткам (см. рис. 3), и содержит ядро, митохондрии и другие органеллы, выполняющие многочисленные «внутрихозяйственные» функции, о которых так любят говорить цитофизиологи. От тела клетки отходит главный отросток в виде цилиндрической нити — нервное волокно, передающее сигнал и называемое аксоном. Кроме аксона от тела отходит множество других ветвящихся и суживающихся к концу волокон; их называют дендритами. Вся нервная клетка — ее тело, аксон и дендриты — одета клеточной мембраной.

Тело нейрона и дендриты получают информацию от других нейронов; аксон передает информацию от данного нейрона другим нейронам.

Длина аксона варьирует в пределах от долей миллиметра до метра и более; длина большинства дендритов не превышает миллиметра. Вблизи своего окончания аксон обычно разделяется на многочисленные веточки, концевые участки которых очень близко подходят к телам или дендритам других нервных клеток, но не соприкасаются с ними вплотную. В этих областях, называемых синапсами, информация передается от одной нервной клетки, пресинаптической, к следующей — постсинаптической.


Рис. 3. Главные части нервной клетки — это ее тело, содержащее ядро и другие органеллы, единственный аксон, передающий импульсы от клетки, и дендриты, к которым приходят импульсы от других клеток.


Сигналы в нерве возникают в точке аксона, близкой к месту его соединения с телом клетки; они передаются вдоль аксона, удаляясь от тела клетки, и доходят до области концевых разветвлений. Из окончаний аксона информация передается через синапсы следующей клетке или клеткам — здесь происходит химическая передача, которую мы рассмотрим в главе 2.

Нервные клетки далеко не одинаковы, они делятся на множество различных типов. Хотя есть и промежуточные формы, в целом это деление на типы достаточно четко. Никто не знает, сколько типов существует в головном мозгу, — их, несомненно, больше сотни, а может быть, и больше тысячи. Нет двух совершенно одинаковых нейронов. Две клетки одного и того же класса примерно так же сходны между собой, как два дуба или два клена, а различие между двумя классами можно сравнить с отличием кленов от дубов или даже от одуванчиков. Не следует рассматривать классы клеток как жесткие подразделения: в зависимости от вашей склонности к дроблению или к объединению вы, возможно, насчитаете в сетчатке и в коре мозга по полсотне типов клеток или всего лишь по полудюжине типов (см. примеры на рис. 4).


Рис. 4. Слева: мозжечковая клетка Пуркинье, зарисованная Сантьяго Рамон-и-Кахалом. Это один из крайних случаев специализации нейрона. Густое древовидное ветвление дендритов по форме напоминает не куст, а ветвь кедра, так как все разветвления расположены в одной плоскости. Через незаполненные веточками участки, напоминающие отверстия, проходят миллионы тончайших аксонов, идущих наподобие телеграфных проводов под прямым углом к плоскости рисунка. Аксон клетки Пуркинье отдает несколько веточек поблизости от тела клетки, а затем спускается к клеточным скоплениям, расположенным в глубине мозжечка на расстоянии нескольких сантиметров, где он расщепляется на многочисленные концевые разветвления. Полная высота клетки (тело плюс дендриты) в реальном масштабе составляет около 1 миллиметра.

В середине: сделанная Рамон-и-Кахалом зарисовка пирамидного нейрона коры больших полушарий, окрашенного по методу Гольджи. Общая высота рисунка соответствует примерно 1 миллиметру. Показана лишь часть (а) главного аксона: отдав две веточки (с), он может продолжаться за пределы рисунка на расстояние нескольких сантиметров (и даже метров), прежде чем окончится густой сетью разветвлений. Небольшое черное пятнышко — тело нейрона.

Справа: на этом рисунке Йеннифера Лунда изображена корковая клетка, которую относят к типу звездчатых нейронов. Темный пузырек в центре — тело клетки. Аксоны (тонкие линии) и дендриты (толстые линии) ветвятся и идут вверх и вниз на расстояние около миллиметра.


Связи между нейронами или группами нейронов мозга обычно не очевидны, и для того чтобы выявить наиболее важные проводящие пути, потребовались столетия. Поскольку в густых сетях волокон разные их пучки часто пронизывают друг друга, для изучения каждого пучка в отдельности нужны специальные методы. Выбранный для исследования участок мозга может быть невероятно плотно заполнен клеточными телами, дендритами и аксонами, между которыми почти нет свободного пространства. Поэтому методы окрашивания клеток, способные выявить и раскрыть организацию более рыхлых клеточных структур, таких как печень или почка, дают в мозгу лишь сплошную черную массу. Нейроанатомы, однако, придумали новые эффективные способы выявления как отдельных клеток в какой-либо одиночной структуре, так и связей между разными структурами.

Как можно было ожидать, нейроны с одинаковыми или близкими функциями часто бывают связаны между собой. Тесно взаимосвязанные клетки в нервной системе нередко группируются вместе по очевидной причине большей эффективности коротких аксонов: такие аксоны «дешевле изготовить», они занимают меньше места и быстрее доставляют сообщения своим адресатам. Мозг поэтому содержит сотни клеточных скоплений, которые могут иметь форму шаров или параллельных слоев. Кора большого мозга — пример такой одиночной гигантской пластины толщиной два миллиметра и площадью около квадратного фута. В отдельном скоплении между нейронами могут быть короткие связи, а иногда от одного скопления к другому идет большое число длинных волокон, образующих пучки, или тракты. Шаровидные или пластинчатые структуры часто соединяются последовательно в проводящие пути (см. рис. 6).


Рис. 5. На этом рисунке Рамон-и-Кахала (препарат, окрашенный по Гольджи) видны несколько клеток в верхних слоях коры мозга месячного младенца. В этой области окрасилась лишь ничтожная доля клеток.


Рис. 6. Зрительный путь. Каждая структура, представленная квадратиком, содержит миллионы клеток, расположенных слоями, имеет входы от одной или нескольких структур нижележащих уровней и посылает выходные сигналы нескольким структурам вышележащих уровней. Вверх от первичной зрительной коры этот путь прослежен на протяжении всего лишь четырех или пяти уровней.


Хорошим примером такой цепи последовательных структур служит зрительный путь. Сетчатка каждого глаза состоит из трех слоев клеток, один из которых содержит светочувствительные рецепторные клетки — палочки и колбочки. Как уже говорилось, в каждом глазу имеется более 125 миллионов рецепторов. Две сетчатки посылают свои выходные сигналы двум клеточным скоплениям величиной с ядро арахиса, расположенным в глубине мозга, — так называемым наружным (латеральным) коленчатым телам. От этих структур в свою очередь идут волокна в зрительную область коры. Точнее, они направляются к стриарной коре — первичной зрительной зоне. Отсюда, пройдя через ряд слоев синаптически связанных клеток, информация передается соседним зрительным зонам более высокого порядка, а те посылают сигналы нескольким другим зонам (см. рис. 6). Каждая из этих корковых зон, подобно сетчатке, содержит три или четыре синаптических переключения. В самом заднем отделе коры — затылочной доле — имеется не меньше дюжины таких зрительных зон (каждая величиной примерно с почтовую марку), и намного большее их число, видимо, располагается в теменной и височной долях, лежащих перед затылочной. Здесь, однако, наши знания о зрительном пути становятся смутными.

Наша основная цель состоит сейчас в том, чтобы понять, для чего существуют все эти цепочки нейронных структур, как они работают и что делают. Мы хотим узнать, какого рода зрительная информация передается по описанным путям и как она модифицируется на каждом этапе — в сетчатке, наружном коленчатом теле и на различных уровнях коры. Мы изучаем эту проблему с помощью микроэлектрода — важнейшего инструмента современной эры в нейрофизиологии. Мы вводим микроэлектрод (обычно тонкую изолированную проволочку) в ту структуру, которую хотим исследовать, — например в наружное коленчатое тело, — так, чтобы его кончик, подойдя к клетке достаточно близко, дал нам возможность регистрировать ее электрические сигналы. Мы пытаемся воздействовать на эти сигналы подачей различных световых стимулов на сетчатку животного.


Рис. 7. Постановка эксперимента по регистрации ответов в зрительной системе. Животное (обычно это макак) помещают перед экраном, на который проецируется стимул. Регистрацию осуществляют, вводя микроэлектрод в тот или иной участок зрительного пути, в данном случае в первичную зрительную кору. (На рисунке изображен мозг человека, но мозг обезьяны очень сходен с ним.)


Наружное коленчатое тело получает входные сигналы главным образом от сетчатки — каждая его клетка имеет связи с палочками и колбочками, хотя и не прямые, а через промежуточные нейроны сетчатки. Как вы увидите в главе 3, палочки и колбочки, передающие сигналы той или иной клетке зрительного пути, не разбросаны по всей сетчатке, а собраны в небольшом участке. Этот участок называют рецептивным полем данной клетки. Поэтому наш первый шаг состоит в том, чтобы, освещая различные места сетчатки, найти это рецептивное поле. Определив его границы, мы можем начать варьировать форму, размеры, цвет и скорость перемещения светового стимула и таким образом выяснять, на какие виды зрительных стимулов лучшего всего реагирует изучаемая клетка.

Нам нет надобности направлять пучок света прямо на сетчатку. Обычно гораздо проще проецировать стимулы на экран, расположив его в нескольких метрах от животного. Глаз создает на сетчатке хорошо сфокусированное изображение экрана и стимула. Теперь мы можем начать работу и определить на экране положение проекции рецептивного поля. Если угодно, можно рассматривать рецептивное поле как часть зрительного мира животного — в данном случае часть экрана, «видимую» интересующей нас клеткой.

Мы вскоре узнаем, что реакции клеток могут быть — и обычно бывают — весьма избирательными. Для того чтобы подобрать стимул, вызывающий по-настоящему сильную реакцию данного нейрона, может потребоваться известное время на поиски. Сначала нам иной раз трудно будет даже найти место рецептивного поля на экране, хотя для клеток такого раннего этапа, как коленчатое тело, его можно легко локализовать. Клетки коленчатого тела избирательны как по отношению к величине пятна, на которое они реагируют, так и к тому, будет ли это черное пятно на белом фоне или белое на черном фоне. На более высоких уровнях мозга для вызова реакции у некоторых клеток может потребоваться стимул в виде «края» (границы света и темноты); при этом часто будет иметь значение ориентация края — расположен ли он вертикально, горизонтально или наклонно. Иногда бывает важно, неподвижен стимул или он движется по сетчатке (или экрану), цветной он или белый. Если на экран смотрят оба глаза, решающим может быть точное расстояние до экрана. Отдельные нейроны, даже в пределах одной и той же структуры, могут сильно различаться по стимулам, на которые они реагируют. Узнав все, о чем мы хотели «допросить» изучаемую клетку, мы перемещаем электрод на долю миллиметра вперед к следующей клетке и снова начинаем всю процедуру тестирования.

В любой структуре зрительной системы мы обычно регистрируем реакции сотен клеток в экспериментах, длящихся часы или дни. Раньше или позже у нас начинает складываться некоторое представление о том, что общего имеют клетки данной структуры между собой и в чем они различаются. Поскольку каждая такая структура содержит миллионы клеток, мы можем исследовать лишь малую долю всей нейронной популяции, но, к счастью, различных видов клеток не миллионы, так что рано или поздно мы перестаем находить новые разновидности. Удовлетворившись, мы делаем глубокий вдох и отправляемся на следующий уровень — переходим, например, от наружного коленчатого тела к стриарной коре — и там повторяем всю процедуру. Поведение клеток следующего уровня обычно бывает более сложным, чем на предыдущем уровне, но это различие может быть и совсем небольшим, и весьма существенным. Сравнивая последовательные уровни, мы начинаем понимать вклад каждого из них в анализ нашего зрительного мира — узнаём, какую операцию выполняет каждая из структур над получаемыми ею сигналами, чтобы извлечь из внешней среды биологически полезную для животного информацию.

Стриарная кора уже основательно изучена во многих лабораториях. Значительно меньше сведений у нас о следующей корковой зоне — зрительной зоне 2, хотя и здесь мы начинаем получать некоторое представление о том, что делают ее клетки. То же можно сказать и о третьей зоне, средне-височной (MT), которая связана как со стриарной корой, так и со зрительной зоной 2. Дальше, однако, наши познания быстро становятся все более отрывочными: для двух или трех областей мы имеем лишь смутное представление о виде обрабатываемой информации — это может быть, например, анализ цвета или распознавание таких сложных объектов, как человеческие лица; и наконец, примерно о дюжине зон, о которых с уверенностью можно сказать, что они в основном зрительные, мы не знаем практически ничего. Стратегия наша, однако, вполне оправдывается, если судить по быстроте прогресса в этой области. В последующих главах я добавлю некоторые подробности об уровнях вплоть до стриарной коры включительно. В главе 2 я схематично опишу, как «работают» импульсы и синапсы, и приведу ряд примеров нервных путей, иллюстрирующих некоторые общие принципы нейронной организации. Затем мы сосредоточимся на зрении — сначала на анатомии и физиологии сетчатки, а потом на физиологии стриарной коры и ее строении. Далее будут описаны удивительные пространственные отношения нейронов в коре — результат того, что клетки со сходными функциями имеют тенденцию собираться вместе. Затем последует ряд специальных тем: механизмы восприятия цвета и глубины, функция пучка волокон, связывающих два полушария (мозолистого тела), и наконец влияние раннего жизненного опыта на зрительную систему. Некоторые разделы, например о нервном импульсе и цветовом зрении, по необходимости будут содержать несколько больше технических деталей, чем другие. В этих случаях я могу лишь надеяться, что вы последуете мудрому совету: «Если трудно, читай дальше!»